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Abstract: Curvature theory, a fundamental subject in kinematics, is typically addressed through the
concepts of instantaneous invariants and canonical coordinates, which are pivotal for the generation
of mechanical paths. This paper delves into this subject with a higher-order analysis of screws,
employing both canonical and natural coordinates. Through this exploration, a new Euler–Savary
equation is derived, one that does not rely on canonical coordinates. Additionally, the paper provides
a comprehensive classification of the degenerate conditions of the cubic of stationary curves of
four-bar linkages at rotational positions. A thorough examination of four-bar linkages in translational
positions—the couple links translate instantaneously—is also presented, with analyses extending
up to the sixth order. The findings reveal that the Burmester’s points at translational positions
can be extended to Burmester’s points with excess one, provided that all pivot points are symmet-
rically distributed about the pole norm with the two cranks in corotating senses. However, the
extension to Burmester’s points with excess two is not possible. Similarly, the Ball’s point with
excess one does not progress to Ball’s point with excess two. The paper also highlights that the
traditional method, which is based on canonical coordinates, is ineffective when the four-bar linkage
forms a parallelogram. Fortunately, this scenario can be effectively analyzed using the screw-based
approach. Ultimately, the results presented can also serve as analytical solutions for 3-RR platforms
with higher-order shakiness.

Keywords: four-bar linkages; 3-RR linkages; infinitesimal mechanisms; shakiness; cubic of stationary
curvature; Euler–Savary equation

1. Introduction

Curvature theory of path-curves is a classic topic in theoretical kinematics [1–6] and
plays a key role in the mechanical generation of curves [7–11], such as straight-line, circular-
arc, and other more general curves for planar mechanisms [12,13] and spherical mecha-
nisms [14,15]. Traditionally, curvature theory was mainly studied based on the concept
of instantaneous invariants and canonical coordinate systems [1,2]. The concept of in-
stantaneous invariants, which are the geometric properties of a rigid-body motion, was
introduced by Bottema and Veldkamp [7]. A canonical coordinate system is a special
frame in which the kinematics can be formed with a minimum number of coordinates.
Veldkamp has made an extensive study on the curvature of plane algebraic curves, and
applied it to four-bar linkages [2,3]. However, for the four-bar in a translational position
instantaneously, he did not give a clear condition for the Burmester’s point with excess one,
as well as the Ball’s points with excess, and whether they are the highest order, which is
important for the design of Watt mechanisms [16]. The degenerate conditions for the cubic
of stationary curvature have been discussed in detail in the publications by Veldkamp [2]
and Dijksman [6], but a clear and concise algebraic classification that relates to the geometry
of four-bars has been not reported.
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In mechanism theory, curvature theory is in fact involved in the singularity prob-
lems [17,18]. For example, if we attach a third link to the four-bar linkage and its link
axis also intersects at the velocity pole of the original four-bar linkage, we can obtain
a 3-RR linkage (also called a planar platform) with instantaneous mobility (also called
shakiness [19–21]), which is a structure called an infinitesimal mechanism. The order of
mobility of 3-RR linkages is clearly related to the property of the trajectory of the path
generated by the original four-bar linkages. If the fixed pivot point of the third link is
located at the curvature (first or second derivative of the curvature) center of the moving
pivot, the corresponding 3-RR linkages possess second-order (third or fourth order) mo-
bility. In addition, if the fixed pivot point of the third link is located at center of the first
or second curvature, the corresponding linkages possess even higher-order mobility; the
former corresponds to cubic stationary curvature, the latter to the Burmester’s points, and
the resulting 3-RR linkages become highly flexible, although still remaining a structure.

The problem of singularity and higher-order mobility are usually treated with higher-
order kinematic analysis of screws, which is a pure algebraic method [22]. Screw theory
has been widely used in kinematics and mechanism theory [23,24]. Higher-order anal-
ysis of screws has been formulated to an arbitrary order for platform mechanisms by
Wohlhart [20,21]. He also pointed out the relationship between the order of shakiness and
the order curvature of the trajectory of four-bar linkages. However, he did not give analyti-
cal solutions for these shaky structures, even for lower-order shakiness. Possible reasons
are that he used a more general reference coordinate system rather than the canonical
systems, which make the symbolic computation much more complicated.

Although the classic method based on instantaneous invariants and canonical coor-
dinates is recognized as an elegant way to treat curvature theory, conditions in which
the classic methods fail indeed exist, such as the parallelogram, in which the canonical
coordinates will approximate to infinity. In addition, it will be shown that a new version
of the Euler–Savary equation can be formed neatly without referring to the canonical
coordinates. To this end, we revisit the curvature theory of four-bar linkages with screw
theory using both canonical coordinates and natural coordinates (selected for convenience).
An imaginary link is attached to the four-bar linkages, thus forming a 3-RR platform; thus,
Wohlhart’s method can be used for higher-order analysis.

In the following sections, analysis will be performed up to the third order for the
four-bar linkages at rotational positions to obtain analytical solutions for curvature and
stationary curvature. Analysis will be performed up to the sixth order for the four-bar
linkages at translational positions (the couple link translates instantaneously) to analyze
the highest-order curvature.

2. Methods
2.1. Higher-Order Kinematics of Platform Mechanisms in Screws

In this paper, a third link is attached to a four-bar linkage, thus forming a 3-RR linkage
or a planar Stewart platform, as shown in Figure 1. All the link axes are required to intersect
at one point (possibly at infinity). A platform mechanism consists of two rigid bodies, the
fixed body and moving body. The two bodies are actuated by linear actuators which are
connected by spherical joints for spatial platforms and revolute joints for planar platforms.
Generally, there are two situations: the first situation consists of four-bar linkages with a
finite pole, and is said to be at rotational position; the second one corresponds to a pole at
infinity, and is said to be at translational position, as shown in Figure 1.

The constraints provided by each limb are simply line vectors if the linear actuators
are locked. Higher-order constraints of parallel mechanisms can be formulated explicitly
to arbitrary order [20,21]. Since analyses up to the sixth order are needed in the following
sections, the expressions up to the sixth order are summarized in the following. Denote V
as the velocity screw of the moving platform:

V =

(
ω
υ0

)
, (1)
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in which ω is the angular velocity and υ0 is the velocity of the point instantaneously
coincident with the origin. The higher-order time derivatives of the velocity of the screw
up to the fifth order are

.
V =

( .
ω

.
υ0 + υ0 × ω

)
, (2)

..
V =

( ..
ω

..
υ0 +

.
υ0 × ω + 2υ0 ×

.
ω

)
, (3)

...
V =

( ...
ω

...
υ 0 +

..
υ0 × ω + 3

.
υ0 ×

.
ω + 3υ0 ×

..
ω

)
, (4)

V(4) =

(
ω(4)

υ
(4)
0 +

...
υ 0 × ω + 4

..
υ0 ×

.
ω + 6

.
υ0 ×

..
ω + 3υ0 ×

...
ω

)
, (5)

V(5) =

(
ω(5)

υ
(5)
0 + υ

(4)
0 × ω + 5 ...

υ 0 ×
.

ω + 10
..
υ0 ×

..
ω + 9

.
υ0 ×

...
ω + 3υ0 × ω(4)

)
, (6)

respectively, in which
.

ω,
..
ω, . . ., ω(5) are the first-, second-, . . ., fifth-order angular accelera-

tions, and
.
υ0,

..
υ0, . . ., υ

(5)
0 are the first-, second-, . . ., fifth-order linear velocity of the point of

the moving body instantaneously coincident with the origin.
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Denote xi(i = 1, 2, 3) as the anchor point of the moving platform and yi(i = 1, 2, 3) as
the anchor point of the fixed platform. The velocity υi, acceleration

.
υi, and higher-order

acceleration of the anchor points of the mobile platform can be derived as

υi = υ0 + ω × xi, (7)
.
υi =

.
υ0 +

.
ω × xi + ω × (υi − υ0), (8)

..
υi =

..
υ0 +

..
ω × xi + 2

.
ω × (υi − υ0) + ω ×

( .
υi −

.
υ0
)
, (9)
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...
υ i =

...
υ 0 +

...
ω × xi + 3

..
ω × (υi − υ0) + 3

.
ω ×

( .
υi −

.
υ0
)
+ ω ×

( ..
υi −

..
υ0
)
, (10)

υ
(4)
i = υ

(4)
0 + ω(4) × xi + 4 ...

ω × (υi − υ0) + 6
..
ω ×

( .
υi −

.
υ0
)
+ 4

.
ω ×

( ..
υi −

..
υ0
)
+ ω × (

...
υ i −

...
υ 0), (11)

υ
(5)
i = υ

(5)
0 + ω(5) × xi + 5ω(4) × (υi − υ0) + 10 ...

ω ×
( .
υi −

.
υ0
)
+ 10

..
ω ×

( ..
υi −

..
υ0
)

+5
.

ω × (
...
υ i −

...
υ 0) + ω ×

(
υ
(4)
i − υ

(4)
0

)
.

(12)

The geometric screw or the force screw of the ith chain, denoted as Si, which directs
from the fixed platform to the mobile one, is defined as

Si =

(
xi − yi
yi × xi

)
. (13)

The time derivative of the geometric screws can be written as

.
Si =

( .
xi

yi ×
.
xi

)
=

(
vi

yi × vi

)
. (14)

And higher-order derivatives of Si only involve the time derivatives of velocity vi of the
moving points

dkSi

dtk =


dkvi

dtk

yi ×
dkvi

dtk

. (15)

Finally, higher-order constraints up to the sixth order imposed on the geometric screws
are given as

Gi = V◦Si = 0, (16)
.

Gi =
.
V◦Si + V◦ .

Si = 0, (17)
..

Gi =
..
V◦Si + 2

.
V◦ .

Si + V◦ ..
Si = 0, (18)

...
Gi =

...
V ◦Si + 3

..
V◦ .

Si + 3
.
V◦ ..

Si + V◦ ...
Si = 0, (19)

G(4)
i = V(4)◦Si + 4

...
V ◦ .

Si + 6
..
V◦ ..

Si + 4
.
V◦ ...

Si + V◦S(4)
i = 0, (20)

G(5)
i = V(5)◦Si + 5V(4)◦ .

Si + 10
...
V ◦ ..

Si + 10
..
V◦ ...

Si + 5
.
V◦S(4)

i + V◦S(5)
i = 0. (21)

The notation ◦ in Equations (16)–(21) represents the reciprocal product of screws. Denote
two screws V = (ω; υ0) and W = (f; m), both in radial notion; their reciprocal product is
defined as V◦W = υ0·f + ω·m.

Equations (16)–(21) are a set of linear equations in terms of the velocity screws (and
their higher-order terms). There is a gradual solution process for these equations. Suppose
the configurations of the first two links are known, and the third link is unknown. The
velocity screws of the platform can be determined by Equation (16) with an arbitrary
constant. Application of this velocity screw to the derivative of geometric screws will lead
to the second-order constraints. Higher-order constraints follow a similar way, as depicted
by the flow chart in Figure 2.



Machines 2024, 12, 576 5 of 20

Machines 2024, 12, x FOR PEER REVIEW  5  of  20 
 

 

the second-order constraints. Higher-order constraints follow a similar way, as depicted 

by the flow chart in Figure 2. 

 

Figure 2. Flow chart of the higher-order analysis. 

2.2. Loci of Higher Order Curvature 

Equations (16)–(21) are essential constraints on the locations of pivot points. Denote 

𝑿 ൌ ൛𝒙 ,𝒚 , 𝑗 ൌ 1, 2, 3ൟ  as the Cartesian coordinates and 𝑹 ൌ ൛𝑟 ,𝜃 , 𝑗 ൌ 1, 2, 3ൟ  as the polar 
coordinates of  the pivot points of  the 3-RR  linkages  in  the current configuration. For a 

planar platform shaky to the ith order, this requires that all the screws  𝑺  or the parame-

ters 𝑿  of three chains satisfy constraints up to the ith order in Equations (16)–(21): 

𝑃𝑿
 ൌ ቄ𝑿ห𝐺 ൌ 0,𝐺ሶ ൌ 0,𝐺jሷ ൌ 0,⋯𝐺

ሺିଵሻ ൌ 0, 𝑗 ൌ 1,2,3ቅ.  (22)

The corresponding 3-RR  linkages are further called shaky  to  the  ith order, or  ith-order 

infinitesimal mechanisms. The notation  𝑃𝑹
   is used instead if polar coordinates are used. 

Suppose the position of the third link is unknown. The locus of the couple points,  𝒙ଷ, 
and the corresponding center points,  𝒚ଷ, are subsets of the solution in Equation (22), i.e., 
the projections of the set  𝑃𝑿

 : 

𝑃𝒙య
 ൌ proj𝒙య൫𝑃𝑿

 ൯,𝑃𝒚య
 ൌ proj𝒚య൫𝑃𝑿

 ൯.  (23)

The first-order solutions  𝑃𝒙య
ଵ ,𝑃𝒚య

ଵ   lead to the first-order contact i.e., having common 

tangents, between the path of the moving point  𝒙ଷ  and the circle centered at  𝒚ଷ with ra-

dius equal to the  length of the third  link. Second-order solutions  𝑃𝒙య
ଶ ,𝑃𝒚య

ଶ   correspond to 

the second-order contact, that is to say,  𝒚ଷ  is center of curvature of the anchor point of 
𝒙ଷ . Third-order  solutions  𝑃𝒙య

ଷ ,𝑃𝒚య
ଷ    correspond  to  the  third-order  contact,  and  𝒙ଷ   deter-

mines the locus of the cubic stationary curvature of the couple link, and  𝒚ଷ  is the curva-
ture center. The merit of using Equation (22) is taking all the points of the four-bar linkage 

into consideration directly to determine the higher-order curvature of couple points and 

center points. In the following sections, the rotational and translational positions are in-

vestigated, respectively. 

2.3. Transformation between Two Coordinate Systems 

In classical curvature theory, the so-called canonical coordinate systems are usually 

used for the curvature analysis. It is also convenient to use other coordinate systems for 

some situations. Hence, the transformation between the two coordinate systems is ana-

lyzed firstly. 

Figure 2. Flow chart of the higher-order analysis.

2.2. Loci of Higher Order Curvature

Equations (16)–(21) are essential constraints on the locations of pivot points. Denote
X =

{
xj, yj, j = 1, 2, 3

}
as the Cartesian coordinates and R =

{
rj, θj, j = 1, 2, 3

}
as the polar

coordinates of the pivot points of the 3-RR linkages in the current configuration. For a
planar platform shaky to the ith order, this requires that all the screws Si or the parameters
X of three chains satisfy constraints up to the ith order in Equations (16)–(21):

Pi
X =

{
X
∣∣∣Gj = 0,

.
Gj = 0,

..
Gj = 0, · · · G(i−1)

j = 0, j = 1, 2, 3
}

. (22)

The corresponding 3-RR linkages are further called shaky to the ith order, or ith-order
infinitesimal mechanisms. The notation Pi

R is used instead if polar coordinates are used.
Suppose the position of the third link is unknown. The locus of the couple points, x3,

and the corresponding center points, y3, are subsets of the solution in Equation (22), i.e.,
the projections of the set Pi

X:

Pi
x3

= projx3

(
Pi

X

)
, Pi

y3
= projy3

(
Pi

X

)
. (23)

The first-order solutions P1
x3

, P1
y3

lead to the first-order contact i.e., having common
tangents, between the path of the moving point x3 and the circle centered at y3 with radius
equal to the length of the third link. Second-order solutions P2

x3
, P2

y3
correspond to the

second-order contact, that is to say, y3 is center of curvature of the anchor point of x3. Third-
order solutions P3

x3
, P3

y3
correspond to the third-order contact, and x3 determines the locus

of the cubic stationary curvature of the couple link, and y3 is the curvature center. The merit
of using Equation (22) is taking all the points of the four-bar linkage into consideration
directly to determine the higher-order curvature of couple points and center points. In the
following sections, the rotational and translational positions are investigated, respectively.

2.3. Transformation between Two Coordinate Systems

In classical curvature theory, the so-called canonical coordinate systems are usually
used for the curvature analysis. It is also convenient to use other coordinate systems
for some situations. Hence, the transformation between the two coordinate systems is
analyzed firstly.

2.3.1. Rotational Position

Suppose that the position of the four pivot points, i.e., b, B, A, and a, of a four-bar
linkage are known, the position of the pivot points c and C are unknowns, and the pivots A,
B, and C are denoted as the fixed points, as shown in Figure 3a. The canonical coordinates,
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denoted as ∑ xoy, are determined by the method of the so-called Bobillier’s construction [5].
The polar coordinates of the pivot points are denoted as

(
rij, θi

)
with respect to ∑ xoy.

Therefore, the four-bar linkage has a total of six parameters, which exceeds the five required;
thus, a constraint is placed on these parameters.
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Figure 3. Coordinates of four-bar linkages, at (a) rotational and (b) translational position.

In order to apply canonical coordinates for the higher-order screw analysis with a
minimum number of parameters, we use another coordinate system, called the natural
coordinate system, denoted as ∑ xoy. The origin of ∑ xoy is also located at the pole, and

the x axis is collinear with the ray
→

PbB, as shown in Figure 3a. The polar coordinates of the
pivots are denoted as a(r11,−θ1), A(r12,−θ1), b(r21, 0), B(r22, 0), c(r31, θ3), and C(r32, θ3),
respectively, with respect to ∑ xoy. Clearly, there are five parameters in total.

Referring to the coordinates ∑ xoy, the intersection Q (collineation-point) of the ray
→

Pab and
→

PAB can be written as
xQ =

r11r12r2cos θ1 − r21r22r1

r12r21 − r11r22
,

yQ = − r11r12r2sin θ1

r12r21 − r11r22
,

(24)

in which the notation ri, defined as ri = ri1 − ri2, is used for brevity. The matrix that rotates

the x axis of the canonical system ∑ xoy to the ray
→

PaA is a rotation of angle θ1 about the pole

T0a =

(
cosθ1 −sinθ1
sinθ1 cosθ1

)
=

1
m

(
ν1 r11r12r2sinθ1

−r11r12r2sinθ1 ν1

)
, (25)

in which the notation ν1 = r11r12r2cosθ1 − r21r22r1 and

m =
√

r2
11r2

12r2
2 + r2

21r2
22r2

1 − 2r11r12r21r22r1r2cosθ1. (26)

Then the transformation matrix T0b from ∑ xoy to ∑ xoy can be obtained by multiply-
ing a rotation of angle θ1 about the z axis, which is a rotation of angle θ2 about the pole

T0b =

(
cosθ2 −sinθ2
sinθ2 cosθ2

)
=

1
m

(
ν2 r21r22r1sinθ1

−r21r22r1sinθ1 ν2

)
, (27)
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with the notation ν2 defined as ν2 = r11r12r2 − r21r22r1cosθ1. Then, the Cartesian coordinates
(xi, yi) of the pivot points can be transformed from ∑ xoy to ∑ xoy with a minimum number
of parameters using Equation (27); the involved parameters (r11, r12, r21, r22, θ1) are called
the reduced canonical parameters in this paper. The quantities in Equations (16)–(21) can be
expressed in ∑ xoy with the reduced canonical parameters, firstly, and then are transformed
to ∑ xoy by the matrix in Equation (27). Thus, the loci of higher order can be expressed in
canonical coordinates but with reduced canonical parameters.

It should be noted that there will be at most one radial coordinate rij equal to zero in
order to form a feasible four-bar linkage. Furthermore, the angle θ1 between the two rays
→

PaA and
→

PbB is also assumed to be nonzero, excluding the case of folded four-bar linkages.

2.3.2. Translational Position

For the translational position of 3-RR linkages, the pole of the platform is at infinity,
and thus has a translational mobility. The Cartesian coordinates of the pivots referring to a
natural coordinate system ∑ xoy are denoted as a(x11, y1), A(x12, y1), b(x21, y2), B(x22, y2),
c(x31, y3), and C(x32, y3), respectively. The abscissa axis x is chosen to be parallel to one
crank of the four-bar linkage, and the y axis is perpendicular to it, as shown in Figure 3b.

In canonical systems ∑ xoy, the coordinates of the pivot points are denoted as
(

xij, yi
)
,

as shown by the black lines in Figure 3b. According to the Bobillier’s construction [6], the

axis y passes the intersection of the ray
→
ab and ray

→
AB, the axis x is aligned with the pole

tangent and is the same distance away from the ray
→
bB as the point Q (collineation-point) is

from the ray
→
aA. The coordinates of the collineation point Q in ∑ xoy are

xQ =
x11x22 − x12x21

x11 − x12 − x21 + x22
,

yQ =
y2(x11 − x12)− y1(x21 − x22)

x11 − x12 − x21 + x22
.

(28)

The equation of the pole tangent (also the degenerated inflection circle) is

yP =
y1(x11 − x12)− y2(x21 − x22)

x11 − x12 − x21 + x22
. (29)

If the previous relations are represented in the canonical system ∑ xoy, the coordinates
of the pivot points in Equations (28) and (29) will be constrained by the relations xQ = 0,
yP = 0, yielding {

x11 = x21y2/y1
x12 = x22y2/y1

, for x11 ̸= x21 or x12 ̸= x22. (30)

It is clear that y1 ̸= y2 ̸= 0 and x21 ̸= x22, which guarantees a feasible four-bar linkage at
the translational position. Furthermore, if x11 = x21 or x12 = x22, the previous relations
reduce to {

x11 = x21 = 0,
x12 = y2x22/y1,

or
{

x11 = y2x21/y1,
x12 = x22 = 0.

(31)

These constraints imply that only four parameters, (x21, x22, y2, y1), are necessary to deter-
mine the configuration of the four-bar linkage in translational position. The parameters
(x21, x22, y2, y1) are called the reduced canonical parameters at the translational position.
Furthermore, application of the coordinates in Equation (30) to the y component of the
collineation point Q yields yQ = y1 + y2.

3. Results

Building upon the frameworks of the previous sections, the loci of higher-order curva-
ture of four-bar linkages can be obtained to arbitrary order using the reduced canonical
parameters. In the following, some analytical solutions are presented for the rotational
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position up to the third order and the translational position up to the sixth order. Some
results have not been reported in the literature.

3.1. Formulae for Rotational Position
3.1.1. New Euler–Savary Equation

The first-order analysis is trivial, since the third link axis also intersects at the pole. The
second-order analysis is related to the curvature of the couple point, i.e., the Euler–Savary
equation. Representing the Cartesian coordinates of points a, b, A, B, c, and C in ∑ xoy, the
second-order constraint P2

{r31,r32,θ3}
yields a new version of the Euler–Savary equation:

sin θ1
1

r31
− 1

r32

+
sin θ3

1
r11

− 1
r12

− sin (θ1 + θ3)
1

r21
− 1

r22

= 0, (32)

which relates the couple point c(r31, θ3) to its center of curvature C(r32,θ3) to the second order.
Using the transformation, θ3 − θ2 = θ3, Equation (32) can be rewritten as

1
r31

− 1
r32

=
1

Dsin θ3
, (33)

which is the classic form of the Euler–Savary equation. The term D (also the instantaneous
invariant b2) in Equation (33) is the diameter of the inflection circle (i.c. for short), which
can be expressed with reduced canonical parameters as

D = b2 =
1

sin θ1

√√√√√ 1(
1

r21
− 1

r22

)2 +
1(

1
r11

− 1
r12

)2 − 2cos θ1(
1

r21
− 1

r22

)(
1

r11
− 1

r12

) =
m

r1r2sin θ1
. (34)

The i.c. curve, represented with variables
(
r31, θ3

)
, can be obtained by the vanishing of

1/r32 in Equation (33):
r31 = Dsin θ3. (35)

Apply Equation (33) to the three pair of pivot points,

1
1

r11
− 1

r12

= Dsin θ1,
1

1
r21

− 1
r22

= Dsin θ2,
1

1
r31

− 1
r32

= Dsin θ3. (36)

Then, multiply both sides of the three equations by sin
(
θ3 − θ2

)
, sin

(
θ1 − θ3

)
, and

sin
(
θ2 − θ1

)
, respectively, and make summations; the right-hand side will vanish, and

sin
(
θ3 − θ2

)
1

r11
− 1

r12

+
sin
(
θ1 − θ3

)
1

r21
− 1

r22

+
sin
(
θ2 − θ1

)
1

r31
− 1

r32

=

Dsin θ1sin
(
θ3 − θ2

)
+ Dsin θ2sin

(
θ1 − θ3

)
+ Dsin θ3sin

(
θ2 − θ1

)
= 0.

(37)

The arguments of the sines in Equation (37) satisfy θ2 − θ1 = θ1, θ3 − θ2 = θ3, and
θ1 − θ3 = −(θ1 + θ3), representing the angles between two adjacent rays. Consequently,
the new Euler–Savary equation in Equation (32) is recovered again, without referring to the
canonical coordinates.

Clearly, no instantaneous invariants or canonical coordinates are used in Equations (32) or (37),
thus, offering an efficient formula to determine the center of curvature of a four-bar linkage.
To the best knowledge of the authors, Equations (32) or (37) have not yet been reported in
literature despite their simplicity and conciseness. Furthermore, Equation (32) is also the
constraint imposed on the three pairs of pivot points that must be fulfilled in order for the
corresponding 3-RR linkages to be shaky to the second order.
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3.1.2. Cubic of Stationary Curvature

The intersection of the second- and third-order constraints, i.e., P3
{r31,r32,θ3}

, gives rise
to the cubic of stationary curvature and corresponding center of curvature. The former
curve is also called the circling point curve (cp for short); the latter one is the center point
curve (

∼
cp for short). Referring to the canonical coordinates ∑ xoy, the two curves can be

written compactly with reduced canonical parameters as
cp
(
r31, θ3

)
:

m3

r31
=

µ0µ1µ2

sin θ3
+

ν0ν1ν2

cos θ3
,

∼
cp
(
r32, θ3

)
:

m3

r32
=

µ’
0µ’

1µ’
2

sin θ3
+

ν0ν1ν2

cos θ3
,

(38)

in which the coefficient m is given in Equation (26); other coefficients can be written as
ν0 = r12r21 − r11r22,

ν1 = r11r12r2cos θ1 − r21r22r1,
ν2 = r11r12r2 − r21r22r1cos θ1,

(39)


µ0 =

[
(r22r1 + r12r2)r11r21cos θ1 − r2

11r12r2 − r2
21r22r1

]
r1r2sin θ1,

µ1 = r12,
µ2 = r22,

(40)


µ’

0 =
[
(r21r1 + r11r2)r12r22cos θ1 − r11r2

12r2 − r21r2
22r1

]
r1r2sin θ1,

µ’
1 = r11,

µ’
2 = r21.

(41)

It is noted that none of the terms µ’
0, µ0, ν0, ν1 or ν2 will vanish if any single radius

vanishes: rij = 0. Denote µ = µ0µ1µ2, µ’ = µ’
0µ’

1µ’
2, and ν = ν0ν1ν2; it can be seen that

µ − µ’ = m3/D, (42)

which is a well-known identity.
Make notations kij = 1/rij, ki = 1/ri1 − 1/ri2, and


V0 = k11k22 − k12k21,
V1 = k1 − k2cos θ1,
V2 = k1cos θ1 − k2,


U = k1sin θ1

[
k21

(
V2

2 + k2
1sin2

θ1

)
− V0V1

]
,

U’ = k1sin θ1

[
k22

(
V2

2 + k2
1sin2

θ1

)
− V0V1

]
M =

(
V2

2 + k2
1sin2

θ1

)0.5
.

, (43)

If we also represent the unknown pivot points c and C in ∑ xoy, the two cubics
cp(r31, θ3) and

∼
cp(r32, θ3) will become

1
r31

=
V0V1sin θ3 + k21k1sin θ1(V2cos θ3 − k1sin θ1sin θ3)

(V2sin θ3 + k1sin θ1cos θ3)(V2cos θ3 − k1sin θ1sin θ3)
=

1
M3

[
U

sin (θ3 + ∅)
+

V0V1V2

cos (θ3 + ∅)

]
,

1
r32

=
V0V1sin θ3 + k22k1sin θ1(V2cos θ3 − k1sin θ1sin θ3)

(V2sin θ3 + k1sin θ1cos θ3)(V2cos θ3 − k1sin θ1sin θ3)
=

1
M3

[
U’

sin (θ3 + ∅)
+

V0V1V2

cos (θ3 + ∅)

]
,

(44)

respectively, in which θ3 + ∅ = θ3 and cos∅ = V2/M, sin ∅ = k1sin θ1/M are equal
to the two entries in the first column of the matrix (27), respectively. Hence, the
two Equations (38) and (44) are essentially equivalent, with the correspondences Vi ↔ νi ,
U ↔ µ , and U’ ↔ µ’ under the transformation θ3 + ∅ → θ3 .

The intersection of the inflection circle in Equation (35) (or Equation (32)) and cubics
of stationary curvatures in Equation (38) (or Equation (44)) gives rise to the Ball’s point,
which has instantaneous infinite curvature. In this condition, the corresponding fixed pivot
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of 3-RR linkages approaches infinity. With respect to the canonical systems, the angular
location of Ball’s point can be written as

tan θ3 =
m2 − Dµ0µ1µ2

Dν0ν1ν2
. (45)

The radial coordinates of the Ball’s point are determined by Equations (38) or (44). With
respect to the natural coordinates, the angular location θ3 of the Ball’s point can be obtained
with Equation (45) and the relation tan

(
θ3 − θ2

)
= tan θ3, and the term tan θ2 can be

calculated by the entries of the matrix in Equation (27).

3.1.3. Classification of the Degenerate Cubics

It is known that the cubic of stationary curves of four-bar linkages will degenerate
into a circle and a line (its extended diameters) if the coefficients in the denominators of
Equations (38) or (44) vanish. Thanks to the explicit expressions of factors of µ, µ’, and ν in
Equation (38), a complete classification of the degenerate cubics can be obtained.

There are generally two classes of degenerations, both for cp and
∼
cp; the first case is

µ or µ’ = 0, in which the degenerate line is collinear with the pole tangent; the second
case is ν = 0 (also called the cycloidal position), in which cp and

∼
cp will both degenerate

with the degenerate lines aligning with the pole norm. Furthermore, the i.c. will have a
common tangent, i.e., the pole tangent at the pole with cp and

∼
cp if ν = 0; hence, the only

Ball’s point will be the inflection pole (the intersection of the pole norm and i.c.), other than
the velocity pole. The previous two classes can be further divided into three subclasses
corresponding to the vanishing of factors µk = 0 or νk = 0, k = 0, 1, 2 for cp and µ’

k = 0
or νk = 0, k = 0, 1, 2 for

∼
cp. Choosing a suitable independent variable in the constraints

formed by the vanishing of these factors in Equations (39)–(41), the expressions of the six
degenerate cubics of cp and

∼
cp are given in the following.

i. µ0 = 0 or µ’
0 = 0

The cp curve will degenerate if µ0 = 0; however, the center point curve
∼
cp(r31, θ3)

will not degenerate, and the collineation line
→

PQ will be perpendicular to the moving link
ab. The

∼
cp curve will degenerate if µ’

0 = 0 while the cp curve remains a cubic, and the

collineation line
→

PQ will then be perpendicular to the fixed link AB. The equations of
degenerate cubics and the corresponding inflection circle in terms of

(
r31, θ3

)
are

if µ0 = 0 =⇒


cp : r31 =

cos θ3

√
r2

11 + r2
21 − 2r11r21cos θ1

sin θ1
=

∣∣∣∣→ab
∣∣∣∣cos θ3

sin θ1
, or θ3 = 0,

i.c. : r31 =

r21r22

∣∣∣∣→ab
∣∣∣∣sin θ3

(r11 − r21cos θ1)(r22 − r21)
,

(46)

if µ’
0 = 0 =⇒


∼
cp : r32 =

cos θ3

√
r2

12 + r2
22 − 2r12r22cos θ1

sin θ1
=

∣∣∣∣ →AB
∣∣∣∣cos θ3

sin θ1
, or θ3 = 0,

i.c. : r31 =

r21r22

∣∣∣∣ →AB
∣∣∣∣sin θ3

(r12 − r22cos θ1)(r22 − r21)
.

(47)

An example for µ0 = 0 is shown in Figure 4b, and the parameters are specified as
r11 = 6, r12 = 2, r21 = 4, r22 = 6, and θ1 = π/3 (the units are omitted without loss
of generality).
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Figure 4. Degenerate cubics for the rotational position, (a) r22 = 0, (b) µ0 = 0, (c) ν1 = 0, (d) ν0 = 0.

ii. ri1 = 0 or ri2 = 0

On the condition of rij = 0, the velocity pole of the four-bar linkage will be coincident
with the pivot point which has the vanishing radius rij = 0. For condition ri1 = 0 (or

ri2 = 0), the center point curve
∼
cp (or cp curve) will degenerate into a circle and a line

identical to the pole tangent. It can be shown that the pole tangent will align with the

ray
→

PbB, if r2i = 0, and will align with
→

PaA if r1i = 0 on inspection of the transformation
matrix in Equations (25) and (27). The degenerate cubics and the corresponding inflection
circle are

if ri2 = 0, (i ̸= j,∈ {1, 2}) =⇒


cp : r31 = (−1)i rj1cos θ3

cosθ1
, or θ3 = 0(the ith ray),

i.c. : r31 =
rj1rj2sin θ3

sin θ1
(
rj1 − rj2

) ,
(48)

if ri1 = 0, (i ̸= j,∈ {1, 2}) =⇒


∼
cp : r32 = (−1)j rj2cos θ3

cos θ1
, or θ3 = 0(the ith ray),

i.c. : r31 =
rj1rj2sin θ3

sin θ1
(
rj2 − rj1

) .
(49)

An example for r22 = 0 is shown in Figure 4a, and rest of the parameters are specified
as r21 = 4, r11 = 3, r12 = 1, and θ1 = π/3.
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iii. ν0 = 0

In this condition, the two lines
→
ab and

→
AB are parallel with each other, and the cp and

∼
cp curves will both degenerate into a circle and a line:

cp : r31 =
sin θ3

√
r2

11 + r2
21 − 2r11r21cosθ1

sin θ1
=

∣∣∣∣→ab
∣∣∣∣sin θ3

sinθ1
, or θ3 =

π

2
,

∼
cp : r32 =

sin θ3

√
r2

12 + r2
22 − 2r12r22cosθ1

sin θ1
=

∣∣∣∣ →AB
∣∣∣∣sin θ3

sin θ1
, or θ3 =

π

2
,

i.c. : r31 =

r21

∣∣∣∣ →AB
∣∣∣∣sin θ3

sin θ1(r22 − r21)
.

(50)

An example is shown in Figure 4d, with parameters r11 = 10/3, r12 = 5, r21 = 4,
r22 = 6, and θ1 = π/3.

iv. ν1 = 0

At this condition, the cp and
∼
cp curves will both degenerate into a circle and a line

aligned with the pole norm, which also coincides with the ray
→

PaA, and the collineation

line
→

PQ will be perpendicular to the ray
→

PbB:

cp : r31 =
r21sin θ3

cos θ1
, or θ3 =

π

2

(
the ray

→
PaA

)
,

∼
cp : r32 =

r22sin θ3

cos θ1
, or θ3 =

π

2

(
the ray

→
PaA

)
,

i.c. : r31 =
r21r22sin θ3

(r22 − r21)cos θ1
.

(51)

An example is shown in Figure 4c, with parameters r11 = 42/13, r12 = 7, r21 = 2, r22 = 6,
and θ1 = π/3.

v. ν2 = 0

Similar to the case ν1 = 0, the cp and
∼
cp curves will both degenerate into a circle and a

line aligned with the pole norm, which also coincides with the ray
→

PbB, and the collineation

line
→

PQ will be perpendicular to the ray
→

PaA:

cp : r31 =
r11sin θ3

cosθ1
, or θ3 =

π

2

(
the ray

→
PbB

)
,

∼
cp : r32 =

r12sin θ3

cosθ1
, or θ3 =

π

2

(
the ray

→
PbB

)
,

i.c. : r31 =
r11r12sin θ3

(r12 − r11)cos θ1
.

(52)

vi. µ or µ’ = 0 and ν = 0

Since the four relations µ’
0 = 0, µ0 = 0, ν1 = 0, and ν2 = 0 represent the perpendicu-

larity of the collineation line to the four sides of the four-bar linkage, respectively, no two of
these relations can hold simultaneously. Hence, the only feasible combination of µ or µ’ = 0
and ν = 0 is

{
µ’

1, µ’
2, µ1 or µ2 = 0

}
or {ν1 or ν2 = 0}. This can be achieved by rij = 0 and

θ1 = π/2 (other conditions may exist), considering Equation (39). For the combination
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µ’ = 0, ν = 0 (also called Cardan position), the curve
∼
cp degenerates into the lines of the

pole tangent, the pole norm, and the ideal line at infinity, and the cp will become

cp : r31 =
ri1ri2sinθ3

ri2 − ri1
, or θ3 =

π

2
, if rj1 = 0, θ1 =

π

2
, (i ̸= j,∈ {1, 2}), (53)

in which the circle-component of cp is identical to the inflection circle, according to the
relation in Equation (42). For combination µ = 0, ν = 0 (also called the cardioidal position),
the curve cp will degenerate into three lines and the

∼
cp has a similar expression as that in

Equation (53):

∼
cp : r32 =

ri1ri2sinθ3

ri2 − ri1
, or θ3 =

π

2
, if rj2 = 0, θ1 =

π

2
, (i ̸= j,∈ {1, 2}), (54)

whose circle component is identical to the inflection circle but with opposite sign. The pole
tangents of the previous two cases are similar to those in cases ii; say the pole tangent will

align with the ray
→

PbB, if r2i = 0, and align with
→

PaA if r1i = 0.
The previous degenerate cubics have already been discussed case-by-case in [2,6]

with instantaneous invariants, not the geometric parameters of the four-bar linkages. This
paper presents a complete and neat algebraic classification in terms of concrete geometric
parameters in Equations (38) and (44), which is of pedagogical value.

3.1.4. An Example of Straight-Line Mechanisms

It is known that the Ball’s points can trace at least four-point contact with its tangent
line, and is used for generating approximate straight lines. An example is shown in
the following. The two rays of the exemplified four-bar linkage are perpendicular with

each other i.e.,
→

PbB⊥
→

PaA, and Pa = Pb = PA/4 = PB/4,
→
ab ∥

→
AB. Hence, the pole

tangent will be parallel to the couple link
→
ab, according to the transformation matrix in

Equation (27). There is only one Ball’s point, denoted as U, which is the intersection
between the degenerate cp and the inflection circle, recalling the formula of the degenerate
cubics in Equation (50). This Ball’s point is located at the pole norm with radius coordinates
PU = 4Pa/3. The traced curve of this point is shown in Figure 5.

1 
 

 
 
Figure 5. A straight line mechanism: the traced approximate straight line is in red, the two blue
curves are the trajectories of two moving pivots, and the green circle is the inflection circle.

3.2. Formulae for Translational Position
3.2.1. Euler–Savary Equations

Referring to the general frame ∑ xoy, after some manipulations, the final second-order
constraints P2

{x31,x32,y3}
reduce to

y1 − y2

x31 − x32
+

y2 − y3

x11 − x12
+

y3 − y1

x21 − x22
= 0, (55)
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which is the Euler–Savary equation in natural coordinates for the translational position.
This equation relates the couple point (x31, y3) to its curvature center (x32, y3).

Expressed in the canonical system ∑ xoy, the classic Euler–Savary equation for the ith
ray is written 1/(xi1 − xi2) = yi/b2

1, in which b1 is the first-order instantaneous invariant.

Multiply both side of these equations by
(

yj − yk

)
, and make summation, leading to an

equation identical to Equation (55),

y1 − y2
x31 − x32

+
y2 − y3

x11 − x12
+

y3 − y1
x21 − x22

= 0, (56)

in which the right side vanishes for the circular summations. Making the substitution
of x31 = x31 + xQ, and y3 = y3 + yP in Equation (55) will lead to an equation in terms
of (x31, x32, y3),

(x31 − x32)y3 =
(y2 − y1)(x11 − x12)(x21 − x22)

(x11 − x12)− (x21 − x22)
= (xi1 − xi2)yi. (57)

Then, the instantaneous invariant with canonical coordinates as b2
1 = |(xi1 − xi2)yi| can be

represented with natural coordinates as

b2
1 =

(y2 − y1)(x11 − x12)(x21 − x22)

(x11 − x12)− (x21 − x22)
. (58)

3.2.2. Cubic of Stationary Curvature

Expressed in ∑ xoy, the solutions P3
{x31,y3}

and P3
{x32,y3}

, representing the curves cp and
∼
cp, respectively, can be written as

cp(x31, y3) : x31 =
x21(y1 − y3)(x11 − x12)− x11(y2 − y3)(x21 − x22)

(y1 − y3)(x11 − x12)− (y2 − y3)(x21 − x22)
,

∼
cp(x31, y3) : x32 =

x22(y1 − y3)(x11 − x12)− x12(y2 − y3)(x21 − x22)

(y1 − y3)(x11 − x12)− (y2 − y3)(x21 − x22)
.

(59)

The previous expressions can be represented in ∑ xoy by substitution of x31 = x31 + xQ,
and y3 = y3 + yP,

cp(x31, y3) : x31y3 = − (y1 − y2)(x11 − x12)(x21 − x22)(x11 − x21)

(x11 − x12 − x21 + x22)
2 = x21y2,

∼
cp(x32, y3) : x32y3 = − (y1 − y2)(x11 − x12)(x21 − x22)(x12 − x22)

(x11 − x12 − x21 + x22)
2 = x22y2.

(60)

The second and fourth equal signs are met when the relations in Equation (30) are
applied. Inspection of Equation (60) suggests that the condition x11 = x21 (or x12 = x22)
will make the cp (or

∼
cp) split up into the pole tangent and pole norm, as shown in Figure 6a,

if x11 = x21,

{
cp(x31, y3) : x31 = 0 or y3 = 0,

∼
cp(x32, y3) : x32y3 = x22y2,

(61)

if x12 = x22,

{
cp(x31, y3) : x31y3 = x21y2,

∼
cp(x32, y3) : x32 = 0 or y3 = 0.

(62)

It is known that the cp curve can be represented with instantaneous invariants as
x31y3 = −b1a3/3; hence,

b1a3

3
=

(y1 − y2)(x11 − x12)(x21 − x22)(x11 − x21)

(x11 − x12 − x21 + x22)
2 = −x21y2. (63)
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Combining this relation with Equation (58) gives rise to the third-order instantaneous
invariants a3 with natural coordinates, and this shows that the only non-trivial condition
for the vanishing of a3 = 0 is x11 = x21 at the translational position. The instantaneous a3
are also given with the reduced canonical coordinates for later use (assuming x21 > x22)

a3 = −3x21y2/
√
(x21 − x22)y2. (64)Machines 2024, 12, x FOR PEER REVIEW  15  of  20 
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3.2.3. Burmester’s Points

The solutions P4
X for the constraints up to the fourth order can be obtained by applying

the third-order solutions cp and
∼
cp to the constraints

...
Gi = 0, which leads to the so-called

Burmester’s points. The general solution of the hyperbolas and the degenerate lines of
cp and

∼
cp in Equations (60)–(62) will be treated respectively. These solutions are firstly

expressed in ∑ xoy, and then transformed into ∑ xoy by x31 = x31 + xQ, and y3 = y3 + yP.
Firstly, considering the hyperbola in Equation (60), after applying this equation to...

Gi = 0, the variables x31 and x32 are eliminated, resulting in an equation with unknown y3,
and this equation can be factored as

1
y2

3
(y3 − y1)(y3 − y2)g = 0, (65)

in which a constant coefficient not related to the variable y3 is omitted here. There are
four roots, corresponding to the four Burmester’s points. The two roots y1 and y2 corre-
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spond to the moving pivot of the four-bar linkages. The factor g is a quadratic polynomial
in y3, which produces the rest two non-trivial Burmester’s points

g = y2
3 + c1y3 + c0 = 0, y3 ̸= 0. (66)

The two coefficients of Equation (66) can be expressed both in ∑ xoy and ∑ xoy as
c1 =

(y2 − y1)(x11 − x12 + x21 − x22)

x11 − x12 − x21 + x22
= y1 + y2,

c0 =
(x11 − x12)(x21 − x22)(x11 − x21)(x12 − x22)

(x11 − x12 − x21 + x22)
2 =

x21x22y2
y1

.
(67)

The x components of the Burmester’s points can be obtained by further application of the
roots of Equation (66) on Equation (60).

As for the degenerate cases, application of the first component of the cp curve x31 = 0
in Equation (61) to

...
Gi = 0 will yield the third Burmester’s point y3 = −y1 − y2 = −yQ for

the degenerate case, which is located at the mirror of the point Q about the pole tangent.
Hence, the coordinates of the third Burmester’s point are

{
0,−(y1 + y2)

}
. Application

of the second component of the degenerate cp curve y3 = 0 in Equation (61) on
...
Gi = 0

will yield

y2

(
y2

1 + y1y2 + x22x31

)
x32 + y2

(
y2

1 + y1y2

)
x31 = 0, if x11 = x21, (68)

since the center points of the circling points on the inflection circle y3 = 0 locate at infinity,
i.e., x32 → ∞ . This implies that the coefficient of x32 in Equation (68) must vanish so that
this equation holds, which leads to the fourth Burmester’s point{

−
(

y2
1 + y1y2

)
/x22, 0

}
, if x11 = x21, (69)

as shown in Figure 6b. The fourth Burmester’s point is also the only Ball’s point with excess
one (also called Ball–Burmester’s point).

The expansion of the numerator of Equation (65) is a polynomial of order four and
can be written as

y4
3 +

[
x21x22y2

y1
+y1y2 − (y1 + y2)

2
]

y2
3 +

y2(y1 + y2)
(
y2

1 − x21x22
)

y1
y3 + x21x22y2

2 = 0 (70)

in ∑ xoy. Comparing these coefficients with those of the classic results in publication [1] on
page 294, 3y4

3 + 4b1b3y2
3 + a4b2

1y3 + a3b2
1(a3 + 3b1)/3 = 0 for the fourth-order analysis will

give the expressions of the instantaneous invariants (for later use),
b3 =

3
(
x21x22y2 − y3

1 − y2
1y2 − y1y2

2
)

4y1
√
(x21 − x22)y2

,

a4 =
3(y1 + y2)

(
y2

1 − x21x22
)

y1(x21 − x22)
.

(71)

It is known that the Ball–Burmester point can be also written as (a4/3, 0) in ∑ xoy [1], this
can be used to verify the result in Equation (66) or (69).

3.2.4. The Highest Order of Burmester’s Points with Excess

It will be shown that the fifth-order solution P5
X produces the highest finite order

of curvature, say a six-point contact of a couple curve with its circle of curvature in the
translational position. The obtained solutions are also called the Burmester’s points with
excess one.
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The solutions of the fifth order solution P5
X can be obtained by applying the solution

P3
X to the constraint G(4)

i = 0 firstly, which yields a polynomial in terms of y3,

(x21 + x22)(y3 − y1)(y3−y2)

y2
2(x21 − x22)

3y3

= 0, y3 ̸= 0. (72)

The two factors involving y3 correspond to the known moving pivot points. By comparison
of Equations (72) and (66), the two equations hold simultaneously, i.e., Burmester’s point
proceeds to be Burmester’s point with excess one, iff x21 + x22 = 0. This condition makes
the corresponding four-bar linkages symmetrical about the pole norm as shown in Figure 6c,
considering the relation in Equation (30).

As for the Ball’s point of the degenerate circling curves, substitute the first component
x31 = 0 of cp curve in Equation (61) and

∼
cp curve x32y3 = x22y2 to G(4)

i = 0, leading to

x22y2(y3 − y1)(y3−y2)

y3
= 0, if x11 = x21, (73)

whose solutions correspond to the known moving pivot points. Then apply the second
component y3 = 0 (where the only Ball–Burmester point is located) to G(4)

i = 0:

x31
(
y2

1 + y2
2
)
+ x32y1y2

y3
2x3

22
= 0, if x11 = x21. (74)

Multiply both sides with y3, apply x32y3 = x22y2, and then further apply y3 = 0; the
previous equation reduces to

y1/
(

y2x2
22

)
= 0, if x11 = x21, (75)

which is impossible considering the constraints in Equation (30). Hence, no Ball’s points
with excess one will extend to excess two.

The previous results can be tested by the method with a simplified curvature expres-
sion [2] or a more complete version by Woo and Freudenstein [9] followed by Ting [4] and
Cera, etc. [13]. As for Veldkamp’s simplified expression [2], the intersection of the third
derivative of curvature and the first derivative of curvature can be written as a quadratic
equation in terms of y3 with instantaneous invariants

(2a3 + 3b1)y2
3 − b1b4y3 + 2a3b3b1/3 − a5b2

1/5 = 0, (76)

which corresponds to Equation (72) of the fifth-order analysis. Since the two moving pivot
points y1 and y2 must satisfy Equation (76), this leads to two equations in terms of the
unknowns b4 and a5. The solutions of these instantaneous invariants can be written as

b4 =
(2a3 + 3b1)(y1 + y2)

b1
,

a5 =
10a3b3

3b1
− 5(2a3 + 3b1)y1y2

b2
1

.
(77)

Applying Equation (77) back to Equation (76) will yield an equation similar to Equation (72)
up to a constant coefficient

(2a3 + 3b1)(y3 − y1)(y3−y2) = 0. (78)

Hence, the vanishing of the coefficient, i.e., (2a3 + 3b1) = 0 will result in a ‘zero’ constraint
equation similar to Equation (72).
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It is easy to prove the equivalence between the two coefficients, i.e., x21 + x22 and
2a3 + 3b1. It is known that the circling-point curve and its corresponding center point
curve can be written as x21y2 = −b1a3/3 and x22y2 = −b1(a3 + 3b1)/3, respectively.
Making summation of the two equations yields (x21 + x22)y2 = −b1(2a3 + 3b1)/3. Hence,
(x21 + x22) or (x11 + x12) or (x31 + x32) = 0 implies (2a3 + 3b1) = 0, and vice versa. This
implies that all the pivot points are symmetric about the pole norm, as shown in Figure 6c.
It is known that there are two symmetric configurations about the pole norm for the

translational linkages: the first is the corotating configuration, in which cranks
→
Aa and

→
Bb

have the same rotating senses; the second is the counter-rotating configuration, in which

cranks
→
Aa and

→
Bb have the opposite senses. For the latter case, the collineation point

will be located at the origin, i.e., yQ = y1 + y2 = 0. However, this condition will reduce
the Equation (66) to y2

3 + x2
21 = 0, which has no real roots. Hence, only the symmetric

configuration with the two cranks in corotating senses is feasible.
As for the Ball’s point in the degenerate condition, Veldkamp has stated in his thesis [2]

that the Ball’s point with excess one in translational position extends to excess two if and
only if the fifth-order instantaneous invariant a5 vanishes. But this is impossible, since
a5 = −15y1y2/b1, which can be obtained by applying the condition of the degenerate
cubics, a3 = 0, to Equation (77). The vanishing of a5 will lead to y1 = 0 or y2 = 0, which is
against the requirement for the reduced canonical coordinates in Equation (30). Hence, the
Ball’s point with excess one cannot extend to a Ball’s point with excess two.

As for the sixth-order solution, we only need to investigate the symmetrical con-
figuration x21 = −x22 ̸= 0. After applying the third-order solution in Equation (60) and
x21 = −x22 to the sixth-order constraint G(5)

i = 0, a quartic equation in terms of y3 is produced,

f2(y3 − y1)(y3−y2)h/y2
3 = 0, in which f2 = −

(
x2

22y2 + y3
1 + y2

1y2 + y1y2
2
)
/
(

16x4
22y2

1y4
2

)
is a

constant and the term h is a quadratic:

h = y2
3 + f1y3 + f0, if x21 = −x22 ̸= 0, (79)

in which 
f1 =

y1(y1 + y2)
(
y2

1 + y2
2
)

x2
22y2 + y3

1 + y2
1y2 + y1y2

2
,

f0 = − x2
22y2
y1

.

(80)

Comparing the coefficients of the two quadratics Equations (79) and (66), the two equations
have the same roots, iff f1 = c1 and f0 = c0; the latter holds naturally at the condition of
x21 = −x22; the former holds if y2

(
x2

22 + y2
1
)
(y1 + y2) = 0, leading to y1 + y2 = 0, which

is impossible since the equation y1 = −y2 will cause no real roots for the Equation (66).
Hence, the Burmester point with excess one in Equation (72) cannot extend to excess two,
and the higher-order property terminates at the fifth order. Thus, the highest attainable
order infinitesimal mechanism for a 3-RR linkage at translational position is the fifth order.

It is also interesting to note that, there is a three-three correspondence for equation of
Burmester’s points with excess one, say the output variables (design point) (x31, x32, y3)
and the input variables (x22, y1, y2). This correspondence further explains the number of
the final order curvature at translational position.

Theorem 1. Burmester’s points of four-bar linkages at the translational position extend to be
Burmester’s points with excess one, which is also the highest finitely order, if and only if all the pivot
points are symmetrically arranged about the pole norm with the two cranks in corotating senses
i.e., xi1 = −xi2, y1 + y2 ̸= 0, but the Ball’s point with excess one cannot further extend to be a
Ball’s point with excess two.
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3.2.5. Canonical Coordinates at Infinity for the Parallelogram

In the previous Sections 3.2.1–3.2.4, all the positions are studied at the condition
x11 − x12 − x21 + x22 ̸= 0 for the translational position; otherwise, the origin of the canonical
coordinate systems will be at infinity, recalling Equation (29). Hence, the classic method
based on instantaneous invariants and canonical coordinates cannot be used directly in
this condition. However, this position can still be analyzed by the screw-based method
in the natural coordinates ∑ xoy. Application of the condition x11 − x12 = x21 − x22 to the
Euler–Savary equation in Equation (55) yields

y1 − y2

x31 − x32
+

y2 − y1

x21 − x22
= 0, (81)

which leads to a parallelogram x31 − x32 = x21 − x22 = x11 − x12. It can be proven that
all the higher-order constraints of screws analyzed in the previous sections hold naturally
in this condition, since the corresponding 3-RR linkage is a finite mechanism [25]. If
Equation (81) does not hold, i.e., x31 − x32 ̸= x21 − x22, the corresponding 3-RR linkage
only possesses first-order mobility, as shown in Figure 6d. Hence, for a 3-RR linkage at the
translational position, if two chains of this 3-RR linkage have the same length and direction,
i.e., xi1 − xi2 − xj1 + xj2 = 0, (i, j = 1, 2), the corresponding 3-RR will be either a first-order
infinitesimal mechanism or a finite mechanism; there is no intermediate order.

4. Discussion and Conclusions

This paper extends the method pioneered by Wohlhart [20] to determine the locus of
higher-order curvatures of four-bar linkages, which can be performed in any coordinate
system. Higher-order constraints are performed for the four-bar linkages in the rotational
position up to the third order, and for the translational position up to the sixth order.
Through this work, for the four-bar linkages at the rotational position, a new version of the
Euler–Savary equation is presented, which is independent of the canonical coordinates and
is convenient for engineering applications. And a complete algebraic classification for the
degenerate cubics is presented. Regarding the translational position, the study reveals that
the highest attainable order of curvature of the four-bar is the third derivative of stationary
curvature, i.e., the Burmester’s points with excess one. This condition is met when all
the pivot points are symmetrically arranged about the pole norm with the two cranks in
corotating senses. It is also proven that the only Ball’s point with excess one at translational
position cannot extend to be a Ball’s point with excess two. This is an improvement on
the work by Veldkamp [2]. It is also shown that the classic canonical-coordinate-based
method encounters limitations when dealing with the parallelogram, in which the origin of
the corresponding canonical coordinate systems will be located at infinity. However, the
method of this paper can effectively address this shortfall.

Curvature theory is widely used for mechanical curve generation. This paper presents
a new way to accomplish this task. Furthermore, the obtained solutions are also the
solutions of planar 3-RR platforms with higher-order mobility or shakiness.

At present, the focus of this paper is on providing analytical solutions. Future re-
search is anticipated to encompass more efficient numerical methods and their application
in mechanism design for path generation. There is also an aspiration to extend the pre-
sented methodology to spatial kinematics in the future, such as the application to spatial
Stewart platforms.
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