
Citation: Pal, A.; Rai, H.M.; Frej, M.B.H.;

Razaque, A. Advanced Segmentation

of Gastrointestinal (GI) Cancer

Disease Using a Novel U-MaskNet

Model. Life 2024, 14, 1488.

https://doi.org/10.3390/life14111488

Academic Editor: Xin Jin

Received: 21 September 2024

Revised: 5 November 2024

Accepted: 12 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Advanced Segmentation of Gastrointestinal (GI) Cancer Disease
Using a Novel U-MaskNet Model
Aditya Pal 1 , Hari Mohan Rai 2,* , Mohamed Ben Haj Frej 3,* and Abdul Razaque 4,*

1 Department of Information Technology, Dronacharya Group of Institutions, Greater Noida 201306, India;
adityapal88665@gmail.com

2 School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu,
Seongnam-si 13120, Gyeonggi-do, Republic of Korea

3 Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
4 Department of Electrical, Computer Engineering and Computer Science, Ohio Northern University,

Ada, OH 45810, USA
* Correspondence: drhmrai@gachon.ac.kr (H.M.R.); mbenhaj@bridgeport.edu (M.B.H.F.);

a-razaque@onu.edu (A.R.)

Abstract: The purpose of this research is to contribute to the development of approaches for the
classification and segmentation of various gastrointestinal (GI) cancer diseases, such as dyed lifted
polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps,
and ulcerative colitis. This research is relevant and essential because of the current challenges
related to the absence of efficient diagnostic tools for early diagnostics of GI cancers, which are
fundamental for improving the diagnosis of these common diseases. To address the above challenges,
we propose a new hybrid segmentation model, U-MaskNet, which is a combination of U-Net and
Mask R-CNN models. Here, U-Net is utilized for pixel-wise classification and Mask R-CNN for
instance segmentation, together forming a solution for classifying and segmenting GI cancer. The
Kvasir dataset, which includes 8000 endoscopic images of various GI cancers, is utilized to validate
the proposed methodology. The experimental results clearly demonstrated that the novel proposed
model provided superior segmentation compared to other well-known models, such as DeepLabv3+,
FCN, and DeepMask, as well as improved classification performance compared to state-of-the-art
(SOTA) models, including LeNet-5, AlexNet, VGG-16, ResNet-50, and the Inception Network. The
quantitative analysis revealed that our proposed model outperformed the other models, achieving a
precision of 98.85%, recall of 98.49%, and F1 score of 98.68%. Additionally, the novel model achieved
a Dice coefficient of 94.35% and IoU of 89.31%. Consequently, the developed model increased the
accuracy and reliability in detecting and segmenting GI cancer, and it was proven that the proposed
model can potentially be used for improving the diagnostic process and, consequently, patient care
in the clinical environment. This work highlights the benefits of integrating the U-Net and Mask
R-CNN models, opening the way for further research in medical image segmentation.

Keywords: novel segmentation model; gastrointestinal cancer detection; U-MaskNet model; deep
learning; performance evaluation; visualizations

1. Introduction

Gastrointestinal (GI) cancers are major causes of morbidity and mortality in the global
population, with millions of people being diagnosed with the disease annually. These
cancers can develop into polyps, esophagitis, and ulcerative colitis, which vary greatly in
their diagnosis and subsequent treatment. It is, therefore, important that such conditions
are diagnosed early and correctly since this has a direct bearing on patient care outcomes
and the effectiveness of treatments offered [1]. Many diagnostic procedures require the
endoscopic images to be viewed and evaluated by the operator, which can be difficult for
a variety of reasons because of the nature of GI disorders. The application of automated
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image analysis as well as segmentation has proven to be beneficial in aiding clinicians to
diagnose and stage these conditions in a more accurate and less time-consuming manner [2].
In this study, we address the challenges associated with GI cancer detection by proposing a
novel model that integrates the strengths of two advanced segmentation techniques, U-Net
and Mask R-CNN [3]. U-Net, originally proposed for segmenting biomedical images, has
been recognized as having high resolution for mapping segments, which are crucial in
identifying more specific features of medical images. Its architecture of encoder–decoder
with skip connections enhances its ability to segment at the pixel level. On the other hand,
the Mask R-CNN has an added branch for segmentation apart from object detection, which
makes it a refinement of the Faster R-CNN [4]. This is particularly useful in instance
segmentation, whereby each object needs to be detected and segmented independently.
The integration of these two models incorporates the semantic segmentation strategy of the
U-Net model with the instance-level accuracy of the Mask R-CNN, potentially improving
the overall performance and reliability of GI image analysis [5]. The present work employs
the Kvasir dataset, which comprises a wide array of GI disorders, some of which are
dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus,
normal Z line, polyps, and ulcerative colitis. In this way, this dataset meets the expectations
as a source of input for both training and evaluation of our novel model and enables
the approach of different aspects related to GI image segmentation [6]. The aim of this
study is to create an improved novel model by combining U-Net and Mask R-CNN for
segmenting the gastrointestinal (GI) regions and identifying different types of conditions.
Our objective is to show that our proposed approach not only enhances the concept of
segmenting structures in the images but also increases the model’s capability to work with
the GI medical images’ complexity and variability [7]. In this regard, this study enhances
the scientific knowledge of automated GI image analysis and supports the overall objective
of enhancing diagnostic precision and patient outcomes in gastrointestinal oncology. In
this work, we propose a new model called U-MaskNet that is a combination of two models,
the U-Net and the Mask R-CNN, for segmenting GI disease on the endoscopic images. Our
model integrates the strength of U-Net in accurate pixel-wise segmentation and Mask R-
CNN for effective instance detection for better accuracy in the detection and segmentation
of different GI conditions, including dyed lifted polyps and ulcerative colitis. Therefore,
the integration of the two architectures will seek to improve the efficiency and accuracy
of the diagnostic procedure to make it a better tool for use by physicians. This approach
not only enhances the performance of segmentation but also shows the enhancement in
solving other complex medical imaging problems.

Numerous advanced methods for polyp segmentation and support to detect colorectal
cancer in colonoscopy images have been created due to the literature on polyp segmentation.
The CRCNet model developed by Zhu et al. [8] employs both the global–local context and
multi-modality cross-attention for improved segmentation accuracy and time for diverse
polyp conditions. However, the method has limitations when dealing with size and texture
changes of the polyps, and in complicated imaging settings.

PolyPooling is another method proposed by Nguyen and Nguyen [9]. Their method
is comprised of PoolFarmer and a Convolutional Block Attention Module (CBAM), as well
as a Hamburger module. The evaluation results suggest that PolyPooling has advantages
in the aspects of mean Dice coefficient and mean Intersection over Union (mIoU), while the
boundary details are still vague.

Segmentation of polyps using deep learning was performed using a new technique
called Dilated-U-Net-Seg, introduced by Karthikha et al. [10]. They incorporated dilated
convolutions and feature concatenation to increase pixel and Dice coefficients compared
to models based on U-Net configurations. However, this approach sometimes fails to
detect some polyps because of some constraints that are due to the characteristics of the
given dataset.

AdaptUNet, which was proposed by Rajasekar et al. [11], makes use of wavelet
transformation and an attention mechanism for improving the segmentation accuracy,
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particularly in the colorectal polyp example. This model exhibits a high Dice coefficient
and IoU within various datasets but becomes unmanageable when handling a variety of
inputs. For colorectal cancer diagnosis, the MFRA network, based on combining CCS-Net
to retain and aggregate multi-scale features, by Haider et al. [12] outperforms segmentation
on various datasets by emphasizing multi-scale feature retention. This model works well
in addressing different conditions and may be useful for difficult conditions, such as
resolution, blur, and low contrast, in endoscopic images.

Finally, Self-Peripheral-Attention (SPA), which was proposed by Huo et al. [13], specif-
ically deals with central–peripheral attention and thus enhances the model’s ability to
classify images from endoscopes, as well as to segment them. Nevertheless, the problems
of studying complex imaging variables are yet to be solved through further optimization
of this model and pre-attention mechanisms. These studies collectively underscore the
advancements and persistent challenges in the field of polyp and cancer segmentation,
highlighting a trend toward integrated and multi-scale feature-based approaches to achieve
clinical efficacy.

2. Materials and Methods

The Kvasir dataset was utilized for evaluation in this study, which is comprised of
gastrointestinal (GI) endoscopic images. The utilized dataset includes endoscopic images
categorized as dyed lifted polyps, dyed resection margins, esophagitis, normal cecum,
normal pylorus, normal Z line, polyps, and ulcerative colitis, which means that the images
are of diverse categories and challenging to predict [6]. The variety of images in this
dataset helped our model to learn from the variability in GI conditions and recognize their
differences. As shown in Figure 1, the proposed U-MaskNet model combines the strengths
of both the U-Net model and the Mask R-CNN model, where it utilizes the advantages of
both architectures for extracting the complex features. The U-Net architecture structure,
proven to be effective in biomedical image segmentation, involves both the encoder and
decoder sections, accompanied by skip connections to generate segmentation maps of
high resolution [4]. This architecture enables pixel-level segmentation, which is very
important in extracting even fine features in medical images. Further, the Mask R-CNN
builds on Faster R-CNN by adding an extra branch that predicts segmentation masks,
along with the object detection task [5]. This enables the model to perform instance
segmentation tasks efficiently, allowing it to separate masks from the images from their
respective segments [14]. Before the training process of the novel model, we utilized some
preprocessing steps to improve the acquired image dataset. In the data preprocessing
steps, we resized the images to the preferred shape and size, normalized them, and applied
transformations, such as rotation, flipping, as well as scaling. These steps were required
to increase the stability of the model and its ability to work with new data. During the
model training, we used an Adam optimizer with the learning rate set to 1× 10−4, aiming
to optimize both the segmentation and detection tasks [14]. There were two sets of loss
functions used, one for the segmentation task and another for the instance detection task.
The segmentation task utilized the binary cross-entropy, while the instance detection task
employed both classification loss and bounding box regression loss. The models were
trained over 50 epochs, with the epochs showing the highest validation loss selected as the
models’ final checkpoint to help minimize overfitting. Our model was implemented using
Python (3.9.12), using the TensorFlow (2.16.1) API, and Keras (2.9.0) was used for building
and training the models [15]. Experiments were performed on a powerful machine with
NVIDIA GPUs for faster and highly efficient training. In the following sections, we will
describe the approaches utilized in the proposed methodology.
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tation masks, which serve as the ground truth for the region of interest (ROI) [18]. These 
masks are essential during model training, as they assist the model in identifying and 
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testing our model’s robustness. In the data preprocessing stage, several operations were 
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Figure 1. Proposed architecture of U-MaskNet used in our research for GI image segmentation.

2.1. Dataset

In this work, we utilized the Kvasir dataset, which comprises a wide variety of GI
endoscopic images and a data size of 1.3 GB. The dataset contains 8000 images, with
dimensions ranging from 720× 576 pixels to 1920× 1072 pixels [16]. The image set includes
various categories of GI images, showcasing different GI conditions and pathologies. These
categories are represented in Table 1, which provides the detail distribution of images across
the different categories, including dyed lifted polyps, dyed resection margins, esophagitis,
normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis [17]. The choice
of this dataset was based on the rich variety and the range of GI conditions depicted in the
images, which provide valuable insights for preparing and implementing the segmentation
model. All images in the Kvasir dataset include the segmentation masks, which serve as the
ground truth for the region of interest (ROI) [18]. These masks are essential during model
training, as they assist the model in identifying and predicting the correct boundaries of
various gastrointestinal (GI) diseases. The dataset includes images of varying resolutions
and qualities, which was beneficial for training and testing our model’s robustness. In the
data preprocessing stage, several operations were performed on the images to make them
ready for training. This involved standardizing the size of the images with the dimension of
256× 256 pixels for uniformity and normalizing the pixel intensities to a range of [0, 1] [19].
This process allowed the model to be trained with enhanced stability and efficiency, as
all the input data were standardized. We also utilized techniques such as rotation and
flipping, along with other preprocessing techniques to make the training data more diverse,
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which enabled the model to minimize overfitting and perform well on unseen data. The
ground truth segmentation masks are binary images, where the pixel value of 1 expresses
the region of interest while the pixel value of 0 is assigned to the background [20]. In this
context, using the Kvasir dataset enhanced our study by building on a research source that
has been previously utilized in the medical imaging domain. This will allow our results
to be shared with other studies and ensures that our model was trained on a dataset that
closely resembles real-life scenarios. The Kvasir dataset used in this study comprises a
diverse set of GI endoscopic images, as illustrated in Figure 2, which provides an overview
of sample GI images.

Table 1. Distribution of dataset categories for GI image segmentation.

S. No. Category Number of Files

0. Dyed Lifted Polyps 1000
1. Dyed Resection Margins 1000
2. Esophagitis 1000
3. Normal Cecum 1000
4. Normal Pylorus 1000
5. Normal Z Line 1000
6. Polyps 1000
7. Ulcerative Colitis 1000
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2.2. Data Preprocessing

Dense data preprocessing was critical to the training and validation of our novel
model using a combination of U-Net and Mask R-CNN to segment the GI conditions. The
preprocessing started with the acquisition of the Kvasir-SEG dataset, which comprises
different GI conditions, such as dyed lifted polyps, dyed resection margins, esophagitis,
normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis [16]. For
input images, the images in the dataset were first rescaled down to 256× 256 pixels so that
the model architecture was simplified and overcomplicated parts were removed, but the
main details, such as edges, were retained enough for segmentation cases. Standardiza-
tion was performed by normalizing the pixel intensity, where the pixel intensities were
scaled between 0 and 1, making training faster and more stable due to consistent scaling
of input data [17,21]. The ground truth segmentation masks were also binary images, in
which a pixel equal to 1 means the object of interest is at that pixel location and a pixel



Life 2024, 14, 1488 6 of 32

equal to 0 means it is not. This binary representation is important in segmentation, as
it creates a basis for segmenting the available data [19]. Data were then split into train-
ing, validation, and test sets, where the testing data made up only 20 percent, while the
training data made up 80 percent of the total data; of the training data, 10 percent was
used for validation. This partitioning will guarantee that the model is trained on a good
sample, while at the same time leaving enough samples for the validation of the model
and tuning of its parameters [20,22]. To improve intrinsic model resistance and future
performance prediction, augmentation methodologies were used on the training images
and masks. Some of these transformations were rotation, shift, shrinkage, shear, zoom, and
mirror. The ‘ImageDataGenerator’ class from the Keras library was used to perform these
augmentations and make sure that images and their respective masks were augmented
with coherence. Data generators were developed to generate batches of augmented data
during training and thus decrease the risk of overfitting, while training includes various
cases of real-life situations [23,24]. Such a thorough preprocessing method guaranteed the
suitability of the Kvasir-SEG dataset for the training of the novel model and, consequently,
enhanced the segmentation results for the diagnosis of several GI pathologies.

Resizing: Each image was resized to a fixed dimension of 256× 256 pixels. Let I be an
input image of the size H ×W × C, where H is height, W is weight, and C is the number
of channels:

I′ = resize(I, (256, 256)).

Normalization: The pixel value of the images was normalized to the range [0, 1] [25,26].
If Iij represents the pixel value at the position (i, j) in an image, the normalized pixel value
I′ij is given by:

I′ij =
Iij

255
Data splitting: Let D be the entire dataset. The dataset was first split into training,

Dtrain+val , and test, Dtest, sets using a ratio of 80:20, as follows:

• Dtrain+val = 0.8× D
• Dtest = 0.2× D
• Dtrain = 0.8× Dtrain+val
• Dval = 0.2× D

Data augmentation: Various data augmentation techniques were applied to the train-
ing images and masks. The following are the mathematical transformations:

• Rotation: (x′
y′) = (cos(θ)−sin(θ)

sin(θ)cos(θ) )(
x
y)

• Width and height shifts: x′ = x + ∆x, y′ = y + ∆y
• Shear transformation: (x′

y′) = (1 λ
0 1)(

x
y)

• Zoom: x′ = zx, y′ = zy
• Horizontal flip: x′ = −x

2.3. DL Models

DeepLabv3+: DeepLabv3+ is an enhanced encoder–decoder network for semantic
segmentation based on the DeepLab series that utilizes atrous convolution and spatial
pyramid pooling (ASPP) to learn multi-scale contextual features. Compared with the
previous models, this model performs highly in boundary definition, and it also works
very well for the differences in object scales in an image [27–29]. The primary equation for
DeepLabv3+ involves the atrous convolution operation, defined as:

y[i] = ∑k x[i + r·k]·w[k]

where y[i] is the output feature, x[i + r·k] is the input feature map, w[k] is the filter, and
r is the atrous rate. The atrous rate can be carefully tuned to increase the resolution of
features, and thus enhance the segmentation performance even for objects of different sizes
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in the presence of DeepLabv3+. The model is demonstrated to have a high capability of
integrating a large amount of contextual information, so it is suitable to apply to medical
image segmentation.

Fully convolutional network (FCN): The fully convolutional network (FCN) stands
out as a new generation of the traditional convolutional neural network (CNN) because of
its ability to provide end-to-end, dense, pixel-wise prediction. Standard CNNs are replaced
with FCNs, where fully connected layers are replaced with the convolutional layer that
yields spatial heat maps [30]. This structure paves the way for better management of
different sizes of images and the capability of segmentation. The core operation in FCNs is
expressed as:

f (x) = W × x + b

where f (x) is the output feature map, W is the convolutional filter, x is the input image,
and b is the bias term. Due to the modulation of their parameters, different conditions, and
the precise and consistent segmentation maps, FCNs are appropriate for various medical
imaging tasks, specifically segmenting multiple and varying structures [31,32].

DeepMask: DeepMask is a type of instance segmentation model that aims at providing
both object proposals and segmentation masks. This combines feature extraction and mask
prediction, which improves the sharpness of segmentation of individual instances in an
image. The primary work of the model entails the use of the convolutional layers alongside
the mask prediction branch [33]. The key equation for DeepMask’s mask prediction is:

M = σ(W × x + b)

where M is the predicted mask, σ is the sigmoid activation function, W is the convolutional
weight, x is the input image, and b is the bias term. This equation, in turn, enables the
generation of good segmentation masks for the instance in which DeepMask is efficient in
segmenting neighboring objects, such as polyps and ulcers, in medical images with high
precision and recall.

2.4. Model Design and Description

In our study, we used the VGG19 model for classification and proposed a new novel
segmentation model using the features of both U-Net and Mask R-CNN for segmenta-
tion, with the intention to optimize both results. The detailed architecture of the VGG19
convolutional neural network is shown in Figure 3, illustrating its 19 layers used for ef-
fective feature extraction from endoscopic images. We proposed a new integration of
U-Net and Mask R-CNN to tackle the complex problem, as depicted in Figure 4, for seg-
menting various GI diseases from endoscopic images [34]. At the core of our architectural
design is the U-Net, which has been optimized for biomedical image segmentation. Its
structure of encoder–decoder includes the skip connection, giving it abilities to address
long-range dependencies and short-range dependencies as well. This aspect is crucial,
as it allows the model to perform a pixel-level segmentation in the images of the GI and
distinguish boundaries and structures that otherwise could be imperceptible. Besides
U-Net, the proposed Mask R-CNN architecture improved our model by expanding the
Faster R-CNN approach with an additional branch for the segmentation masks as well
as the bounding boxes’ detection [35]. This outlook of a Region Proposal Network (RPN)
produces potential object proposals that pass through the RoI (region of interest) Align to
enhance mask precision. This instance segmentation feature is very helpful in providing
identification and segmentation of individual GI conditions, among which are the dyed
lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal
Z line, polyps, and ulcerative colitis. Thus, combining the high accuracy of the segmen-
tation part of U-Net with the ability of Mask R-CNN to identify instances, we proposed
a more efficient and reliable approach to GI image analysis. The model’s training was
carried out through binary cross-entropy loss for the segmentation task and composite loss,
which concerns classification and box regression, for the instance detection tasks. An Adam
optimizer with the learning rate of 0.001 was used to update the parameters, and during
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the training, 50 epochs were employed. As a technique of overfitting prevention, early
stopping was used regarding the validation loss. To improve the model’s performance and
reduce overfitting, the resized training images, as well as their corresponding masks, were
augmented using various techniques, including rotation, scale, shear, zoom, and horizontal
flip. These augmentations were carried out using the ‘ImageDataGenerator’ class from
the Keras library and mimic real-world conditions, as well as enhancing the imperfections
of the model. In general, enhancing the segmentation by combining the active contour
model and the neural network also strengthens the parameter’s capacity to address various
and complex GI disorders to progress diagnostic methods in gastrointestinal diseases and
improve the patients’ well-being. To measure and compare with our proposed novel model,
we tested various benchmarks from the literature. DeepLabv3+ has gained high popularity
due to its remarkable capability on semantic segmentation, where the atrous convolution
is introduced into the model to incorporate the multi-scale contexts for improving the
segmentation precision [36]. This versatility makes it capable of handling different sizes of
objects, and this has enhanced its precision. Fully convolutional networks (FCNs) are an
extension of regular convolutional networks that enable fully end-to-end, dense, pixel-wise
prediction. FCN’s architecture is designed to handle complicated conditions, especially
when the necessity of segment consistency dominating the connection is important [37].
DeepMask, which is well-known for instance segmentation, incorporates feature extraction
and prediction of masks within its model [38]. This model is highly effective in yielding
high precision and recall, which would be beneficial when it comes to the neighboring
situated objects.
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The algorithm for the U-MaskNet model adaptation, detailed in Table 2, outlines the
notations and definitions used in the algorithm. The algorithm to be defined for the novel
model adaptation was designed for training and testing a challenging novel segmentation
of the images with the help of both U-Net as well as Mask R-CNN. First, U-Net and Mask
R-CNN were initiated with their unique parameters in both number and settings. They
occurred over a fixed number of epochs, and at each epoch, it dealt with mini batches of
data [39]. During each training iteration, a mini batch of images and masks was sampled,
and data augmentation techniques were applied to enhance model robustness. The forward
pass involved generating segmentation maps with U-Net and object detection outputs with
Mask R-CNN. The critical step involved integrating U-Net’s feature maps with the RoI
Align outputs from Mask R-CNN, creating a combined feature representation [40]. Loss
computation was divided into three components: segmentation loss from U-Net, Mask
R-CNN segmentation loss, and bounding box loss. These losses were combined to form
the total loss function. In the backward pass, gradients were computed for each model’s
parameters, and these parameters were updated accordingly to minimize the total loss. This
iterative process continued until the specified number of epochs was completed, resulting
in a trained novel model with optimized parameters for both U-Net and Mask R-CNN.
Algorithm 1 outlines the flow of U-MaskNet segmentation model.



Life 2024, 14, 1488 9 of 32Life 2024, 14, x FOR PEER REVIEW 9 of 33 
 

 

 
Figure 4. Proposed U-MaskNet architecture used in our methodology. 

The algorithm for the U-MaskNet model adaptation, detailed in Table 2, outlines the 
notations and definitions used in the algorithm. The algorithm to be defined for the novel 
model adaptation was designed for training and testing a challenging novel segmentation 
of the images with the help of both U-Net as well as Mask R-CNN. First, U-Net and Mask 
R-CNN were initiated with their unique parameters in both number and settings. They 
occurred over a fixed number of epochs, and at each epoch, it dealt with mini batches of 
data [39]. During each training iteration, a mini batch of images and masks was sampled, 
and data augmentation techniques were applied to enhance model robustness. The for-
ward pass involved generating segmentation maps with U-Net and object detection out-
puts with Mask R-CNN. The critical step involved integrating U-Net’s feature maps with 
the RoI Align outputs from Mask R-CNN, creating a combined feature representation [40]. 
Loss computation was divided into three components: segmentation loss from U-Net, 
Mask R-CNN segmentation loss, and bounding box loss. These losses were combined to 
form the total loss function. In the backward pass, gradients were computed for each 
model’s parameters, and these parameters were updated accordingly to minimize the to-
tal loss. This iterative process continued until the specified number of epochs was com-
pleted, resulting in a trained novel model with optimized parameters for both U-Net and 
Mask R-CNN. Algorithm 1 outlines the flow of U-MaskNet segmentation model. 

Algorithm 1: Novel U-MaskNet Segmentation Model 
1: Input: 𝐷 = ሼሺ𝑋௜, 𝑌௜ሻሽ, ∝, 𝑇, 𝐵, 𝜃, 𝑁, 𝐴 
2: Initialize: 𝜃௨௡௘௧,   𝜃௠௔௦௞௥௖௡௡ 
3: for epoch = 1 𝑡𝑜 𝑇 𝑑𝑜 

Figure 4. Proposed U-MaskNet architecture used in our methodology.

Algorithm 1: Novel U-MaskNet Segmentation Model

1: Input: D = {(Xi, Yi)}, ∝, T, B, θ, N, A
2: Initialize: θunet,θmaskrcnn
3: for epoch = 1 to T do
4: for batch = 1 to

(
N
B

)
do

5: D :
{

Xbatch,Ybatch
}

6: A :
{

Xaug,Yaug
}

7: Forward Pass:
8: Sunet = U − Net

(
Xaug,θunet

)
9: Rrois,Bbbox, Mmask = Mask R− CNN

(
Xaug,θmaskrcnn

)
10: Multi-Scale Feature Integration:
11: Funet = ms f (Sunet)
12: H f eatures_maps = integrate(Funet, Rrois)
13: Compute Loss:
14: Ls−unet =

(
Sunet,Yaug

)
15: Ls−maskrcnn =

(
Mmask,Yaug

)
16: Lbbox =

(
Bbbox,Ybbox

)
17: Advanced Loss Functions:
18: Ldice =

(
H f eatures_maps,Yaug

)
19: Ltotal = Ls_unet + Ls_maskrcnn + Lbbox + Ldice
20: Backward Pass and Optimization:
21: θunet ← θunet − α·∇θunet Ltotal
22: θmaskrcnn ← θmaskrcnn − α·∇θmaskrcnn

Ltotal
23: end for
24: end for
25: Output:
26: Trained novel model with updated parameters θunet,θmaskrcnn



Life 2024, 14, 1488 10 of 32

Table 2. Notations and definitions used in the algorithm.

Symbols Description

D Dataset consisting of image–label pairs {(Xi, Yi)}
∝ Learning rate
T Total number of epochs
B Batch size
θ Model parameters
N Total number of samples
A Augmentation function
θunet, Parameters of the U-Net model
θmaskrcnn Parameters of the Mask R-CNN model
Xbatch Batch of input images
Ybatch Batch of ground truth tables
Xaug Augmented input images
Yaug Augmented ground truth tables
Sunet Segmentation output of U-Net
Rrois Region of interest (RoI) proposals from Mask R-CNN
Bbbox Bounding boxes from Mask R-CNN
Mmask Mask predictions from Mask R-CNN
Funet Multi-scale features from U-Net
Hfeatures_maps Integrated feature maps
Ls−unet Segmentation loss for U-Net
Ls−maskrcnn Segmentation loss for Mask R-CNN
Lbbox Bounding box regression loss
Ldice Dice coefficient loss
Ltotal Total loss function
∇θunet Ltotal Gradient of the total loss with respect to U-Net parameters
∇θmaskrcnn Ltotal Gradient of the total loss with respect to Mask R-CNN parameters

In this paper, we proposed U-MaskNet, a novel deep learning model that incorporates
the benefits of both the U-Net and Mask R-CNN architectures for improved gastrointesti-
nal (GI) image segmentation. Overcoming the complexity and variability in the images
occurring in GI endoscopy, which is the main issue of previous models, this new model is
proposed to deliver better segmentation precision and stability. The subsequent sections
describe the architecture, the algebraic essentials, and several essential characteristics of
U-MaskNet. U-MaskNet is an extension of the U-Net, which is used for efficient pixel-
wise segmentation, and it is combined with Mask R-CNN, which is used for instance
segmentation. The overall architecture comprises two main components, which include
the U-Net for encoder–decoder-based segmentation and Mask R-CNN for object detection
and instance segmentation.

U-Net component: The U-Net architecture belongs to the fully convolutional networks
and is optimized for biomedical image segmentation. It adopts an encoder–decoder archi-
tecture with skip connections, which allows both the encoder and decoder to communicate;
hence, the high-level context is maintained, while the low-level spatial details are kept
preserved [41,42]. The encoder has convolutional and max-pooling layers, which down-
sample the input image, while the decoder uses up-sampling and concatenates layers to
generate the segmentation map.

• Convolutional layer: A convolutional layer in a neural network takes in an input with
spatial dimensions and then applies the convolution operation to extract the features.
Every convolutional layer employs many trainable kernels that scan the given picture
and generate feature maps. This is crucial for capturing the detail in the local space,
which includes edges, textures, and other spatial frequencies in the data [43,44]:

f (x) = W·x + b

where W is the convolutional filter, x is the input feature map, and b is the bias term.
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• Activation function (ReLU): The rectified linear unit (ReLU) is used in neural networks,
which is an activation function that is applied to make the model non-linear [45,46]. ReLU
activates only the positive channels of the input, ignoring the negative part of the
input. The above benefit, in turn, helps to make the training of the network converge
faster and reduces the effects of the problem of vanishing gradients:

ReLU(x) = max(0, x)

where ReLU(x) is the rectified linear unit activation function, and x is the input
feature map.

• Max-pooling: Max-pooling is a down-sampling operation that decreases the size of
the input feature map in the vertical and horizontal directions, conserving significant
features [47]. This is carried out by choosing the maximum intensity value from a
group of neighboring pixels in a particular window, ensuring a form of spatial invari-
ance and, at the same time, decreasing the number of computations to be performed:

y = max
(
xi,j

)
where y is the output of the max-pooling operation, and xi,j represents the pixels
within the pooling window.

• Up-sampling and concatenation: Up-sampling is another operation that reconstructs
the height and width dimensions of the feature map and is commonly used in the
decoder section of the network to bring back the resolution of the original image.
This is quite frequently performed using methods such as nearest-neighbor interpo-
lation, bilinear interpolation, or the learned transposed convolution to generate a
higher-resolution feature map. Concatenation is an operation that lays out, either in
a horizontal or vertical fashion, two or more feature maps. In the architecture of the
U-Net, it is utilized to connect the encoder and decoder streams of the network [48].
This combined operation is beneficial in terms of maintaining spatial information,
as features from different levels of the network are merged, while retaining both
high-level context and low-level spatial details:

x′ = concat(UpSample(xdecoder), xencoder)

where x′ is the concatenated feature map, xdecoder is the feature map from the decoder,
and xencoder is the corresponding feature map from the encoder.

Mask R-CNN component: Mask R-CNN incorporates an additional branch along
with the Faster R-CNN model, for predicting segmentation masks on every RoI, alongside
a traditional branch for classification and box regression. They include the Region Proposal
Network (RPN), RoI Align, and the mask head.

• Region Proposal Network: The RPN is a neural network that generates proposals of
the object or bounding boxes from the input image. It produces a set of rectangular
object proposals with differences in the size and the ratio of width to height. These
proposals act as the prior beliefs on where the objects might be in the image:

{(x, y, w, h)} = RPN
(

x f eature

)
where {(x, y, w, h)} is the set of bounding box coordinates (x, y, width, and height),
and RPN is the Region Proposal Network.

• RoI Align: RoI Align is a function that is used for the extraction of the fixed-size feature
maps from non-uniform input feature maps. It properly warps the features extracted
from the input image to the proposed regions, which removes the quantization errors
that are usual in RoI Pooling:

xRoI = RoIAlign
(

x f eature,{(x, y, w, h)}
)
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where xRoI is the region of interest aligned feature map, and {(x, y, w, h)} is the set of
bounding box coordinates (x, y, width, and height).

• Mask prediction: Mask prediction is another step in Mask R-CNN, wherein a binary
mask is produced regarding the RoI to predict an object’s shape within the RoI. This
mask highlights the pixels that belong to the object:

M = σ(Wmask·xRoI + bmask)

where M is the predicted segmentation mask, and σ is the sigmoid activation function.

Multi-scale feature integration: Since the proposed U-Net and Mask R-CNN have
different strengths, the developed U-MaskNet combined multi-scale features from both
networks. It is essential to integrate these two for the purpose of segmenting finer details
and even the context, which would enhance the general improvement of the aspects
of segmentation.

• Feature integration: In feature integration of the proposed U-MaskNet, features de-
rived from the U-Net component and the Mask R-CNN component are integrated.
This integration made sure that while one received fine-grained pixel-wise segmenta-
tion details, the other received the instance-level feature map, all of which contributed
to the improvement of the segmentation:

Funet = MSF(Sunet)

where Funet is the multi-scale feature from U-Net.

• Multi-scale feature map integration: Multi-scale feature map integration concerns
combining multi-scale feature maps from U-Net and Mask R-CNN networks in order
to obtain superior feature maps. This integrated feature map maintains the details
and contextual information as multi-scale, which enhances the machinery of the
segmentation performance:

H f eatures = integrate(Funet,Rrois)

where H f eatures is the integrated feature map, and Funet is the multi-scale feature
from U-Net.

Loss function: The training of U-MaskNet is based on a multinomial composite loss
function that entails segmentation loss, bounding box regression loss, and other innovative
losses, such as Dice loss.

• Segmentation loss (binary cross-entropy): Segmentation loss, known as binary cross-
entropy (BCE) loss, is used for estimating the difference between the predicted seg-
mentation map and the actual segmentation map. It measures how close the pixel-wise
probabilities that are predicted are to the actual labels:

Lseg = − 1
N

N

∑
i=1

(yilog(pi) + (1− yi)log(1− pi))

where Lseg is the segmentation loss, N is the number of samples, pi is the predicted
probability, and yi is the ground truth label.

• Bounding box regression loss: The bounding box regression loss is used for evaluating
the conjunction of the regression and the border of an object from the predicted
bounding box coordinates to the ground truth ones. It makes sure that the predicted
bounding boxes have high and strict levels of accuracy in terms of the actual size of
the objects:

Lbbox = ∑
i

SmoothL1
(

t*
i − ti

)
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where Lbbox is the bounding box regression loss, SmoothL1 is the smooth L1 function,
t*
i are the ground truth bounding box coordinates, and ti are the predicted bounding

box coordinates.

• Dice loss: Dice loss is applied to estimate the dissimilarity between the segmentation
map that the model predicts and the true one. It is particularly useful in handling class
imbalance since it tackles the area of interest only:

Ldice = 1− 2∑i piyi

∑i pi + ∑i yi

where Ldice is the Dice loss, pi is the predicted probability, and yi is the ground
truth label.

• Total loss: Total loss in U-MaskNet is the combination of segmentation loss, Dice loss,
and bounding box regression loss. In this way, this composite loss function guarantees
to learn accurate segmentation maps and bounding boxes and, at the same time, to
perform a good handling of class imbalance:

Ltotal = Lseg + Lbbox + Ldice

where Ltotal is the total loss.

Specifically, U-MaskNet is based on a novel architecture that integrates the dense
segmentation of U-Net and the instance segmentation of Mask R-CNN. These features
enable U-MaskNet to clearly outline and categorize numerous GI pathologies, such as dyed
lifted polyps and ulcerative colitis. Furthermore, there is a mechanism that can incorporate
multi-scale features that enable performance that is not limited to resolutions and qualities
of endoscopic images. Thus, the differentiation of segments becomes more precise due to
the specific loss function of our model, which makes U-MaskNet helpful for the analysis
of GI images. Therefore, U-MaskNet expands the state-of-the-art methodologies in the GI
image segmentation field by elaborating new integration approaches while eliminating
the deceptive consequences of previous models and providing a proficient solution for
clinical practice.

2.5. Evaluation Metrics

We utilized a variety of assessment criteria specifically designed to appraise the
segmentation accuracy and robustness of our novel model, which combines U-Net and
Mask R-CNN for GI condition segmentation. The following measures were used to assess
the model’s performance.

Precision: Precision is one way of finding out how many of the predicted pixel values
are true positives among all the values that the model was positive about. As for the
segmentation of GI disease, it evaluates how well the model can pinpoint the regions, such
as dyed lifted polyps and ulcerative colitis, without having false-positive images. There is,
therefore, precise model accuracy that signals that the model can help reduce false alarms
as much as possible [49]:

Precision =
TP

TP + FP
Recall: Recall, or sensitivity, determines the correct ratio of the true-positive plurality

of pixel predictions to the total actual positive plurality in the ground truth masks. This is
key in determining the model’s performance in finding all possible locations within the
specific GI images. High recall minimizes the chances of the model missing most of the
true-positive regions [49]:

Recall =
TP

TP + FN
Dice: The Dice coefficient, or the Sørensen–Dice index, formalizes the comparison

between the extent of predicted segmentation masks and ground truth masks. It is especially



Life 2024, 14, 1488 14 of 32

useful when assessing the effectiveness of the model in the task of partitioning different
areas, for instance, polyps or esophagitis, by comparing the level of their similarity in the
model outcomes and actual segmentations. The segmentation accuracy is higher when the
coefficient obtained from Dice is higher [50]:

Dice Coe f f icient =
2·TP

2·TP + FP + FN

Intersection over Union (IoU): IoU aims at finding the overlap of the predicted and
ground masks divided by the total size of the united masks. This metric reveals the extent
to which the model has the capability of outlining the boundaries of GI conditions. It is
specifically used for measuring the results in those complicated segmentation analyses,
where a well-defined boundary is important [51]:

IoU =
TP

TP + FP + FN

Loss: Assessing the effectiveness of our novel model heavily relies on the loss func-
tion. For segmentation problems, it integrates bounding box regression and classification
losses with binary cross-entropy loss. To improve the overall quality of segmentation
for different gastrointestinal situations, our composite loss function makes sure that the
model learns both exact pixel-level segmentation and accurate item recognition. To get
the most performance out of the model, regular monitoring of loss throughout training is
helpful [52]:

Ltotal = Lsegmentation + Lbounding box

F1 score: The F1 score represents the average of the precision and recall, so it yields a
single score that combines both aspects. The figures are especially valuable in cases when
we work with unbalanced data, where one of the classes is usually overrepresented. In the
same regard, the F1 score provides a measure of the model’s overall performance in the
identification and segmentation of various GI conditions [53]:

F1 Score = 2× Precision× Recall
Precision + Recall

AUC ROC: The Area Under the Curve (AUC) for the Receiver Operating Characteristic
(ROC) is a metric that assesses the model’s ability to distinguish between positive and
negative classes across various threshold settings. It serves as an indicator of the model’s
discriminative power and its capacity to accurately classify different gastrointestinal (GI)
conditions [54]:

AUC ROC =
∫ 1

0
TPR(FPR) d(FPR)

3. Experimental Results

In this section, we evaluate the performance of our proposed model, U-MaskNet, along
with other prominent computational models, such as DeepLabv3+, FCN, and DeepMask,
for segmentation of GI cancer from endoscopic images. The analysis was performed on
the segmentation tasks of various gastrointestinal (GI) cancers form the Kvasir dataset,
including dyed lifted polyps, dyed resection margins, esophagitis, normal cecum pylorus,
normal Z line, polyps, and ulcerative colitis. The evaluation metrics employed included
precision, recall, F1 score, Dice coefficient, IoU, loss, and AUC ROC for the models’ perfor-
mance analysis. More details about the effectiveness of the models are presented under the
visualizations and graphs.

3.1. Experimentation with DeepLabv3+

The DeepLabv3+ model’s performance in segmenting gastrointestinal (GI) cancer
utilizing the Kvasir dataset was quantitively evaluated in terms of training graphs. The
metrics evaluated included the Dice coefficient, IoU, loss, precision, and recall for both the
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training and validation periods over 50 epochs. Figure 5 shows that the Dice coefficient
of the training and the validation was almost stabilized at approximately 85% in the first
10 epochs, showing the model’s effectiveness in predicting the segmentation mask that
overlaps with the ground truth. The IoU metric also increased toward 80% both in training
and validation settings, indicating that the model can accurately retrieve the desired regions
of interest. The loss over epochs demonstrated that the training loss reduced steeply to
nearly 0%, and the validation loss also settled at a low value; consequently, the loss showed
that the model trained effectively and had less chance of error. The precision metrics
showed the model to be at nearly 85% precision for both the training and validation sets of
segments, even in early epochs, demonstrating the high accuracy of the model in identifying
true-positive segments. Lastly, the recall also tended to be 85% for both the training and the
validation sets, displaying the ability of the model to remember all the relevant segments.
In conclusion, the DeepLabv3+ model had high precision, recall, Dice coefficient, and IoU,
with low loss, which makes this model a great fit for GI cancer tissue segmentation. The
indications of the common growth rate for all the metrics showed the steadiness of the
model and its effective functionality in medical imaging tasks.
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3.2. Experimentation with Fully Convolutional Network (FCN)

Fully convolutional networks achieved high accuracies in segmenting the gastrointesti-
nal (GI) cancers and successfully segmented all classes, including dyed lifted polyps, dyed
resection margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps, and
ulcerative colitis. The structure of the FCN, which replaces classical fully connected layers
with convolutional ones, allows for accurate pixel-wise detection as well as delineation at
the last stages of the model, which is very useful for tasks that involve medical imaging.

From the data presented in Figure 6, the FCN retained high performance across the
categories, with significant improvements in precision and recall, meaning that the regions
of interest were well predicted, leaving little probability of over-segmentation or under-
segmentation. Thus, the specific quantitative results are shown in the figure, which displays
the overall efficiency of the FCN. From the precision and recall charts, it can be observed
that the FCN provided high precision and recall values for GI cancer image segmentation.
Thus, the proposed framework could handle the GI cancer segmentation task with high
accuracy and reasonable balance for further stable and efficient segmentation performances.
Particularly, in the training and validation sets, stability was attained near 98% and 95%
once 10 epochs were completed. In this approach, the Dice coefficient was employed to
determine the performance of the FCN. The results depicted in the Dice coefficient graph
show that the FCN continually had a high coefficient and, moreover, when epochs were
added, it proved to be accurate and could generalize well with new unseen data. This is
important for achieving good performance in the segmenting of different GI conditions.
The training and validation dice coefficients trended toward 95%. The IoU graph shows
that training and validation intersected with an increase in the training IoU and validation
IoU for the initial epochs, after which they rose to stable values around 85% and 80%,
respectively. The loss graph shows that as the FCN was trained, the loss function optimized
and reached an optimum, where the loss was minimized with an increase in epochs. In
more detail, it can be noted that the values of the training and validation loss dropped
steadily and, after around 10 epochs, functioning was below 20. In total, all of these
visualizations demonstrated that the FCN successfully performed the segmentation, where
the model obtained high accuracy, a high Dice coefficient, and a low loss rate in the training
process. Strengthening the highly developed and steadfast foundation of the FCN makes
it an apt choice for the existence of GI cancer classification, which in turn benefits the
diagnostic facility and the treatment plan.

3.3. Experimentation with DeepMask

DeepMask demonstrated a high level of segmentation of gastrointestinal cancer by
utilizing advanced instance segmentation features. The architecture of the model that was
developed for generating high-quality masks of object instances proved advantageous
when the application of masks was necessary for medical imaging, where the division
of pathological areas is critical. DeepMask satisfied the mean precision and recall of the
effective GI conditions, which were dyed lifted polyps, dyed resection margins, esophagitis,
normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis. This indicates
that the model was capable of portioning these diverse and difficult classes, building up its
robustness. Several key aspects of the performance of DeepMask are depicted in Figure 7.
Over 50 epochs, it was observed that DeepMask had high Dice coefficients with epochs.
The training Dice coefficient became constant at 90%, and the validation Dice coefficient
became constant at 87% after roughly 10 epochs. The IoU graph shows that both the
training and validation showed an increase in IoU during the initial epochs, reaching 85%
and 82%, respectively. As it is shown in the loss graph, DeepMask had a relatively small
loss all throughout the training time, which suggests better learning and convergence.
Thus, the training and validation loss rates reduced sharply and leveled down below
20% at almost the 10th epoch. The precision graph also shows that DeepMask had high
precision, in which the training precision was fixed at 98% and the validation precision at
97% after epoch 10. The recall graph revealed that DeepMask had a high recall rate, with
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the training recall rate reaching 98%, while the validation recall rate was nearly 95% after
10 epochs. These metrics collectively showcase how DeepMask works delicately to achieve
a balance between precision and recall, ensuring that segmentation of images of GI cancer
is as efficient as possible, with minimal false negatives. This balance is very important
during the process of segmentation, especially when dealing with clinical segments. The
consistency in the Dice coefficient, minimal loss, and high precision and recall over multiple
epochs indicated DeepMask’s reliability in segmentation tasks, particularly for GI cancer.
In summary, DeepMask demonstrated competitive and robust performance, suggesting
that further development of the algorithm could significantly enhance diagnostic precision
and improve outcomes for patients suffering from GI cancer.
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3.4. Novel Model (U-MaskNet) Evaluation and Segmentation Results

The proposed novel model (U-MaskNet) proved to be exceptionally effective in seg-
menting gastrointestinal (GI) cancer diseases better than other models in various aspects
of evaluation. Combining the beneficial characteristics of U-Net that provide pixel-wise
classification with Mask R-CNN that offers instance segmentation, our proposed method
successfully delivered high segmentation performance and stability. It has the combined
arrangement to offer a highly detailed and precise identification of cancerous zones, such
as dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus,
normal Z line, polyps, and ulcerative colitis. By employing the two structures, it was
possible to capture the global and local structures of the images adequately, improving the
model’s performance in identifying and segmenting complex and diverse GI conditions.
This general approach greatly enhanced the reliability of the results of segmentation in the
context of utilizing the novel model for the identification and analysis of GI cancer. The
effectiveness of the presented novel model is evident from the key graphs showing training
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and validation precision, training and validation recall, Dice coefficient per epoch, IoU per
epoch, and loss per epoch in Figure 8.
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The Dice coefficient remained higher and constant across the epochs, meaning that
the segmentations that were predicted conformed well with the actual ones. The high
Dice coefficient, which varied around 95% after 5 epochs, indicated that the novel model
did not distort the correspondence of the segmentation during the training process. The
Intersection over Union (IoU) measure also showed great results, oscillating around 90%
after the 5 epochs in the training and validation phase, which also proved the corrector’s
effectiveness. As shown by the loss over epochs graph, the 5% metric dropped down until
the 5th epoch and, after that, stayed low and stable, indicating that the model learned well
and converged during training. This low loss implies that the model was very effective in
minimizing loss, hence yielding probable and most likely results. Regarding the precision
graph, it can be deduced that both the training and validation precision were good and
fluctuated around 100% after 5 epochs of training. This high precision is very important in
clinical applications because it conveys the ability of the model not to register false positives.
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Likewise, the recall graph revealed that the training and validation recall rates became
almost flat after epoch 5 of the model’s training, at 100%, showing that the model did not
miss many negative samples. Summing up, these graphs confirmed the efficiency of the
suggested novel model, achieving high levels of precision, recall, and Dice coefficients and,
at the same time, low loss and high IoU. Based on these results, we can conclude that the
proposed novel model has the potential to solve the issue of GI cancer segmentation, and
it can generate helpful qualitative and quantitative predictive assessment results that are
important for studying GI cancer diseases and their treatments. The decision to work on
the development of a combined model of U-Net and Mask R-CNN appears optimal for
medical image segmentation, since the new model allowed for improving previous results
for segmenting medical images.

Figure 9 presents the qualitative classification results of GI diseases using the VGG19
model. The VGG19 model’s classification results on the test images for the target GI cancer
diseases, including dyed lifted polyps, dyed resection margins, esophagitis, normal cecum,
normal pylorus, normal Z line, polyps, and ulcerative colitis, are presented in the image panel
below. It shows each image and its name, the predicted class, the actual one, and a percentage
showing the probability of the classification. There is accuracy established in the model, with
an increased percentage of the sample tests and the identification of those samples.
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It is visually represented to prove how reliable and sturdy our classification model
is by quantitatively revealing the extent to which it classified with different degrees of GI
disease classes. The high confidence levels that accompany the predictions support the
model’s reliability in clinical practice in terms of providing accurate diagnostic assistance in
the identification and differentiation of various types of GI cancer diseases. This capability
will be very useful for diagnosis and accurate staging of the disease, hence underlining the
potential of the model in the medical field.

Figure 10 illustrates the segmentation performance of GI cancer images using the
U-MaskNet model. The image proves our novel segmentation model (U-MaskNet) useful
in segmenting the different test samples used in detecting GI cancers, which included dyed
lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal
Z line, polyps and ulcerative colitis. The first four columns of the image show different
phases of the segmentation process, including the original image with bounding boxes, the
processed mask with bounding boxes, the predicted mask, and the ground truth mask. The
first column, original image with bounding boxes, helps in setting the context and the easy
understanding of the target sections that were identified by the model. The second column
reveals the final segmentation masks with the bounding boxes, revealing how the model
improved the segmentation areas when developing the segmentation masks. The projected
mask is the third column, which was compared with the ground truth mask presented in the
fourth column. This comparison demonstrated the value of the model in terms of its ability
to recognize contours as well as reproducing segmentation. In general, the image provides
a clear understanding of how the segmentation of the pipeline of the proposed novel model
works, while stressing the capabilities of accomplishing fast and effective image analysis
and segmentation. The visual sequence provides evidence regarding the extent of model
accuracy and efficiency of target regions’ identification and segmentation, which, in turn,
proves the model’s certainty to provide the best outcomes. This kind of performance is
desirable in the clinic to serve as a starting reference for medical practitioners for diagnosis
and treatment planning of different types of GI cancer diseases.

3.5. Confusion Matrix Analysis

Figure 11 presents the confusion matrices for the training, validation, and test sets. The
confusion matrices for training, validation, and test sets provide a clear understanding of the
performance of the proposed novel segmentation model, that is, U-Net and Mask R-CNN,
in every evaluation step of the eight diseases of gastrointestinal (GI) cancer, namely, dyed
lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal
Z line, polyps, and ulcerative colitis. Looking at the matrix on the training set in detail, the
model correctly classified all instances of classes, proving a perfect classifier, hence pointing
out the ability to correctly classify patterns in that dataset when it is being trained. On the
other hand, the matrix obtained from the validation set displayed an overall satisfactory
behavior of the model but incorrect classification of objects belonging to classes 2 and 5.
These results imply that the model may not be too accurate in discriminating between
those classes and, therefore, it is likely that fine-tuning could help improve the performance
concerning these categories. The matrix of the test set also had a high mean, meaning that
the model was good in learning the unseen examples, implying good generality. It also
indicated some misclassifications, particularly in classifying between classes 2 and 6, which
depicted some difficulties in discriminating between the two classes in different conditions.
These outcomes confirmed that the model developed was strong in segmenting GI cancers
and indicated where there is a need for enhancement, such as in demarcating between
some GI cancer disease classes. The visualization of confusion matrices proved the efficacy
and validity of the proposed novel model in clinical practices, where accurate classification
is vital for therapies of different types of GI cancer diseases and their subdivisions.
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3.6. Model Evaluation Metrics Comparison

Table 3 provides a comparative analysis of several segmentation models. DeepLabv3+,
FCN, U-Net with Mask R-CNN, and DeepMask were compared in this paper to show
that the combination of U-Net and Mask R-CNN models is better than others. Therefore,
precision, recall, and F1 score were very crucial when analyzing a model’s performance,
because U-MaskNet had a precision of 98.85%, recall of 98.49%, and F1 score of 98.68%,
which were higher than those of other models. It also excelled in the Dice coefficient with
an impressive 94.35%, showing its high ability to accurately segment the regions of interest.
The Intersection over Union (IoU) metric showed that the U-MaskNet model attained
remarkable results, while DeepLabv3+ obtained 77.70%, thus falling behind DeepMask,
which scored 89.14%. The loss function showed that the U-MaskNet loss was much smaller
compared to other models, such as DeepLabv3+ (13.26) and FCN (5.18). The AUC ROC
score for discriminative capability was highest for U-MaskNet (99.96%), indicating better
class separation out of all proposed segmentation models.
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Table 3. Comparative analysis of segmentation models based on key metrics.

Evaluation
Criteria DeepLabv3+ FCN DeepMask U-MaskNet

Precision 87.46 98.46 98.45 98.85
Recall 87.41 98.39 98.03 98.49

Dice coefficient 87.43 94.12 94.25 94.35
IoU 77.70 88.90 89.14 89.31
Loss 13.26 5.18 5.11 4.88

F1 score 91.96 98.44 98.25 98.68
AUC ROC 98.86 99.94 99.93 99.96

The comprehensive evaluation, in general, showed U-Net + Mask R-CNN as the
superior model, with the highest precision, recall, F1 score, and AUC ROC and strong
performance in the Dice coefficient and IoU, making it the best for accurate and reliable
image segmentation tasks.

Figure 12 shows the performance comparison of various segmentation models. Analyz-
ing the results of all the models, it can be concluded that the proposed model, U-MaskNet,
outperformed the other models in almost all possible evaluation metrics of the segmenta-
tion task of gastrointestinal (GI) cancer diseases, such as dyed lifted polyps, dyed resection
margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps, and ulcerative
colitis. This is even more critical given the fact that the tasks used in our study are quite
diverse and often complex. According to the lowest loss and the highest accuracy of the
proposed method, the problems related to the image segmentation were resolved signifi-
cantly based on our method, with a higher recall, Dice coefficient, and IoU. Our approach
of segmentation is chiefly based upon precision and recall, and the superb ratings of such
features make the model exact and exhaustive. The true-positive identification rate, in
addition to the minimized false-positive rate, is further proof of the high precision in the
case of the U-Net + Mask R-CNN model. This was accompanied by high recall, which also
means that most of the instances that are important to the model will be well recognized,
and thus few false negatives will be missed. The proposed novel model’s solidity was also
backed by the Dice coefficient and IoU. It signifies that the higher values of these metrics
are more effective and consistent for the segmentation outputs. These metrics are important
for computing the similarity between the expected segmentations and the true ones. The
results obtained for the Dice coefficient and IoU for the U-MaskNet model were higher and
proved the improved accuracy of the model, in comparison with the previous models. Also,
the lower loss value of the proposed model during the training process indicated that it is
capable of providing a better solution in minimizing the spread of the difference between
the predicted and actual outcomes. Such reduction indicates that the proposed method
was useful in fine-tuning the parameters of the model and improving the quality of this
form of segmentation. Analyzing the given graphs, one can conclude that the novel model
had a slight advantage in comparison with other models, which proved its effectiveness in
numerous indicators. The above graphical plots, together with the quantitative ones, help
in offering a summarized display of the model’s performance in the image segmentation
tasks. This means that our novel model set a new trend in the field because it outperformed
DeepLabv3+, FCN, and DeepMask in virtually all benchmark metrics, while also having
great prospects for application in real-life situations and accurately and stably diagnosing
diseases of gastrointestinal cancer.
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4. Discussion

This paper presented a novel segmentation model that integrated the U-Net and
Mask R-CNN models to effectively locate and delineate gastrointestinal conditions in
endoscopic images. The outcomes are portrayed in Table 4. Comparative performance
analysis demonstrated that our method, incorporating reinforcement learning as a novel
approach, achieved higher precision, recall, Dice coefficient, and IoU scores than other
state-of-the-art networks.

Table 4. Performance comparison of our method with well-known DL models. NA—Not Applicable.

Method Precision Recall Dice IoU

PolyPooling [9] 92.9 94.6 93.7 88.5
CRCNet [8] 92.9 94.6 93.7 88.5
U-Net [55] 82.9 81.5 79.9 83.2

U-Net++ [56] 89.3 91.0 88.1 81.7
ASCNet [57] 92.2 90.0 91.3 90.4
PraNet [58] 91.2 91.3 89.8 83.3

TGANet [59] 91.3 91.2 88.8 83.4
Polyp [60] NA NA 93.1 88.0

MixPolyp [61] NA NA 85.9 78.5
Proposed (U-MaskNet) 98.5 98.4 94.3 89.31

Our novel model achieved remarkable precision (98.5%) and recall (98.4%), signif-
icantly outperforming other models, such as PolyPooling and CRCNet, both of which
achieved precision and recall values of 92.9% and 94.6%, respectively [8,9]. This superior
performance indicates our model’s ability to accurately identify true-positive regions while
minimizing false positives and negatives, which is critical for clinical applications to reduce
misdiagnoses and improve patient outcomes. The Dice coefficient of our novel model
stood at 94.3%, the highest among the compared methods, signifying its effectiveness in
accurately overlapping the predicted and ground truth masks. The IoU value of 89.31%
further underscored our model’s robustness in capturing the overall shape and bound-
aries of the segmented regions. These metrics are crucial for ensuring precise boundary
delineation, which is essential for effective diagnosis and treatment planning in medical
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imaging. While models such as U-Net and U-Net++ showed good performance, with
U-Net++ achieving a Dice coefficient of 88.1%, our novel model demonstrated significantly
better results [57]. Similarly, ASCNet, TGANet, PraNet, Polyp, and MixPolyp performed
well but were outperformed by our novel model in terms of precision, recall, and Dice
coefficient [57–61]. The high IoU of ASCNet (90.4%) was notable, but our model’s overall
performance across all metrics indicated its superior capability.

Furthermore, the visualization of the segmentation results aligned with the quantita-
tive analysis, indicating that our proposed novel model can effectively segment different
types of GI conditions, including the dyed lifted polyps and ulcerative colitis areas. This
fact proved the efficiency of the proposed model in real-life practice, where reliable seg-
mentation is the key to providing a correct diagnosis and further courses of treatment. As
well as accuracy, our model is characterized by high computational efficiency. Yet, there
are options for what could be done better. This study had a relatively limited sample
size, which means the results could be specific to this population. Thus, we outlined the
need to increase the number of analyzed clinical cases to improve this model. Further, we
plan to incorporate the model into the current clinical hardware instruments, for instance,
endoscopes, by enhancing its adaptability to actual clinical use in compliance with the
findings of this study.

The performance of the proposed U-MaskNet model was compared with some state-
of-the-art (SOTA) models [62], as shown in Table 5, to indicate that the proposed method
rendered the best results across most parameters. Analyzing the results of the traditional
models, such as LeNet-5, AlexNet, VGG-16, ResNet-50, and the Inception Network, we can
clearly state that although the precision, recall, Dice, and IoU scores were quite good, they
were not as high as the scores for the proposed model, U-MaskNet. Notably, U-MaskNet
outperformed ResNet-50 and the Inception Network, which achieved lower Dice and
IoU scores compared to our model. The precision and recall of U-MaskNet, 98.5% and
98.4%, respectively, its Dice score of 94.3, and IoU of 89.31, further confirm the practical use
of this model and its efficiency in segmenting and detecting gastrointestinal (GI) cancer.
Figure 13 represents the visualized performance of the proposed model along with the
other SOTA models.

Table 5. Comparative analysis of the proposed U-MaskNet model with the state-of-the-art methods.

Method Precision Recall Dice IoU

LeNet-5 91.6 90.7 91.1 88.9
AlexNet 93.4 93.5 93.4 87.2
VGG-16 94.7 93.7 92.8 86.9

ResNet-50 96.7 97.1 93.7 85.4
Inception Network 95.4 96.7 93.4 86.7

Proposed (U-MaskNet) 98.5 98.4 94.3 89.31

Furthermore, narrow-band imaging (NBI), particularly with magnification endoscopy,
has proven to enhance diagnostic accuracy by improving visualization of vascular and
mucosal patterns, aiding in the early identification of gastrointestinal lesions [63]. NBI
can complement segmentation models by allowing for real-time optical diagnosis, though
challenges in standardization and training remain. Integrating NBI with segmentation
techniques may provide a robust, accurate diagnostic tool for endoscopic imaging.

The evolution of the polyp segmentation techniques has led to the integration of
various methods that improve the performance of the models and the optimization of the
boundaries. FMCA-Net avoids over-relying on any feature through a modular design and
enhances the edge distinction and achieves superior generalization [64]. Segmentation
performance is improved when SAM incorporates models such as DeepLabv3+ through
mask fusion, with better performance across datasets [65]. BCL-Former adopts both local
enhancement and balanced constraints for the efficient management of polyp diversities
and shows superior performance against benchmarks [66]. Last but not least, combina-
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tions of convolutional and transformer networks achieve a high level of segmentation
performance, possible through a number of configurations, such as loss functions and data
augmentation [67]. Altogether, these methods can be regarded as advancements in medical
imaging segmentation.
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In our future research, we plan to incorporate our current study with other refined
methodologies, such as artifact elimination, edge-aware blind deblurring, and saturation
correction, to enhance the performance of polyp localization and edge detection. We also
intend to research using model quantization and distillation to reduce the model size and
parameters, as well as adapt it to compatibility with high-definition medical devices to
allow for real-time polyp detection. It can be seen from these changes that a computer-aided
diagnosis and treatment system could be further improved to better benefit the patients.
The proposed model, which combined U-Net and Mask R-CNN, outperformed the current
methods of segmenting GI conditions from the images of endoscopic examinations. Such a
model has significant potential to help refine the diagnostic process of GI diseases as well
as improve patients’ prognosis and practice effectiveness. The future works will include
collecting more data, connecting with the clinical instruments, and using some computer
science strategies to fine-tune the model for clinical application.

5. Conclusions

In this paper, we introduced a new segmentation model, U-MaskNet, to handle the
challenges in detecting and segmenting the various human GI cancers, including dyed
lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal
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Z line, polyps, and ulcerative colitis. Our proposed model, U-MaskNet, integrated U-
Net for pixel-wise classification with Mask R-CNN for instance segmentation, effectively
addressing the complexity of GI cancer imaging by tackling all relevant aspects. We
utilized the Kvasir dataset, which includes a wide variety of GI cancer endoscopic images,
comprising 8000 high-quality images. The experimental result showed that our proposed
model outperformed well-known models, such as DeepLabv3+, FCN, and DeepMask,
as well as state-of-the-art (SOTA) models, including LeNet-5, AlexNet, VGG-16, ResNet-
50, and the Inception Network. Regardless of the limited training and evaluation (only
50 epochs), the proposed model consistently achieved high precision, recall, and Dice
coefficients with minimal loss across both training and evaluation phases. We performed
classification and segmentation tasks on the test dataset and validated the models with
standard assessment metrics, including precision, recall, Dice, and IoU. Our proposed
model, U-MaskNet, achieved impressive results on the unseen test dataset, with a precision
of 98.5%, recall of 98.4%, Dice score of 94.3%, and IoU of 89.31%. We also presented the
segmentation results of the various GI cancers, with bounding boxes illustrating the height
and width of each segmented mask by the proposed model. The successful application of
our novel model for GI cancer disease segmentation and classification demonstrates its
potential clinical benefits. The significant findings of our model exhibited accurate and
satisfying results, which may assist medical practitioners in the diagnosis of various GI
cancer-related diseases more effectively, enhancing the overall diagnostic capabilities.

Overall, this present study evaluated the use of U-MaskNet for medical image seg-
mentation to provide a baseline for future studies in the field. The outcomes provided a
theory supporting the model’s performance in complex segmentation tasks and implied
that optimization can help the model maintain even higher levels in the future. It is rec-
ommended that more data sources could be incorporated in future work and the model
architecture could be fine-tuned for enhanced performance of the identified concern to aid
the state of affairs of medical image analysis for GI cancer detection.

Author Contributions: Methodology, A.P. and H.M.R.; conceptualization, A.R. and H.M.R.; software,
A.P., H.M.R. and M.B.H.F.; visualization, A.P. and H.M.R.; writing—original draft preparation, A.P.,
H.M.R., M.B.H.F. and A.R.; validation, A.R. and H.M.R.; writing—review and editing, H.M.R.,
M.B.H.F. and A.R.; supervision, M.B.H.F. and A.R. All authors have read and agreed to the published
version of the manuscript.

Funding: No funding was received for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset utilized in this work is freely available on the official
website: https://datasets.simula.no/kvasir/ (accessed on 15 May 2024).

Conflicts of Interest: There are no conflicts of interest present for this work.

References
1. Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of

Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [CrossRef] [PubMed]
2. Yamao, K.; Kitano, M.; Takenaka, M.; Minaga, K.; Sakurai, T.; Watanabe, T.; Kayahara, T.; Yoshikawa, T.; Yamashita, Y.; Asada, M.;

et al. Outcomes of endoscopic biliary drainage in pancreatic cancer patients with an indwelling gastroduodenal stent: A
multicenter cohort study in West Japan. Gastrointest. Endosc. 2018, 88, 66–75.e2. [CrossRef]

3. Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning
solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [CrossRef] [PubMed]

4. Ronneberger, O.F.P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
5–9 October 2015; pp. 234–241. [CrossRef]

5. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

https://datasets.simula.no/kvasir/
https://doi.org/10.1053/j.gastro.2020.02.068
https://www.ncbi.nlm.nih.gov/pubmed/32247694
https://doi.org/10.1016/j.gie.2018.01.021
https://doi.org/10.1016/j.media.2020.101693
https://www.ncbi.nlm.nih.gov/pubmed/32289663
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICCV.2017.322


Life 2024, 14, 1488 30 of 32

6. Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.-T.;
Lux, M.; Schmidt, P.T.; et al. KVASIR. In Proceedings of the 8th ACM on Multimedia Systems Conference, New York, NY, USA,
20 June 2017; pp. 164–169.

7. Lu, W.; Zhou, Y.; Wan, G.; Hou, S.; Song, S. L3-Net: Towards Learning Based LiDAR Localization for Autonomous Driving. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 6382–6391.

8. Zhu, J.; Ge, M.; Chang, Z.; Dong, W. CRCNet: Global-local context and multi-modality cross attention for polyp segmentation.
Biomed. Signal Process. Control 2023, 83, 104593. [CrossRef]

9. Nguyen, D.C.; Nguyen, H.L. PolyPooling: An accurate polyp segmentation from colonoscopy images. Biomed. Signal Process.
Control 2024, 92, 105979. [CrossRef]

10. Karthikha, R.; Jamal, D.N.; Rafiammal, S.S. An approach of polyp segmentation from colonoscopy images using Dilated-U-Net-
Seg—A deep learning network. Biomed. Signal Process. Control 2024, 93, 106197. [CrossRef]

11. Rajasekar, D.; Theja, G.; Prusty, M.R.; Chinara, S. Efficient colorectal polyp segmentation using wavelet transformation and
AdaptUNet: A hybrid U-Net. Heliyon 2024, 10, e33655. [CrossRef]

12. Haider, A.; Arsalan, M.; Nam, S.H.; Hong, J.S.; Sultan, H.; Park, K.R. Multi-scale feature retention and aggregation for colorectal
cancer diagnosis using gastrointestinal images. Eng. Appl. Artif. Intell. 2023, 125, 106749. [CrossRef]

13. Huo, X.; Tian, S.; Yang, Y.; Yu, L.; Zhang, W.; Li, A. SPA: Self-Peripheral-Attention for central–peripheral interactions in endoscopic
image classification and segmentation. Expert Syst. Appl. 2024, 245, 123053. [CrossRef]

14. Içek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th
International Conference, Athens, Greece, 17–21 October 2016; pp. 424–432. [CrossRef]

15. Farhadi, A.; Redmon, J. YOLOv3: An Incremental Improvement. In Computer Vision and Pattern Recognition; Springer:
Berlin/Heidelberg, Germany, 2018.

16. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
17. Leibetseder, A.; Kletz, S.; Schoeffmann, K.; Keckstein, S.; Keckstein, J. GLENDA: Gynecologic Laparoscopy Endometriosis Dataset.

In International Conference on Multimedia Modeling; Springer: Cham, Switzerland, 2020; pp. 439–450. [CrossRef]
18. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
19. Bali, M.; Mahara, T. Comparison of Affine and DCGAN-based Data Augmentation Techniques for Chest X-Ray Classification.

Procedia Comput. Sci. 2023, 218, 283–290. [CrossRef]
20. Smirnov, E.A.; Timoshenko, D.M.; Andrianov, S.N. Comparison of Regularization Methods for ImageNet Classification with

Deep Convolutional Neural Networks. AASRI Procedia 2014, 6, 89–94. [CrossRef]
21. Rai, H.M. Cancer detection and segmentation using machine learning and deep learning techniques: A review. Multimed. Tools

Appl. 2023, 83, 27001–27035. [CrossRef]
22. Rai, H.M.; Yoo, J. Analysis of Colorectal and Gastric Cancer Classification: A Mathematical Insight Utilizing Traditional Machine

Learning Classifiers. Mathematics 2023, 11, 4937. [CrossRef]
23. Barillaro, L. Deep Learning Platforms: Keras. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2024.

[CrossRef]
24. Rai, H.M.; Chatterjee, K. Hybrid adaptive algorithm based on wavelet transform and independent component analysis for

denoising of MRI images. Meas. J. Int. Meas. Confed. 2019, 144, 72–82. [CrossRef]
25. Rai, H.M.; Chatterjee, K. 2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-Net. Multimed.

Tools Appl. 2021, 80, 36111–36141. [CrossRef]
26. Rai, H.M.; Chatterjee, K. Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial

infarction using big ECG data. Appl. Intell. 2021, 52, 5366–5384. [CrossRef]
27. Banik, D.; Roy, K.; Krejcar, O.; Bhattacharjee, D. dHBLSN: A diligent hierarchical broad learning system network for cogent polyp

segmentation. Knowl. -Based Syst. 2024, 300, 112228. [CrossRef]
28. Rai, H.M.; Chatterjee, K. Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images. Mach.

Learn. Appl. 2020, 2, 100004. [CrossRef]
29. Rai, H.M.; Chatterjee, K. A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG

big data with Multilayered Probabilistic Neural Network classifier. Appl. Soft Comput. 2018, 72, 596–608. [CrossRef]
30. KahsayGebreslassie, A.; Gezahegn, Y.G.; Hagos, M.T.; Ibenthal, A.; Pooja. Automated Gastrointestinal Disease Recognition for

Endoscopic Images. In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 312–316.

31. Rai, H.M.; Dashkevych, S.; Yoo, J. Next-Generation Diagnostics: The Impact of Synthetic Data Generation on the Detection of
Breast Cancer from Ultrasound Imaging. Mathematics 2024, 12, 2808. [CrossRef]

32. Rai, H.M.; Yoo, J.; Dashkevych, S. GAN-SkipNet: A Solution for Data Imbalance in Cardiac Arrhythmia Detection Using
Electrocardiogram Signals from a Benchmark Dataset. Mathematics 2024, 12, 2693. [CrossRef]

33. Pillai, R.; Sharma, N.; Gupta, R. Detection & Classification of Abnormalities in GI Tract through MobileNetV3 Transfer Learning
Model. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies
(ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–6.

https://doi.org/10.1016/j.bspc.2023.104593
https://doi.org/10.1016/j.bspc.2024.105979
https://doi.org/10.1016/j.bspc.2024.106197
https://doi.org/10.1016/j.heliyon.2024.e33655
https://doi.org/10.1016/j.engappai.2023.106749
https://doi.org/10.1016/j.eswa.2023.123053
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-030-37734-2_36
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.procs.2023.01.010
https://doi.org/10.1016/j.aasri.2014.05.013
https://doi.org/10.1007/s11042-023-16520-5
https://doi.org/10.3390/math11244937
https://doi.org/10.1016/B978-0-323-95502-7.00092-0
https://doi.org/10.1016/j.measurement.2019.05.028
https://doi.org/10.1007/s11042-021-11504-9
https://doi.org/10.1007/s10489-021-02696-6
https://doi.org/10.1016/j.knosys.2024.112228
https://doi.org/10.1016/j.mlwa.2020.100004
https://doi.org/10.1016/j.asoc.2018.04.005
https://doi.org/10.3390/math12182808
https://doi.org/10.3390/math12172693


Life 2024, 14, 1488 31 of 32

34. Dookhee, S. Gastrointestinal Endoscopic Image Classification using Transfer Learning. In Proceedings of the 2023 IEEE Third
International Conference on Signal, Control and Communication (SCC), Hammamet, Tunisia, 1–3 December 2023; pp. 1–6.

35. Hossain, S.; Rahman, M.; Syeed, M.M.; Uddin, M.F.; Hasan, M.; Hossain, A.; Ksibi, A.; Jamjoom, M.M.; Ullah, Z.; Samad, A.
DeepPoly: Deep Learning-Based Polyps Segmentation and Classification for Autonomous Colonoscopy Examination. IEEE
Access 2023, 11, 95889–95902. [CrossRef]

36. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
37. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic

Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.
[CrossRef]

38. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

39. Suri, J.S.; Bhagawati, M.; Agarwal, S.; Paul, S.; Pandey, A.; Gupta, S.K.; Saba, L.; Paraskevas, K.I.; Khanna, N.N.; Laird, J.R.;
et al. UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images: A Microscopic Look at UNet
Components Buffered With Pruning, Explainable Artificial Intelligence, and Bias. IEEE Access 2022, 11, 595–645. [CrossRef]
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