Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies
Abstract
:1. Introduction
2. eccDNA Biogenesis
2.1. DNA Damage Repair
2.2. Chromothripsis and Apoptosis
2.3. Breakage–Fusion–Bridge (BFB) Model
2.4. Episome Model
2.5. Translocation–Deletion–Amplification Model
3. Categorization and Classification of eccDNA
3.1. Double-Minute Chromosomes (DMs)
3.2. microDNA
3.3. Telomeric Circle (t-Circle/c-Circle)
3.4. Small Polydisperse Circular DNA (spcDNA)
4. eccDNA Physiological Functions
5. eccDNA’s role in Tumor Progression, Heterogeneity, and Evolution
6. Potential Clinical Applications of eccDNA in Cancer
7. Detection Methods
7.1. Sequencing-Based Approaches
7.2. Image-Based Approaches
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Wang, Y.; Li, J.; Zhou, X. Extrachromosomal circular DNA (eccDNA): An emerging star in cancer. Biomark. Res. 2022, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Shoura, M.J.; Mischel, P.S.; Swanton, C. Extrachromosomal DNA-relieving heredity constraints, accelerating tumour evolution. Ann. Oncol. 2020, 31, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Rai, K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput. Struct. Biotechnol. J. 2022, 20, 6011–6022. [Google Scholar] [CrossRef] [PubMed]
- Noer, J.B.; Horsdal, O.K.; Xiang, X.; Luo, Y.; Regenberg, B. Extrachromosomal circular DNA in cancer: History, current knowledge, and methods. Trends Genet. 2022, 38, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, H.; Zhou, Y.; Shi, J. Extrachromosomal circular DNA: A new potential role in cancer progression. J. Transl. Med. 2021, 19, 257. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Huang, W.; Cui, L.; Zhu, P.; Lin, Q.; Zhang, W.; Li, J.; Deng, C.; Wu, Z.; Huang, Z.; et al. The landscape of extrachromosomal circular DNA (eccDNA) in the normal hematopoiesis and leukemia evolution. Cell Death Discov. 2022, 8, 400. [Google Scholar] [CrossRef] [PubMed]
- Moller, H.D.; Mohiyuddin, M.; Prada-Luengo, I.; Sailani, M.R.; Halling, J.F.; Plomgaard, P.; Maretty, L.; Hansen, A.J.; Snyder, M.P.; Pilegaard, H.; et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat. Commun. 2018, 9, 1069. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Y.; Zhou, R.; Liu, L.; Zeng, H.; Xiong, F.; Zhang, S.; Gong, Z.; Zhang, W.; Guo, C.; et al. Extrachromosomal Circular DNA: A New Target in Cancer. Front. Oncol. 2022, 12, 814504. [Google Scholar] [CrossRef]
- Yang, L.; Jia, R.; Ge, T.; Ge, S.; Zhuang, A.; Chai, P.; Fan, X. Extrachromosomal circular DNA: Biogenesis, structure, functions and diseases. Signal Transduct. Target. Ther. 2022, 7, 342. [Google Scholar] [CrossRef]
- Ceccaldi, R.; Rondinelli, B.; D’Andrea, A.D. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016, 26, 52–64. [Google Scholar] [CrossRef]
- van Loon, N.; Miller, D.; Murnane, J.P. Formation of extrachromosomal circular DNA in HeLa cells by nonhomologous recombination. Nucleic Acids Res. 1994, 22, 2447–2452. [Google Scholar] [CrossRef]
- Prada-Luengo, I.; Moller, H.D.; Henriksen, R.A.; Gao, Q.; Larsen, C.E.; Alizadeh, S.; Maretty, L.; Houseley, J.; Regenberg, B. Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2020, 48, 7883–7898. [Google Scholar] [CrossRef]
- Moller, H.D.; Parsons, L.; Jorgensen, T.S.; Botstein, D.; Regenberg, B. Extrachromosomal circular DNA is common in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, E3114–E3122. [Google Scholar] [CrossRef]
- de Alteriis, E.; Incerti, G.; Carteni, F.; Chiusano, M.L.; Colantuono, C.; Palomba, E.; Termolino, P.; Monticolo, F.; Esposito, A.; Bonanomi, G.; et al. Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation. Microb. Cell 2023, 10, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Moller, H.D.; Lin, L.; Xiang, X.; Petersen, T.S.; Huang, J.; Yang, L.; Kjeldsen, E.; Jensen, U.B.; Zhang, X.; Liu, X.; et al. CRISPR-C: Circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res. 2018, 46, e131. [Google Scholar] [CrossRef]
- Meng, X.; Qi, X.; Guo, H.; Cai, M.; Li, C.; Zhu, J.; Chen, F.; Guo, H.; Li, J.; Zhao, Y.; et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J. Med. Genet. 2015, 52, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.M.; Tomkinson, A.E. A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J. Biol. Chem. 2002, 277, 45630–45637. [Google Scholar] [CrossRef] [PubMed]
- Dillon, L.W.; Kumar, P.; Shibata, Y.; Wang, Y.H.; Willcox, S.; Griffith, J.D.; Pommier, Y.; Takeda, S.; Dutta, A. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015, 11, 1749–1759. [Google Scholar] [CrossRef]
- Paulsen, T.; Malapati, P.; Shibata, Y.; Wilson, B.; Eki, R.; Benamar, M.; Abbas, T.; Dutta, A. MicroDNA levels are dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA damage. Nucleic Acids Res. 2021, 49, 11787–11799. [Google Scholar] [CrossRef]
- Ly, P.; Cleveland, D.W. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol. 2017, 27, 917–930. [Google Scholar] [CrossRef]
- Shoshani, O.; Brunner, S.F.; Yaeger, R.; Ly, P.; Nechemia-Arbely, Y.; Kim, D.H.; Fang, R.; Castillon, G.A.; Yu, M.; Li, J.S.Z.; et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 2021, 591, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Nazaryan-Petersen, L.; Bjerregaard, V.A.; Nielsen, F.C.; Tommerup, N.; Tumer, Z. Chromothripsis and DNA Repair Disorders. J. Clin. Med. 2020, 9, 613. [Google Scholar] [CrossRef]
- Cortes-Ciriano, I.; Lee, J.J.; Xi, R.; Jain, D.; Jung, Y.L.; Yang, L.; Gordenin, D.; Klimczak, L.J.; Zhang, C.Z.; Pellman, D.S.; et al. Comprehensive analysis of chromothripsis in 2658 human cancers using whole-genome sequencing. Nat. Genet. 2020, 52, 331–341. [Google Scholar] [CrossRef]
- Zhao, X.K.; Xing, P.; Song, X.; Zhao, M.; Zhao, L.; Dang, Y.; Lei, L.L.; Xu, R.H.; Han, W.L.; Wang, P.P.; et al. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Nat. Commun. 2021, 12, 6489. [Google Scholar] [CrossRef]
- Turner, K.M.; Deshpande, V.; Beyter, D.; Koga, T.; Rusert, J.; Lee, C.; Li, B.; Arden, K.; Ren, B.; Nathanson, D.A.; et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 2017, 543, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Przybytkowski, E.; Lenkiewicz, E.; Barrett, M.T.; Klein, K.; Nabavi, S.; Greenwood, C.M.; Basik, M. Chromosome-breakage genomic instability and chromothripsis in breast cancer. BMC Genom. 2014, 15, 579. [Google Scholar] [CrossRef]
- Sakahira, H.; Enari, M.; Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998, 391, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Akhand, A.A.; Kato, M.; Suzuki, H.; Miyata, T.; Nakashima, I. Level of HgCl2-mediated phosphorylation of intracellular proteins determines death of thymic T-lymphocytes with or without DNA fragmentation. J. Cell. Biochem. 1998, 71, 243–253. [Google Scholar] [CrossRef]
- Li, L.Y.; Luo, X.; Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001, 412, 95–99. [Google Scholar] [CrossRef]
- Mehanna, P.; Gagne, V.; Lajoie, M.; Spinella, J.F.; St-Onge, P.; Sinnett, D.; Brukner, I.; Krajinovic, M. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PLoS ONE 2017, 12, e0184365. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Djekidel, M.N.; Chen, H.; Liu, D.; Alt, F.W.; Zhang, Y. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 2021, 599, 308–314. [Google Scholar] [CrossRef]
- Selvarajah, S.; Yoshimoto, M.; Park, P.C.; Maire, G.; Paderova, J.; Bayani, J.; Lim, G.; Al-Romaih, K.; Squire, J.A.; Zielenska, M. The breakage-fusion-bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma. Chromosoma 2006, 115, 459–467. [Google Scholar] [CrossRef]
- Gisselsson, D.; Pettersson, L.; Hoglund, M.; Heidenblad, M.; Gorunova, L.; Wiegant, J.; Mertens, F.; Dal Cin, P.; Mitelman, F.; Mandahl, N. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA 2000, 97, 5357–5362. [Google Scholar] [CrossRef]
- Mc, C.B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 1951, 16, 13–47. [Google Scholar] [CrossRef]
- Ling, X.; Han, Y.; Meng, J.; Zhong, B.; Chen, J.; Zhang, H.; Qin, J.; Pang, J.; Liu, L. Small extrachromosomal circular DNA (eccDNA): Major functions in evolution and cancer. Mol. Cancer 2021, 20, 113. [Google Scholar] [CrossRef]
- Guerin, T.M.; Marcand, S. Breakage in breakage-fusion-bridge cycle: An 80-year-old mystery. Trends Genet. 2022, 38, 641–645. [Google Scholar] [CrossRef]
- Umbreit, N.T.; Zhang, C.Z.; Lynch, L.D.; Blaine, L.J.; Cheng, A.M.; Tourdot, R.; Sun, L.; Almubarak, H.F.; Judge, K.; Mitchell, T.J.; et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 2020, 368, eaba0712. [Google Scholar] [CrossRef]
- Gu, X.; Yu, J.; Chai, P.; Ge, S.; Fan, X. Novel insights into extrachromosomal DNA: Redefining the onco-drivers of tumor progression. J. Exp. Clin. Cancer Res. 2020, 39, 215. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Q.; She, J.; Yu, J. Extrachromosomal circular DNA in colorectal cancer: Biogenesis, function and potential as therapeutic target. Oncogene 2023, 42, 941–951. [Google Scholar] [CrossRef]
- Storlazzi, C.T.; Lonoce, A.; Guastadisegni, M.C.; Trombetta, D.; D’Addabbo, P.; Daniele, G.; L’Abbate, A.; Macchia, G.; Surace, C.; Kok, K.; et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: Origin and structure. Genome Res. 2010, 20, 1198–1206. [Google Scholar] [CrossRef]
- Storlazzi, C.T.; Fioretos, T.; Surace, C.; Lonoce, A.; Mastrorilli, A.; Strombeck, B.; D’Addabbo, P.; Iacovelli, F.; Minervini, C.; Aventin, A.; et al. MYC-containing double minutes in hematologic malignancies: Evidence in favor of the episome model and exclusion of MYC as the target gene. Hum. Mol. Genet. 2006, 15, 933–942. [Google Scholar] [CrossRef]
- Vogt, N.; Lefevre, S.H.; Apiou, F.; Dutrillaux, A.M.; Cor, A.; Leuraud, P.; Poupon, M.F.; Dutrillaux, B.; Debatisse, M.; Malfoy, B. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc. Natl. Acad. Sci. USA 2004, 101, 11368–11373. [Google Scholar] [CrossRef]
- Van Roy, N.; Vandesompele, J.; Menten, B.; Nilsson, H.; De Smet, E.; Rocchi, M.; De Paepe, A.; Pahlman, S.; Speleman, F. Translocation-excision-deletion-amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosomes Cancer 2006, 45, 107–117. [Google Scholar] [CrossRef]
- Roijer, E.; Nordkvist, A.; Strom, A.K.; Ryd, W.; Behrendt, M.; Bullerdiek, J.; Mark, J.; Stenman, G. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am. J. Pathol. 2002, 160, 433–440. [Google Scholar] [CrossRef]
- Cox, D.; Yuncken, C.; Spriggs, A.I. Minute Chromatin Bodies in Malignant Tumours of Childhood. Lancet 1965, 1, 55–58. [Google Scholar] [CrossRef]
- Benner, S.E.; Wahl, G.M.; Von Hoff, D.D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anti-Cancer Drugs 1991, 2, 11–25. [Google Scholar] [CrossRef]
- Mark, J.; Granberg, I. The chromosomal aberration of double-minutes in three gliomas. Acta Neuropathol. 1970, 16, 194–204. [Google Scholar] [CrossRef]
- Olinici, C.D. Double minute chromatin bodies in a case of ovarian ascitic carcinoma. Br. J. Cancer 1971, 25, 350–353. [Google Scholar] [CrossRef]
- Lin, C.C.; Meyne, J.; Sasi, R.; Moyzis, R.K. Apparent lack of telomere sequences on double minute chromosomes. Cancer Genet. Cytogenet. 1990, 48, 271–274. [Google Scholar] [CrossRef]
- Wu, S.; Turner, K.M.; Nguyen, N.; Raviram, R.; Erb, M.; Santini, J.; Luebeck, J.; Rajkumar, U.; Diao, Y.; Li, B.; et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 2019, 575, 699–703. [Google Scholar] [CrossRef]
- Sanborn, J.Z.; Salama, S.R.; Grifford, M.; Brennan, C.W.; Mikkelsen, T.; Jhanwar, S.; Katzman, S.; Chin, L.; Haussler, D. Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. Cancer Res. 2013, 73, 6036–6045. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Nguyen, N.P.; Turner, K.; Wu, S.; Gujar, A.D.; Luebeck, J.; Liu, J.; Deshpande, V.; Rajkumar, U.; Namburi, S.; et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 2020, 52, 891–897. [Google Scholar] [CrossRef]
- Vogt, N.; Gibaud, A.; Lemoine, F.; de la Grange, P.; Debatisse, M.; Malfoy, B. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res. 2014, 42, 13194–13205. [Google Scholar] [CrossRef]
- Xu, K.; Ding, L.; Chang, T.C.; Shao, Y.; Chiang, J.; Mulder, H.; Wang, S.; Shaw, T.I.; Wen, J.; Hover, L.; et al. Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol. 2019, 137, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gong, L.; Wei, C.L. Guilt by association: EcDNA as a mobile transactivator in cancer. Trends Cancer 2022, 8, 747–758. [Google Scholar] [CrossRef]
- Shibata, Y.; Kumar, P.; Layer, R.; Willcox, S.; Gagan, J.R.; Griffith, J.D.; Dutta, A. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science 2012, 336, 82–86. [Google Scholar] [CrossRef]
- Paulsen, T.; Shibata, Y.; Kumar, P.; Dillon, L.; Dutta, A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 2019, 47, 4586–4596. [Google Scholar] [CrossRef]
- Kumar, P.; Dillon, L.W.; Shibata, Y.; Jazaeri, A.A.; Jones, D.R.; Dutta, A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol. Cancer Res. 2017, 15, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Dilley, R.L.; Greenberg, R.A. ALTernative Telomere Maintenance and Cancer. Trends Cancer 2015, 1, 145–156. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, F.; Liu, L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes 2019, 10, 1030. [Google Scholar] [CrossRef]
- Neumann, A.A.; Watson, C.M.; Noble, J.R.; Pickett, H.A.; Tam, P.P.; Reddel, R.R. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev. 2013, 27, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Pickett, H.A.; Henson, J.D.; Au, A.Y.; Neumann, A.A.; Reddel, R.R. Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum. Mol. Genet. 2011, 20, 4684–4692. [Google Scholar] [CrossRef] [PubMed]
- Tomaska, L.; Nosek, J.; Kramara, J.; Griffith, J.D. Telomeric circles: Universal players in telomere maintenance? Nat. Struct. Mol. Biol. 2009, 16, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; McEachern, M.J. Recombinational telomere elongation promoted by DNA circles. Mol. Cell. Biol. 2002, 22, 4512–4521. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.S.; Potter, S.S. L1 sequences in HeLa extrachromosomal circular DNA: Evidence for circularization by homologous recombination. Proc. Natl. Acad. Sci. USA 1985, 82, 1989–1993. [Google Scholar] [CrossRef]
- Flavell, A.J.; Ish-Horowicz, D. The origin of extrachromosomal circular copia elements. Cell 1983, 34, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.; Bacharach, E.; Lavi, S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene 2006, 25, 4515–4524. [Google Scholar] [CrossRef]
- Fujimoto, S.; Yamagishi, H. Isolation of an excision product of T-cell receptor alpha-chain gene rearrangements. Nature 1987, 327, 242–243. [Google Scholar] [CrossRef] [PubMed]
- Kunisada, T.; Yamagishi, H.; Ogita, Z.; Kirakawa, T.; Mitsui, Y. Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech. Ageing Dev. 1985, 29, 89–99. [Google Scholar] [CrossRef]
- Smith, C.A.; Vinograd, J. Small polydisperse circular DNA of HeLa cells. J. Mol. Biol. 1972, 69, 163–178. [Google Scholar] [CrossRef]
- Cohen, S.; Lavi, S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: Two-dimensional gel analysis of circular DNA molecules. Mol. Cell. Biol. 1996, 16, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Regev, A.; Lavi, S. Small polydispersed circular DNA (spcDNA) in human cells: Association with genomic instability. Oncogene 1997, 14, 977–985. [Google Scholar] [CrossRef]
- Regev, A.; Cohen, S.; Cohen, E.; Bar-Am, I.; Lavi, S. Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene 1998, 17, 3455–3461. [Google Scholar] [CrossRef]
- Yu, E.Y.; Cheung, I.Y.; Feng, Y.; Rabie, M.O.; Roboz, G.J.; Guzman, M.L.; Cheung, N.V.; Lue, N.F. Telomere Trimming and DNA Damage as Signatures of High Risk Neuroblastoma. Neoplasia 2019, 21, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Dagg, R.A.; Pickett, H.A.; Neumann, A.A.; Napier, C.E.; Henson, J.D.; Teber, E.T.; Arthur, J.W.; Reynolds, C.P.; Murray, J.; Haber, M.; et al. Extensive Proliferation of Human Cancer Cells with Ever-Shorter Telomeres. Cell Rep. 2017, 19, 2544–2556. [Google Scholar] [CrossRef]
- Cohen, S.; Menut, S.; Mechali, M. Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol. Cell. Biol. 1999, 19, 6682–6689. [Google Scholar] [CrossRef]
- Cohen, S.; Mechali, M. Formation of extrachromosomal circles from telomeric DNA in Xenopus laevis. EMBO Rep. 2002, 3, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.M.; King, M.; Pizza, G.; Krueger, F.; Vergara, X.; Houseley, J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol. 2019, 17, e3000471. [Google Scholar] [CrossRef]
- Denoth-Lippuner, A.; Krzyzanowski, M.K.; Stober, C.; Barral, Y. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. Elife 2014, 3, e03790. [Google Scholar] [CrossRef]
- Ren, S.; Wu, D.; Shen, X.; Wu, Q.; Li, C.; Xiong, H.; Xiong, Z.; Gong, R.; Liu, Z.; Wang, W.; et al. Deciphering the role of extrachromosomal circular DNA in adipose stem cells from old and young donors. Stem Cell Res. Ther. 2023, 14, 341. [Google Scholar] [CrossRef]
- Shimizu, N. Gene Amplification and the Extrachromosomal Circular DNA. Genes 2021, 12, 1533. [Google Scholar] [CrossRef]
- Gresham, D.; Usaite, R.; Germann, S.M.; Lisby, M.; Botstein, D.; Regenberg, B. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc. Natl. Acad. Sci. USA 2010, 107, 18551–18556. [Google Scholar] [CrossRef]
- Mansisidor, A.; Molinar, T., Jr.; Srivastava, P.; Dartis, D.D.; Pino Delgado, A.; Blitzblau, H.G.; Klein, H.; Hochwagen, A. Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles. Mol. Cell 2018, 72, 583–593 e584. [Google Scholar] [CrossRef]
- Koo, D.H.; Molin, W.T.; Saski, C.A.; Jiang, J.; Putta, K.; Jugulam, M.; Friebe, B.; Gill, B.S. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. USA 2018, 115, 3332–3337. [Google Scholar] [CrossRef]
- Sergeeva, V.A.; Ershova, E.S.; Veiko, N.N.; Malinovskaya, E.M.; Kalyanov, A.A.; Kameneva, L.V.; Stukalov, S.V.; Dolgikh, O.A.; Konkova, M.S.; Ermakov, A.V.; et al. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response. Oxidative Med. Cell. Longev. 2017, 2017, 9515809. [Google Scholar] [CrossRef]
- Ermakov, A.V.; Konkova, M.S.; Kostyuk, S.V.; Egolina, N.A.; Efremova, L.V.; Veiko, N.N. Oxidative stress as a significant factor for development of an adaptive response in irradiated and nonirradiated human lymphocytes after inducing the bystander effect by low-dose X-radiation. Mutat. Res. 2009, 669, 155–161. [Google Scholar] [CrossRef]
- Yerlici, V.T.; Lu, M.W.; Hoge, C.R.; Miller, R.V.; Neme, R.; Khurana, J.S.; Bracht, J.R.; Landweber, L.F. Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA. Nucleic Acids Res. 2019, 47, 9741–9760. [Google Scholar] [CrossRef]
- Collins, L.V.; Hajizadeh, S.; Holme, E.; Jonsson, I.M.; Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 2004, 75, 995–1000. [Google Scholar] [CrossRef]
- Speranskii, A.I.; Kostyuk, S.V.; Kalashnikova, E.A.; Veiko, N.N. Enrichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with genomic CpG rich fragments results in increased cell production of IL-6 and TNF-a via activation of the NF-kB signaling pathway. Biomeditsinskaya Khimiya 2016, 62, 331–340. [Google Scholar] [CrossRef]
- Kostjuk, S.; Loseva, P.; Chvartatskaya, O.; Ershova, E.; Smirnova, T.; Malinovskaya, E.; Roginko, O.; Kuzmin, V.; Izhevskaia, V.; Baranova, A.; et al. Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin. Biol. Ther. 2012, 12 (Suppl. S1), S99–S111. [Google Scholar] [CrossRef]
- Hung, K.L.; Yost, K.E.; Xie, L.; Shi, Q.; Helmsauer, K.; Luebeck, J.; Schopflin, R.; Lange, J.T.; Chamorro Gonzalez, R.; Weiser, N.E.; et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 2021, 600, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.W.; Bafna, V.; Mischel, P.S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 2019, 19, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.C.; Uppalapati, M.; Ray, A. Small Circular DNAs in Human Pathology. Malays J. Med. Sci. 2014, 21, 4–18. [Google Scholar] [PubMed]
- Song, K.; Minami, J.K.; Huang, A.; Dehkordi, S.R.; Lomeli, S.H.; Luebeck, J.; Goodman, M.H.; Moriceau, G.; Krijgsman, O.; Dharanipragada, P.; et al. Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discov. 2022, 12, 1046–1069. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Li, Y.; Wang, L.; Wei, Q.; Wei, M.; Yu, T.; Zhao, L. Extrachromosomal circular DNA and their roles in cancer progression. Genes Dis. 2023, 101202. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, L.; Ruan, S.; Bi, W.; Chen, Y.; Chen, L.; Liu, Y.; Li, M.; Qiao, J.; Mao, F. CircleBase: An integrated resource and analysis platform for human eccDNAs. Nucleic Acids Res. 2022, 50, D72–D82. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gujar, A.D.; Wong, C.H.; Tjong, H.; Ngan, C.Y.; Gong, L.; Chen, Y.A.; Kim, H.; Liu, J.; Li, M.; et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 2021, 39, 694–707.E7. [Google Scholar] [CrossRef]
- Li, Z.; Qian, D. Extrachromosomal circular DNA (eccDNA): From carcinogenesis to drug resistance. Clin. Exp. Med. 2024, 24, 83. [Google Scholar] [CrossRef] [PubMed]
- deCarvalho, A.C.; Kim, H.; Poisson, L.M.; Winn, M.E.; Mueller, C.; Cherba, D.; Koeman, J.; Seth, S.; Protopopov, A.; Felicella, M.; et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 2018, 50, 708–717. [Google Scholar] [CrossRef]
- van Leen, E.; Bruckner, L.; Henssen, A.G. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat. Genet. 2022, 54, 107–114. [Google Scholar] [CrossRef]
- Nathanson, D.A.; Gini, B.; Mottahedeh, J.; Visnyei, K.; Koga, T.; Gomez, G.; Eskin, A.; Hwang, K.; Wang, J.; Masui, K.; et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014, 343, 72–76. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, L.; Cui, J.; An, Q.; Li, H.; Zhang, Z.; Sun, G.; Huang, W.; Li, Y.; Li, C.; et al. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin. Transl. Med. 2023, 13, e1393. [Google Scholar] [CrossRef]
- Koche, R.P.; Rodriguez-Fos, E.; Helmsauer, K.; Burkert, M.; MacArthur, I.C.; Maag, J.; Chamorro, R.; Munoz-Perez, N.; Puiggros, M.; Dorado Garcia, H.; et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 2020, 52, 29–34. [Google Scholar] [CrossRef]
- Nishioka, M.; Kohno, T.; Tani, M.; Yanaihara, N.; Tomizawa, Y.; Otsuka, A.; Sasaki, S.; Kobayashi, K.; Niki, T.; Maeshima, A.; et al. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc. Natl. Acad. Sci. USA 2002, 99, 12269–12274. [Google Scholar] [CrossRef]
- Yanaihara, N.; Nishioka, M.; Kohno, T.; Otsuka, A.; Okamoto, A.; Ochiai, K.; Tanaka, T.; Yokota, J. Reduced expression of MYO18B, a candidate tumor-suppressor gene on chromosome arm 22q, in ovarian cancer. Int. J. Cancer 2004, 112, 150–154. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Wang, J.; Yu, F.; Zhao, S.; Zhang, Y.; Tang, H.; Peng, Z. Metalloproteases meprin-a (MEP1A) is a prognostic biomarker and promotes proliferation and invasion of colorectal cancer. BMC Cancer 2016, 16, 383. [Google Scholar] [CrossRef]
- OuYang, H.Y.; Xu, J.; Luo, J.; Zou, R.H.; Chen, K.; Le, Y.; Zhang, Y.F.; Wei, W.; Guo, R.P.; Shi, M. MEP1A contributes to tumor progression and predicts poor clinical outcome in human hepatocellular carcinoma. Hepatology 2016, 63, 1227–1239. [Google Scholar] [CrossRef]
- Ouyang, Y.; Lu, W.; Wang, Y.; Wang, B.; Li, F.; Li, X.; Bai, Y.; Wang, Y. Integrated analysis of mRNA and extrachromosomal circular DNA profiles to identify the potential mRNA biomarkers in breast cancer. Gene 2023, 857, 147174. [Google Scholar] [CrossRef]
- Khatami, F.; Larijani, B.; Tavangar, S.M. The presence of tumor extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. Med. Hypotheses 2018, 114, 5–7. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Liang, H.; Han, L. Pioneering insights of extrachromosomal DNA (ecDNA) generation, action and its implications for cancer therapy. Int. J. Biol. Sci. 2022, 18, 4006–4025. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Liu, Y.; Guo, Z. Methods, bioinformatics tools and databases in ecDNA research: An overview. Comput. Biol. Med. 2023, 167, 107680. [Google Scholar] [CrossRef]
- Bafna, V.; Mischel, P.S. Extrachromosomal DNA in Cancer. Annu. Rev. Genom. Hum. Genet. 2022, 23, 29–52. [Google Scholar] [CrossRef]
- Fang, M.; Fang, J.; Luo, S.; Liu, K.; Yu, Q.; Yang, J.; Zhou, Y.; Li, Z.; Sun, R.; Guo, C.; et al. eccDNA-pipe: An integrated pipeline for identification, analysis and visualization of extrachromosomal circular DNA from high-throughput sequencing data. Brief. Bioinform. 2024, 25, bbae034. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Gent, D.H.; Martin, R.R. Identification of Extrachromosomal Circular DNA in Hop via Rolling Circle Amplification. Cytogenet. Genome Res. 2016, 148, 237–240. [Google Scholar] [CrossRef]
- Wu, N.; Wei, L.; Zhu, Z.; Liu, Q.; Li, K.; Mao, F.; Qiao, J.; Zhao, X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024, 15, 6–20. [Google Scholar] [CrossRef]
- Kumar, P.; Kiran, S.; Saha, S.; Su, Z.; Paulsen, T.; Chatrath, A.; Shibata, Y.; Shibata, E.; Dutta, A. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 2020, 6, eaba2489. [Google Scholar] [CrossRef]
- Rosen, J.; Lee, L.; Abnousi, A.; Chen, J.; Wen, J.; Hu, M.; Li, Y. HPTAD: A computational method to identify topologically associating domains from HiChIP and PLAC-seq datasets. Comput. Struct. Biotechnol. J. 2023, 21, 931–939. [Google Scholar] [CrossRef]
- Juric, I.; Yu, M.; Abnousi, A.; Raviram, R.; Fang, R.; Zhao, Y.; Zhang, Y.; Qiu, Y.; Yang, Y.; Li, Y.; et al. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput. Biol. 2019, 15, e1006982. [Google Scholar] [CrossRef]
- Fang, R.; Yu, M.; Li, G.; Chee, S.; Liu, T.; Schmitt, A.D.; Ren, B. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 2016, 26, 1345–1348. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Chandra, V.; Vijayanand, P.; Ay, F. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 2019, 10, 4221. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.D.; Yang, Y.; Abnousi, A.; Chen, J.; Song, M.; Jones, I.R.; Shen, Y.; Hu, M.; Li, Y. HPRep: Quantifying Reproducibility in HiChIP and PLAC-Seq Datasets. Curr. Issues Mol. Biol. 2021, 43, 1156–1170. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Cornet, L.; Hirsch-Hoffmann, M.; Zaidi, S.S.; Vanderschuren, H. Full-length sequencing of circular DNA viruses and extrachromosomal circular DNA using CIDER-Seq. Nat. Protoc. 2020, 15, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Q.; Nguyen, N.T.; Malagon-Lopez, J.; Topkar, V.V.; Aryee, M.J.; Joung, J.K. CIRCLE-seq: A highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 2017, 14, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Krijger, P.H.L.; Geeven, G.; Bianchi, V.; Hilvering, C.R.E.; de Laat, W. 4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis. Methods 2020, 170, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Karasu, N.; Sexton, T. 4C-Seq: Interrogating Chromatin Looping with Circular Chromosome Conformation Capture. Capturing Chromosome Conform. Methods Protoc. 2021, 2157, 19–34. [Google Scholar] [CrossRef]
- Peng, Y.; Song, W.; Teif, V.B.; Ovcharenko, I.; Landsman, D.; Panchenko, A.R. Detection of new pioneer transcription factors as cell-type-specific nucleosome binders. Elife 2024, 12, RP88936. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.L.; Stevens, H.; Ridge, P.G.; Johnson, S.M. Short Sequence Aligner Benchmarking for Chromatin Research. Int. J. Mol. Sci. 2023, 24, 14074. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, C.; Li, W.; Bai, X.; Zhou, X.; Xie, H.; Wen, L.; Tang, F. SMOOTH-seq: Single-cell genome sequencing of human cells on a third-generation sequencing platform. Genome Biol. 2021, 22, 195. [Google Scholar] [CrossRef] [PubMed]
- Merkulov, P.; Egorova, E.; Kirov, I. Composition and Structure of Arabidopsis thaliana Extrachromosomal Circular DNAs Revealed by Nanopore Sequencing. Plants 2023, 12, 2178. [Google Scholar] [CrossRef]
- Yang, F.; Su, W.; Chung, O.W.; Tracy, L.; Wang, L.; Ramsden, D.A.; Zhang, Z.Z.Z. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 2023, 620, 218–225. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, Y. Purification, full-length sequencing and genomic origin mapping of eccDNA. Nat. Protoc. 2023, 18, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Starling, S. Cancer genomics: ECdetect hunts extrachromosomal DNA. Nat. Rev. Genet. 2017, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, U.; Turner, K.; Luebeck, J.; Deshpande, V.; Chandraker, M.; Mischel, P.; Bafna, V. EcSeg: Semantic Segmentation of Metaphase Images Containing Extrachromosomal DNA. iScience 2019, 21, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.; Gujar, A.D.; Guthrie, M.; Kim, H.; Zhao, D.; Johnson, K.C.; Amin, S.B.; Costa, M.L.; Yu, Q.; Das, S.; et al. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discov. 2022, 12, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.Y.; Deng, Y.; Huang, X.Y.; Li, Z.Z.; Fang, G.Q.; Yang, D.; Wang, F.L.; Kang, W.; Shen, E.Z.; Song, C.Q. CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res. 2022, 32, 969–981. [Google Scholar] [CrossRef]
- Hung, K.L.; Luebeck, J.; Dehkordi, S.R.; Colon, C.I.; Li, R.; Wong, I.T.; Coruh, C.; Dharanipragada, P.; Lomeli, S.H.; Weiser, N.E.; et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat. Genet. 2022, 54, 1746–1754. [Google Scholar] [CrossRef]
Human Cancer | Sample Type | Protein-Coding Genes Found on eccDNA |
---|---|---|
Acute myeloid leukemia | HL-60 | MYC |
Breast cancer | T-47D | C16orf74, EMC8, GINS2, GSE1 |
BT-474 | ADA, ANKRD60, APCDD1L, AURKA, BMP7, C20orf85, CASS4, CBLN4, CCN5, CSTF1, CTCFL, FAM209A, FAM209B, FAM210B, GCNT7, HNF4A, KCNK15, MC3R, MTRNR2L3, NPEPL1, PABPC1L, PCK1, PI3, PKIG, PMEPA1, RAB22A, RAE1, RBM38, RIMS4, RTF2, SEMG1, SEMG2, SERINC3, SPO11, STK4, STX16, STX16-NPEPL1, TFAP2C, TOMM34, TTPAL, VAPB, WFDC12, WFDC5, ZBP1 | |
HCC1569 | C19orf12, CCNE1, ERBB2, GRB7, IKZF3, PGAP3, PLEKHF1, POP4, UQCRFS1, URI1, VSTM2B, ZNF536 | |
MCF-7 | ARFGEF2, CADPS, EYA2, INTS2, MED13, NCOA3, PREX1, RTEL1, STMN3, SULF2, SYNPR, ZMYND8 | |
Chronic myelogenous leukemia | K-562 | GPC5 |
Colorectal cancer | SW-620 | MYC |
Glioblastoma | GBM6 | C1QTNF9, EGFR, PCDH9, SPATA13 |
BT-70 | ASAP1, CYRIB | |
GBM39 | EGFR, LANCL2, MRPS17, NIPSNAP2, PSPH, SEPTIN14, ZNF713 | |
SF268 | ABCG4, ARCN1, ATP5MG, BCL9L, C1QTNF5, C2CD2L, CBL, CCDC153, CENATAC, CNTN5, CXCR5 NLRX1, DDX6, DPAGT1, FOXR1, GRIA4, HINFP, HMBS, HYOU1, IFT46, KMT2A, MCAM, MFRP, MSANTD4, NECTIN1, PDZD3, PHLDB1, RNF26, SLC37A4, THY1, TMEM25, TREH, TTC36, UPK2, USP2, VPS11 | |
CA718 | CHIC2, CPM, DDX1, GSX2, LNX1, MDM2, MYCN, PDGFRA, SLC35E3 | |
HK423 | COBL, EGFR, LANCL2, VOPP1 | |
HK359 | ANKIB1, EGFR, GSTK1, KRIT1, PTPRN2, SEPTIN14, TMEM139 | |
HK296 | ATP2B4, EGFR, ETNK2, GOLT1A, KISS1, LAX1, LRRN2, MDM4, NFASC, PIK3C2B, PLEKHA6, PPP1R15B, REN, SNRPE, SOX13, ZBED6, ZC3H11A | |
Lung cancer | H460 | MYC |
H23 | POU5F1B | |
H522 | CLPS, CLPSL1, LHFPL5 | |
HCC827 | EGFR, LANCL2, SEC61G, VOPP1 | |
EKVX | KCNN3, PPM1F, TOP3B | |
Medulloblastoma | RCMB20 | ADGRB1, ASAP1, CYRIB, FAM135B, KHDRBS3, MYC, POU5F1B, TSNARE1, ZFAT |
MB211FH | MYC | |
MDT-MB 1377 | CYRIB, MYC | |
MDT-MB 0007 | C1QL2, C2orf76, CFAP221, DBI, EN1, EPB41L5, GLI2, GPC5, INSIG2, MARCO, PTPN4, SCTR, STEAP3, TFCP2L1, TMEM37 | |
MB002 | MYC, POU5F1B | |
Ovarian cancer | OVCAR-3 | KRT18P4, SNAI1, SNRPFP1 |
Prostate cancer | PC-3 | COLEC10, FAM135B, KCNK9, RPS26P35, SAMD12, TNFRSF11B |
Renal cancer | SN12C | KANSL1 |
Sequencing-Based Approaches | |
---|---|
Approach | Description |
WGS | Capturing eccDNA with linear fragments of gDNA |
Targeted DNA seq | |
CRISPR-CATCH | Isolation of eccDNA and sequencing |
ATAC-seq | Indirect identification of certain types of eccDNA |
ChIP-seq | Identification of eccDNA located on chromatin and proteins binding to eccDNA |
PLAC-seq | Identification of interactions between eccDNA and proteins |
HiChIP | Capturing of eccDNA fragments to study chromatin organization and protein–DNA interactions |
CiDER-seq | Selective amplification of eccDNA for enhancing sensitivity of detection |
4C-seq | Detection of spatial relationships between eccDNA and chromosomal DNA |
MNase | Characterization of nucleosome positioning patterns associated with eccDNA |
Smooth-seq | Real-time detection of eccDNA at a single-cell level |
Nanopore sequencing | Real-time sequencing for rapid detection of full-length eccDNA |
Image-based approaches | |
Approach | Description |
FISH | Detection and quantification of eccDNA-related signals from chromosomal DNA |
Ecdetect | Segmentation of intact nuclei and chromosomes |
EcSeq | Automatic classification of DAPI-stained metaphase images of the chromosome |
High-resolution microscope | Visualization of eccDNA |
TEM | Ultra-high resolution imaging for the detection of small eccDNA |
SEM | Ultra-high resolution imaging for the detection of small eccDNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiakanikas, P.; Athanasopoulou, K.; Darioti, I.A.; Agiassoti, V.T.; Theocharis, S.; Scorilas, A.; Adamopoulos, P.G. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life 2024, 14, 922. https://doi.org/10.3390/life14080922
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life. 2024; 14(8):922. https://doi.org/10.3390/life14080922
Chicago/Turabian StyleTsiakanikas, Panagiotis, Konstantina Athanasopoulou, Ioanna A. Darioti, Vasiliki Taxiarchoula Agiassoti, Stamatis Theocharis, Andreas Scorilas, and Panagiotis G. Adamopoulos. 2024. "Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies" Life 14, no. 8: 922. https://doi.org/10.3390/life14080922