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Abstract: Computer-vision-based plant leaf segmentation technology is of great significance for plant
classification, monitoring of plant growth, precision agriculture, and other scientific research. In this
paper, the YOLOv8-seg model was used for the automated segmentation of individual leaves in
images. In order to improve the segmentation performance, we further introduced a Ghost module
and a Bidirectional Feature Pyramid Network (BiFPN) module into the standard Yolov8 model and
proposed two modified versions. The Ghost module can generate several intrinsic feature maps with
cheap transformation operations, and the BiFPN module can fuse multi-scale features to improve
the segmentation performance of small leaves. The experiment results show that Yolov8 performs
well in the leaf segmentation task, and the Ghost module and BiFPN module can further improve the
performance. Our proposed approach achieves a 86.4% leaf segmentation score (best Dice) over all
five test datasets of the Computer Vision Problems in Plant Phenotyping (CVPPP) Leaf Segmentation
Challenge, outperforming other reported approaches.

Keywords: leaf segmentation; yolo; computer-vision

1. Introduction

The segmentation of individual leaves of a plant is a prerequisite for measuring more
complex phenotypic traits such as shape, color, area, mass, or texture, or for counting
the number of leaves. For instance, biologists cultivate model plants like Arabidopsis
(Arabidopsis thaliana) and tobacco (Nicotiana tabacum) in controlled environments, mon-
itoring and documenting their phenotypes to investigate the performance of plants in
general. Previously, such phenotypes were annotated manually by experts, but recently,
image-based non-destructive approaches have gained attention among plant researchers in
plant classification, monitoring of plant growth, precision agriculture, and other scientific
research [1].

Leaf segmentation can be divided into two categories: one is isolated leaf segmen-
tation and identification, and the other is live plant leaf segmentation. The second cate-
gory can further be divided into two sub-categories, leaf semantic segmentation and leaf
instance segmentation.

Isolated leaf segmentation and identification usually uses datasets with leaves that
have been cut from plants and imaged individually. Leaf classification and disease identifi-
cation are the most common tasks in this category. Françoise used a binary thresholding
technique to segment the leaf and extract leaf texture to classify plants into families [2].
Shoaib used modified U-Net to segment the tomato leaf and then Inception Net to classify
the segmented images by different levels of disease [3]. For this task, in most cases there is
only one leaf in the image. Some leaf classification approaches can even be done without
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the segmentation stage. For example, Bin Wang used a parallel two-way convolutional
neural network to classify the leaf category in Flavia [4], Swedish [5], and Leafsnap [6]
datasets and achieved above 91% performance in all three datasets [7]. Various types of
deep convolution networks were employed in leaf classification tasks such as lightweight
CNN [8], Siamese network [9], and ResNet [10,11]. These works show that for isolated leaf
segmentation and identification, if the images are taken carefully with only one leaf in the
center and a clear background, researchers can achieve very good performance in their
tasks even if they omit the segmentation or detection stage.

Live plant leaf segmentation is another category and has many differences from
isolated leaf segmentation because live plant leaf segmentation is to segment the leaves
of the plant in the image, while isolated leaf segmentation is to segment the leaves that
have been cut from the plant and placed on a plain background. The typical difficulties
of live plant leaf segmentation include: (1) The live plant usually has multiple leaves.
(2) The leaves are shot from different angles, so they have different shapes, poses, and
appearances. (3) The background may not be very clear. (4) It is hard to find clearly
discernible boundaries among overlapping leaves. Thus, live plant leaf segmentation
usually requires more complex algorithms and models to handle the complex background
and lighting conditions in the image, as well as to handle the deformation and overlapping
of leaves.

Live plant leaf segmentation involves two different tasks, leaf semantic segmentation
and leaf instance segmentation. The difference between semantic segmentation and instance
segmentation lies in the objects they segment. Semantic segmentation classifies each pixel
into a category (such as leaves or background), while instance segmentation divides each
object into a separate entity (such as a single leaf).

Leaf semantic segmentation is usually required by precision agriculture, agricultural
robotics, and weed identification. Andres Milioto presented a CNN-based semantic seg-
mentation approach for crop fields, separating sugar beet plants, weeds, and background
based on RGB data in real-time [12]. Tanmay Anand proposed a deep learning framework,
AgriSegNet, for automatic detection of farmland anomalies using multiscale attention
semantic segmentation of UAV-acquired images [13]. Sovi Guillaume Sodjinou used U-
Net and K-means subtractive algorithm to apply the semantic segmentation of crops and
weeds [14].

Many studies leverage leaf instance segmentation, including growth monitoring and
regulation, and counting [15,16]. In one study, Bhugra et al. proposed a framework that
relies on a graph-based formulation to extract leaf shape knowledge for the task of leaf
instance segmentation [17]. Numerous creative approaches employ varied types of mathe-
matics, modeling and computer science approaches including 3D data augmentation [18],
generative adversarial networks, and Mask R-CNN [19].

In this work, we put our focus on the problem of leaf instance segmentation and
proposed two improved versions of the YOLOv8-seg model for automatic segmentation of
individual leaves in images. To enhance the segmentation performance, we introduce a
Ghost module and a BiFPN module to the standard YOLOv8 model. The Ghost module
can generate multiple intrinsic feature maps through several inexpensive transformation
operations, while the BiFPN module can fuse multi-scale features to improve the segmenta-
tion performance of small leaves. We also confirmed through ablation experiments that the
BiFPN and Ghost module do help to improve the classification effect to a certain extent.

2. Materials and Methods
2.1. Datasets

In this paper, to make the results as comparable as possible, we use the CVPPP LSC
dataset [1,20,21] for training and validating our model. It is one of the most significant
datasets in this field and has almost become a benchmark for these tasks. The CVPPP LSC
dataset was presented in the Leaf Segmentation Challenge of Computer Vision Problems in
Plant Phenotyping Workshop, which is also the origin of the name CVPPP LSC. The LSC
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2014 training dataset includes three subsets (A1, A2, A3), with A1 and A2 consisting of 159
time-lapse images of Arabidopsis and A3 consisting of 27 images of tobacco. In LSC 2017,
a new subset A4 was introduced, consisting of 624 images of Arabidopsis shared by Dr.
Hannah Dee from Aberystwyth [21]. Figure 1 shows typical images from different datasets,
and Table 1 is a brief summary of the LSC training dataset.
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Figure 1. (a) Typical image in A1; (b) Typical image in A2; (c) Typical image in A3; (d) Typical image
in A4.

Table 1. Summary of the LSC training dataset.

Dataset Plant Size Resolution

A1 Arabidopsis 128 530 × 500
A2 Arabidopsis 31 530 × 565
A3 Tobacco 27 2448 × 2048
A4 Arabidopsis 624 441 × 441

The LSC testing set can be divided into two groups. The first group is A1–A4, which
corresponds to the training set of A1–A4 respectively. The second group is A5, which
is basically a combination of the data of A1–A4. Table 2 is a brief summary of the LSC
testing dataset. CVPPP did not release the ground truth of the testing set; to evaluate
the performance of the testing set, the results need to be uploaded to the competition
website (https://codalab.lisn.upsaclay.fr/competitions/8970, accessed on 1 January 2024)
for online calculation, and the performance of the testing set needs to be uploaded and
evaluated via the competition site.

Table 2. Summary of the LSC testing dataset.

Dataset Plant Size Resolution

A1 Arabidopsis 33 530 × 500
A2 Arabidopsis 9 530 × 565
A3 Tobacco 56 2448 × 2048
A4 Arabidopsis 168 441 × 441
A5 Arabidopsis + Tobacco 235 various

https://codalab.lisn.upsaclay.fr/competitions/8970
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2.2. Framework

The working process of data processing, model training, and model validation is
shown in Figure 2. It was not always the case that datasets were provided in a format which
was compatible with YOLOv8. In the preprocessing, we employ the h5py and OpenCV
to appropriately transform the dataset into png format with txt masks [22,23]. To prevent
overfitting, we have created a training set that is 3/4 the size of the original training set and
a validation set that is 1/4 the size by taking the fourth one after every three in the file list.
Then we develop a modified YOLOv8-seg model and train the model with the split training
and validation sets, and use it to segment the official test set. We incorporate the BiFPN
module (Bidirectional Feature Pyramid Network) [24] and Ghost module [25] into the
original YOLOv8-seg model to enhance the segmentation performance. The segmentation
results were submitted to the competition website for performance evaluation.
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2.3. Methods

In this work, the YOLOv8 model and two modified versions were used for leaf segmen-
tation. YOLO introduced a new, simplified way to perform simultaneous object detection
and classification in images [26,27]. The latest version of YOLO is Yolov8, released in Jan-
uary 2023 by Ultralytics [28], who also created the earlier version YOLOv5 [29]. YOLOv8
uses techniques similar to YOLOACT [30] to provide support for instance segmentation.

The network structure mainly consists of backbone, neck, and head, with YOLOv8
replacing the C3 module of YOLOv5 with the C2f module in the backbone as shown in
Figure 3. It is easy to see that the C2f module has a richer gradient flow. The head section
adopts a popular decoupled head structure which separates the classification and detection
heads, and also is converted from anchor-based to anchor-free, reducing the number of
box predictions and speeding up the non-maximum impression (NMS). In loss calculation,
Task Aligned Assigner is used for positive sample allocation and Distribution Focal Loss is
introduced. The data augmentation section incorporates the operation of closing Mosaic
enhancement in the last 10 epochs of YOLOX [31], which can effectively improve accuracy.
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Figure 3. (a)Architecture of C3. (b) Architecture of C2f.

Apart from YOLOv8, we proposed two modified YOLOv8 models in this paper, one
of which is YOLOv8-BiFPN. FPN (Feature Pyramid Network) is used to solve the problem
of multi-scale in object detection, which can improve detection performance with small
targets [32]. Compared with the traditional FPN network, BiFPN adds skip connections
between the input and output features in the same layer [24]. Due to using the same scale,
adding skip connections can better extract and transfer feature information. Figure 4 shows
the architecture of FPN and BiFPN.
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BiFPN uses weighted feature fusion to fuse input feature maps of different resolutions.
The weights in BiFPN were calculated as follows:

Ptd
i = Convolution(

w1·Pin
i + w2·Pin

i+1
w1 + w2 + ϵ

), (1)
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Pout
i = Convolution(

w′
1·P

in
i + w′

2·P
td
i + w′

3·P
out
i−1

w′
1 + w′

2 + w′
3 + ϵ

), (2)

where Ptd
i , Pout

i represent the intermediate transition feature of the i-th layer on the top-
down pathway and the last output feature of the i-th layer on the bottom-up pathway. w1,
w2 are the weight parameters of the input of the current layer and the input of the next
layer. In Formula (2), w′

1, w′
2, w′

3 respectively represent weight of the current layer input,
the weight of the transition unit output in the current layer, and the weight of the previous
layer output. ϵ is a hyperparameter to prevent the gradient from vanishing [24].

In this paper, we incorporate the BiFPN module into the neck of the YOLOv8 module
and present the YOLOv8-BiFPN model. Figure 5 shows the architecture of the YOLOv8-
BiFPN model.
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The other modified YOLOv8 model that we propose in this article is YOLOv8-Ghost.
The Ghost module splits the original convolutional layer into two parts and utilizes fewer
filters to generate several intrinsic feature maps. Then, a certain number of cheap transfor-
mation operations will be further applied for generating Ghost feature maps efficiently [25].
Figure 6 shows the principle of the Ghost module. The Ghost module includes two sets of
feature maps: the intrinsic feature, which is composed of the convolution of the input, and
another set which is composed of some cheap transformation results of the first set (in this
work the cheap transformation refers to the 5 × 5 convolution). Thus, the Ghost module
can reduce the computational effort and generate richer feature maps, which is helpful in
enhancing the generalizing ability of the model. We incorporate the Ghost module into the
backbone of the YOLOv8 model and present the YOLOv8-Ghost model. Figure 7 presents
the YOLOv8-Ghost network architecture. It consists of backbone, neck, and head; the
backbone is a Feature Pyramid Network [32] to deal with the multi-scale issue and the
neck is a Path Aggregation Network [33] to boost the information flow. From Figure 7, one
can find that the convolution block in P4 of the backbone was substituted with the Ghost
module to boost the generalizing ability.
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2.4. Data Augmentation

Data augmentation is a technique commonly used in machine learning to increase
the size and diversity of a dataset. It involves applying various transformations to the
existing data to create new, synthetic samples. In this paper, we apply some data aug-
mentations supported by YOLOv8, including adjustment of the HSV color, translating
the image horizontally and vertically by a fraction, scaling the image by a gain factor to
simulate objects at different distances, flipping the image upside down and left to right
with the specified probability, rotating the image randomly within the specified degree
range, combining four training images into one to simulate different scene compositions,
and randomly erasing a portion of the image during classification training. The specific
parameters for data augmentation are shown in Table 3.

Table 3. Data augmentation parameters.

Argument Value Short Description

hsv_h 0.015 Adjusts the hue of the image by a fraction of the color wheel
hsv_s 0.7 Alters the saturation of the image by a fraction
hsv_v 0.4 Modifies the value (brightness) of the image by a fraction

degrees 180 Rotates the image randomly within the specified degree range
translate 0.1 Translates the image horizontally and vertically by a fraction

scale 0.5 Scales the image by a gain factor
flipud 0.5 Flips the image upside down with the specified probability
fliplr 0.5 Flips the image left to right with the specified probability

mosaic 1 Combines four training images into one
erasing 0.4 Randomly erases a portion of the image during classification training
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2.5. Software and Hardware Environments

The experiments were conducted on a computer with Nvidia Tesla P100 GPU. The
detailed information of software and hardware environments are listed in Table 4.

Table 4. Summary of software and hardware environments.

Hardware Software

CPU: Intel® Core™ i5-8600K OS: Windows 10 (21H2)
RAM: Corsair® 32 GB DDR4 CUDA: 11.8
GPU: NVIDIA® Tesla® P100 16G Python: 3.8

PyTorch: 2.2.0
torchvision: 0.17.0
Ultralytics: 8.0.228

3. Results
3.1. Evaluation Metrics

To evaluate the performance of multi-object segmentation, the five metrics used in the
CVPPP Leaf Segmentation Challenge were adopted for result comparison [34], i.e., the Best
Dice (BD) [35,36], Symmetric Best Dice (SBD), Foreground–Background Dice (FGBGDice),
Difference in Count (Di f f FG), and Absolute Difference in Count (AbsDi f f FG).

Dice is a metric in binary segmentation that measures the degree of overlap between
the ground truth Lgt and the algorithmic result Lar, as defined in Equation (3).

Dice
(

Lar, Lgt) = 2
∣∣Lgt ∩ Lar

∣∣
|Lgt|+ |Lar|

(3)

Best Dice is defined as:

BD
(

Lar, Lgt) = 1
M

M

∑
i=1

max
1 ≤ j ≤ N

2
∣∣∣Lgt

i ∩ Lar
i

∣∣∣
|Lgt

i |+
∣∣Lar

i

∣∣ (4)

Symmetric Best Dice is the symmetric average Dice among all leaves, which is defined as:

SBD = min
{

BD
(

Lar, Lgt), BD
(

Lgt, Lar)} (5)

Foreground–Background Dice (FGBGDice) is the Dice score of the foreground mask
(i.e., masks of all leaves).

Difference in Count (Di f f FG) is a metric used to evaluate how well an algorithm
identifies the correct number of leaves present, and is defined as:

Di f f FG = #Lar − #Lgt (6)

Absolute Difference in Count (AbsDi f f FG) is the absolute difference in object count.

AbsDi f f FG =
∣∣#Lar − #Lgt∣∣ (7)

3.2. Segmentation Results

The leaf instance segmentation on the CVPPP LSC dataset was performed by the
YOLOv8-seg and the two modified versions, namely the YOLOv8-BiFPN and YOLOv8-
Ghost. Taking into comprehensive consideration the data size, the GPU memory size, and
the performance, we chose the l-scale in the scale selection of the three models. During the
training stage, all of the training sets (A1, A2, A3, A4) were combined together to create
a larger dataset; 3/4 was used for training, and 1/4 was used for validation. Since the
original size of the dataset is close to 512 × 512, all of the images were resized to 512 × 512.
The neural network was trained through 250 epochs with batch size 16. Figure 8 shows
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selected examples of test images from the four datasets. From each dataset we chose two
examples: one to show the effectiveness of the methods and one to show limitations. We
have four datasets, so eight pictures were selected and composed into the eight rows in
Figure 8. The first column is the test leaf image, the second column is the segmentation
result using YOLOv8, the third column is the segmentation result using YOLOv8-BiFPN,
and the fourth column is the segmentation result using YOLOv8-Ghost. We show visually
the segmentation outcomes for each method together and overlay the numbers of the
evaluation measures on the images (Best Dice in the top left corner, Difference in Count in
the top right, Symmetric Best Dice in the bottom left, and Foreground–Background Dice in
the bottom right).

For these eight test data examples, we see that all of the three methods perform well in
the segmentation task. There is not a certain method that is absolutely better than the other
two methods. It can be observed that YOLOv8-Ghost is more precise in the counting of the
number of leaves, but in other indicators, the three methods have their own advantages
and disadvantages.

The segmentation result for the whole test dataset is shown in Table 5. It can be seen
that among the three methods, the performance of the two modified versions is slightly
better than that of the original YOLOv8. The performance of YOLOv8-BiFPN is slightly
better in SBD and FGBGDice, while the performance of YOLOv8-Ghost is slightly better
in BD, SBD, Di f f FG, and AbsDi f f FG than that of the other two methods.

Table 5. Segmentation and counting results on the testing dataset.

Test Set BD SBD FGBGDice DiffFG AbsDiffFG

YOLOv8
A1 82.71 82.19 96.43 1.67 1.91
A2 82.89 82.98 93.87 1.33 1.33
A3 85.85 71.52 92.61 −1.13 1.34
A4 85.23 84.34 95.47 1.12 1.33
A5 85.45 81.37 94.78 0.55 1.30

ALL 85.19 81.35 94.86 0.64 1.36
YOLOv8-BiFPN

A1 83.08 82.60 96.43 1.52 1.70
A2 83.62 81.82 93.51 1.44 2.11
A3 85.53 71.53 93.55 −0.89 1.32
A4 85.77 84.87 95.45 1.01 1.23
A5 85.72 81.69 94.98 0.54 1.24

ALL 85.50 81.68 95.05 0.62 1.24
YOLOv8-Ghost

A1 85.18 83.67 96.46 0.67 1.21
A2 84.03 83.30 93.89 0.78 1.00
A3 86.11 69.49 92.00 −1.18 1.43
A4 86.58 85.37 95.44 0.79 1.11
A5 86.52 81.60 94.61 0.29 1.17

ALL 86.36 81.68 94.70 0.32 1.18
The result in bold font means that the result is superior to others.

We also compared our results with other reported works, as shown in Table 6. Because
the results for test sets A5 and A6 were not reported in their papers, only the results
for test sets A1, A2, and A3 were compared. From Table 6, one can see that the pro-
posed YOLOv8-BiFPN and YOLOv8-Ghost outperform other approaches with respect to
many indicators.
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Table 6. Segmentation and counting results compared with other published methods.

Test Set SBD FGBGDice DiffFG AbsDiffFG

IPK [37]
A1 74.4 97.0 −1.8 2.2
A2 76.9 96.3 −1.0 1.2
A3 53.3 94.1 −2.0 2.8

Nottingham [1]
A1 68.3 95.3 −3.5 3.8
A2 71.3 93.0 −1.9 1.9
A3 51.6 90.7 −1.9 2.5

MSU [16]
A1 66.7 94.0 −2.5 2.5
A2 66.6 87.7 −2.0 2.0
A3 59.2 90.7 −2.3 2.3

Wageningen [1]
A1 71.1 94.7 1.3 2.2
A2 75.7 95.1 −0.2 0.4
A3 57.6 89.5 1.8 3.0

YOLOv8
A1 82.19 96.43 1.67 1.91
A2 82.98 93.87 1.33 1.33
A3 71.52 92.61 −1.13 1.34

YOLOv8-BiFPN
A1 82.60 96.43 1.52 1.70
A2 81.82 93.51 1.44 2.11
A3 71.53 93.55 −0.89 1.32

YOLOv8-Ghost
A1 83.67 96.46 0.67 1.21
A2 83.30 93.89 0.78 1.00
A3 69.49 92.00 −1.18 1.43

The result in bold font means that the result is superior to others.

In order to compare with the algorithms of other contestants, we submitted the segmen-
tation results of YOLOv8-Ghost to the competition’s leaderboard, as it has demonstrated
stronger performance on Best Dice than YOLOv8-BiFPN, and the competition website
mainly uses Best Dice to determine the ranking. Our algorithm’s average ranking on the
leaderboard (https://codalab.lisn.upsaclay.fr/competitions/8970#results, accessed on 20
April 2024) is third place as of writing this manuscript (20 April 2024) (our name is “pw”
on the leaderboard), and the specific rankings of different test sets by different metrics are
shown in Table 7.

Table 7. Results and rankings on the leaderboard (on 20 April 2024).

Test Set BD FGBGDice DiffFG AbsDiffFG

A1 85.18 (5th) 96.46 (5rd) 0.67 (6th) 1.21 (4th)
A2 84.03 (4th) 93.89 (4th) 0.78 (7th) 1.00 (2nd)
A3 86.11 (1st) 92.00 (4th) −1.18 (4th) 1.43 (1st)
A4 86.58 (4th) 95.44 (4th) 0.79 (8th) 1.11 (3rd)
A5 86.52 (4th) 94.61 (3rd) 0.29 (8th) 1.17 (3rd)

ALL 86.36 (4th) 94.70 (3rd) 0.32 (8th) 1.18 (3rd)

4. Discussion

In the experiment, we found that the YOLOv8-based [28] methods outperform other
approaches in the leaf segmentation task. Moreover, we present two modified versions, i.e.,
the YOLOv8-BiFPN and YOLOv8-Ghost, which can further improve the performance.

We believe that the BiFPN module [24] can add skip connections between the input
and output features in the same layer, which result in better extract and transfer feature
information. The Ghost module [25] can reduce the computational effort and generate

https://codalab.lisn.upsaclay.fr/competitions/8970#results
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richer feature maps, which is helpful in enhancing the generalizing ability of the model.
Readers may think that the combination of the BiFPN and Ghost modules might further
improve the performance; in fact, we conducted the corresponding experiments, but
unfortunately, the results were not ideal. Only a few indicators were improved, and most
of the indicators were not as positively affected as using one kind of improvement alone.
This may be because the BiFPN module tends to increase the complexity on the basis of
YOLOv8, while the Ghost module tends to reduce the computational complexity. In the
process of combination of the BiFPN and Ghost module, the two modules may mutually
influence each other, and the result is not ideal.

It can be found that there is a large number of defocused blurs in the dataset. Some
corrections can be made for these defocused blurs in the pre-processing in future work.
In addition, although the focus of this article is the instance segmentation of the leaves
of living plants, these plants were all planted in flower pots. The leaf segmentation of
plants in the fields undoubtedly is more challenging, and it is also a direction worthy of
further research.

5. Conclusions

In this paper, we presented and evaluated a framework for leaf instance segmentation.
The YOLOv8 model was employed for the leaf instance segmentation task; moreover, we
proposed two modified versions by incorporating the BiFPN module and Ghost module
into the original YOLOv8 model to enhance the leaf segmentation performance. In the
experiment, we found that the three methods outperform other approaches in the leaf seg-
mentation task, and the proposed YOLOv8-BiFPN and YOLOv8-Ghost can further improve
the performance. YOLOv8-BiFPN shows better performance in FGBGDice, which is used
to separate the leaf from the background, and YOLOv8-Ghost shows better performance in
BestDice and leaf counting metrics like DiffFG and AbsDiffFG.

Author Contributions: P.W., P.Z. and J.B. designed the experiments. P.W., H.D., J.G., S.J. and D.M.
performed the experiments. P.W. and H.D. wrote the manuscript. P.W., P.Z. and H.D. revised and
edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Northeast Agricultural University, grant number 18QC63. This
research was funded by Heilongjiang Province Mathematical Society, grant numbers HSJG202202003
and HSJG202202004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in GitHub repository:
https://github.com/rexlagrange/cvppp_leaf_seg, accessed on 1 June 2024. These data were de-
rived from the following resources available in the public domain: https://codalab.lisn.upsaclay.fr/
competitions/8970, accessed on 1 January 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Scharr, H.; Minervini, M.; French, A.P.; Klukas, C.; Kramer, D.M.; Liu, X.; Luengo, I.; Pape, J.-M.; Polder, G.; Vukadinovic, D.; et al.

Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2016, 27, 585–606. [CrossRef]
2. Tery, Z.F.; Goore, B.T.; Bagui, K.O.; Tiebre, M.S. Classification of Plants into Families Based on Leaf Texture. Int. J. Comput. Sci.

Netw. Secur. 2021, 21, 205–211. [CrossRef]
3. Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of

leaf images for detection of tomato plant disease. Front. Plant Sci. 2022, 13, 1031748. [CrossRef] [PubMed]
4. Wu, S.G.; Bao, F.S.; Xu, E.Y.; Wang, Y.-X.; Chang, Y.-F.; Xiang, Q.-L. A leaf recognition algorithm for plant classification using

probabilistic neural network. In Proceedings of the 2007 IEEE International Symposium on Signal Processing and Information
Technology, Giza, Egypt, 5–18 December 2007; pp. 11–16. [CrossRef]

5. Söderkvist, O. Computer Vision Classification of Leaves from Swedish Trees. Master’s Thesis, Linkoping University, Linköping,
Sweden, 2001. Available online: https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/ (accessed on 1 January 2024).

https://github.com/rexlagrange/cvppp_leaf_seg
https://codalab.lisn.upsaclay.fr/competitions/8970
https://codalab.lisn.upsaclay.fr/competitions/8970
https://doi.org/10.1007/s00138-015-0737-3
https://doi.org/10.22937/IJCSNS.2021.21.2.24
https://doi.org/10.3389/fpls.2022.1031748
https://www.ncbi.nlm.nih.gov/pubmed/36275583
https://doi.org/10.1109/ISSPIT.2007.4458016
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/


Life 2024, 14, 780 13 of 14

6. Kumar, N.; Belhumeur, P.N.; Biswas, A.; Jacobs, D.W.; João, V.B. Leafsnap: A Computer Vision System for Automatic Plant Species
Identification. In Computer Vision—ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, October
7–13, 2012; Proceedings, Part I; Fitz-gibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7573, pp. 502–516.

7. Wang, B.; Wang, D. Plant leaves classification: A few-shot learning method based on siamese network. IEEE Access 2019, 7,
151754–151763. [CrossRef]

8. Hang, Y.; Meng, X.Y.; Wu, Q.F. Application of Improved Lightweight Network and Choquet Fuzzy Ensemble Technology for
Soybean Disease Identification. IEEE Access 2024, 12, 25146–25163. [CrossRef]

9. Pan, J.C.; Wang, T.Y.; Wu, Q.F. Ricenet: A two stage machine learning method for rice disease identification. Biosyst. Eng. 2023,
225, 25–40. [CrossRef]

10. Chen, Y.P.; Wu, Q.F. Grape leaf disease identification with sparse data via generative adversarial networks and convolutional
neural networks. Precis. Agric. 2023, 24, 235–253. [CrossRef]

11. Chen, Y.P.; Pan, J.C.; Wu, Q.F. Apple leaf disease identification via improved cyclegan and convolutional neural network. Soft
Comput. 2023, 27, 9773–9786. [CrossRef]

12. Milioto, A.; Lottes, P.; Stachniss, C. Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots
Leveraging Background Knowledge in CNNs. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2229–2235. [CrossRef]

13. Anand, T.; Sinha, S.; Mandal, M.; Chamola, V.; Yu, F.R. Agrisegnet: Deep aerial semantic segmentation framework for iot-assisted
precision agriculture. IEEE Sens. J. 2021, 21, 17581–17590. [CrossRef]

14. Sodjinou, S.G.; Mohammadi, V.; Mahama, A.T.S.; Gouton, P. A deep semantic segmentation-based algorithm to segment crops
and weeds in agronomic color images. Inf. Process. Agric. 2022, 9, 355–364. [CrossRef]

15. Shadrin, D.G.; Kulikov, V.; Fedorov, M.V. Instance segmentation for assessment of plant growth dynamics in artificial soilless
conditions. In Proceedings of the British Machine Vision Conference(BMVC), Newcastle, UK, 3–6 September 2018.

16. Yin, X.; Liu, X.M.; Chen, J.; Kramer, D.M. Multi-leaf tracking from fluorescence plant videos. In Proceedings of the 2014 IEEE
International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 408–412. [CrossRef]

17. Bhugra, S.; Garg, K.; Chaudhury, S.; Lall, B. A Hierarchical Framework for Leaf Instance Segmentation: Application to Plant
Phenotyping. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Taichung, Taiwan,
18–21 July 2021.

18. Ward, D.; Moghadam, P.; Hudson, N. Deep leaf segmentation using synthetic data. arXiv 2018, arXiv:1807.10931. [CrossRef]
19. Zhu, Y.Z.; Aoun, M.; Krijn, M.; Vanschoren, J.; Campus, H.T. Data augmentation using conditional generative adversarial

networks for leaf counting in arabidopsis plants. In Proceedings of the British Machine Vision Conference(BMVC), Newcastle,
UK, 3–6 September 2018; p. 324.

20. Minervini, M.; Fischbach, A.; Scharr, H.; Tsaftaris, S.A. Finely-grained annotated datasets for image-based plant phenotyping.
Pattern Recognit. Lett. 2016, 81, 80–89. [CrossRef]

21. Bell, J.; Dee, H.M. Aberystwyth Leaf Evaluation Dataset [Data Set]. Zenodo 2016. [CrossRef]
22. Collette, A. Python and HDF5; O’Reilly: Springfield, MI, USA, 2013.
23. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125.
24. Tan, M.X.; Pang, R.M.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [CrossRef]
25. Han, K.; Wang, Y.; Tian, Q.; Guo, J.Y.; Xu, C.J.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586.
[CrossRef]

26. Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer
Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

27. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

28. Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 1
January 2024).

29. Jocher, G. YOLOv5 by Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 January 2024).
30. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9156–9165. [CrossRef]
31. Ge, Z.; Liu, S.T.; Wang, F.; Li, Z.M.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [CrossRef]
32. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision And Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.
[CrossRef]

33. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

34. Leaf Segmentation Challenge Evaluation Criteria. Available online: https://codalab.lisn.upsaclay.fr/competitions/8970#learn_
the_details-evaluation (accessed on 1 January 2024).

https://doi.org/10.1109/ACCESS.2019.2947510
https://doi.org/10.1109/ACCESS.2024.3365829
https://doi.org/10.1016/j.biosystemseng.2022.11.007
https://doi.org/10.1007/s11119-022-09941-z
https://doi.org/10.1007/s00500-023-07811-y
https://doi.org/10.1109/ICRA.2018.8460962
https://doi.org/10.1109/JSEN.2021.3071290
https://doi.org/10.1016/j.inpa.2021.08.003
https://doi.org/10.1109/ICIP.2014.7025081
https://doi.org/10.48550/arXiv.1807.10931
https://doi.org/10.1016/j.patrec.2015.10.013
https://doi.org/10.5281/zenodo.168158
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.3390/make5040083
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/ICCV.2019.00925
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.1109/CVPR.2017.106
https://codalab.lisn.upsaclay.fr/competitions/8970#learn_the_details-evaluation
https://codalab.lisn.upsaclay.fr/competitions/8970#learn_the_details-evaluation


Life 2024, 14, 780 14 of 14

35. Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its
application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. 1948, 5, 1–34.

36. Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [CrossRef]
37. Pape, J.M.; Klukas, C. 3-D histogram-based segmentation and leaf detection for rosette plants. In Computer Vision-ECCV 2014

Workshops: Zurich, Switzerland, September 6–7 and 12 2014; Proceedings, Part III; Agapito, L., Bronstein, M., Rother, C., Eds.;
Springer: Cham, Switzerland, 2015; pp. 61–74.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2307/1932409

	Introduction 
	Materials and Methods 
	Datasets 
	Framework 
	Methods 
	Data Augmentation 
	Software and Hardware Environments 

	Results 
	Evaluation Metrics 
	Segmentation Results 

	Discussion 
	Conclusions 
	References

