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Abstract: Patients with hypoplastic left heart syndrome who have been palliated with the Fontan
procedure are at risk for adverse neurodevelopmental outcomes, lower quality of life, and reduced
employability. We describe the methods (including quality assurance and quality control protocols)
and challenges of a multi-center observational ancillary study, SVRIII (Single Ventricle Reconstruction
Trial) Brain Connectome. Our original goal was to obtain advanced neuroimaging (Diffusion Tensor
Imaging and Resting-BOLD) in 140 SVR III participants and 100 healthy controls for brain connectome
analyses. Linear regression and mediation statistical methods will be used to analyze associations of
brain connectome measures with neurocognitive measures and clinical risk factors. Initial recruitment
challenges occurred that were related to difficulties with: (1) coordinating brain MRI for participants
already undergoing extensive testing in the parent study, and (2) recruiting healthy control subjects.
The COVID-19 pandemic negatively affected enrollment late in the study. Enrollment challenges
were addressed by: (1) adding additional study sites, (2) increasing the frequency of meetings with
site coordinators, and (3) developing additional healthy control recruitment strategies, including
using research registries and advertising the study to community-based groups. Technical challenges
that emerged early in the study were related to the acquisition, harmonization, and transfer of
neuroimages. These hurdles were successfully overcome with protocol modifications and frequent
site visits that involved human and synthetic phantoms.

Keywords: hypoplastic left heart syndrome; brain connectome; harmonization; multi-center
neuroimaging; phantoms

1. Introduction

In the current era of cardiothoracic surgery, children with hypoplastic left heart syn-
drome (HLHS) are more likely to survive into adulthood than in previous eras. Improved
survival has unmasked significant morbidity including neurodevelopmental and psychoso-
cial impairments that have been shown to affect school performance, employment, and
quality of life [1–10]. The etiology of neurodevelopmental impairment in single ventricle pa-
tients is multifactorial and includes reduced in utero blood flow, low birth weight, presence
of genetic abnormalities, prolonged cyanosis, congestive heart failure, unstable hemody-
namics during the perioperative period, and the need for multiple cardiac catheterization
and serial operations with prolonged hospital stays [11–16]. Modeling of neurodevelop-
mental outcomes in single ventricle patients that incorporates these risk factors is only
modestly predictive, explaining less than one third of the variation in outcomes [17,18].
Many reports have documented widespread brain abnormalities in individuals with single
ventricle throughout their lifespan, suggesting brain topology may be a potent biomarker
that can predict neurodevelopmental outcome [19–28]. However, few of these neuroimag-
ing studies have linked brain MRI findings to neurodevelopmental outcomes [24,29] or to
specific clinical factors, suggesting that new approaches for evaluating the brain in patients
with complex CHD are needed.

The Single Ventricle Reconstruction (SVR) III Brain Connectome study aims to bridge
this gap by taking full advantage of methodological and conceptual developments showing
that the human brain is intrinsically organized into large-scale, coherent brain networks
(topology) that can be understood using methods such as graph theory analysis [24,30–36].
This study utilizes a global “systems-level” approach involving characterization of brain
network connectivity, or brain “connectome,” in SVR III study participants [30–33]. We
previously applied brain connectivity graph analysis to adolescent participants of the land-
mark Boston Circulatory Arrest Study (BCAS), in which neonates with dextro-transposition
of the great arteries (d-TGA) were randomized to two different perfusion strategies and
followed closely with serial neurodevelopmental assessments until the adolescent pe-
riod [37–40]. Our findings in the BCAS cohort demonstrated that brain connectivity/graph
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analysis could distinguish multi-domain cognitive deficits from specific neurobehavioral
phenotypes (e.g., ADHD), and also delineate specific relationships between neonatal peri-
operative variables and long-term neurocognitive outcomes in adolescents with d-TGA.
Other recent studies have described anomalous diffusion tensor-based connectome in
CHD neonates and infants in both preoperative and postoperative periods, finding distinct
patterns of structural network topology alterations [41–45]. Recent literature also suggests
that genetic factors might impact the structural connectome in CHD [43]. However, there
remains a dearth of brain connectomic analyses in pediatric/adolescent CHD. Therefore,
we anticipate that applying brain connectivity analysis to the SVR cohort will lead to
new insights into understanding the relationships between clinical risk factors and cogni-
tive/behavioral outcomes in children with HLHS and other related single right ventricle
cardiac malformations. Based on our prior brain DTI connectome in TGA patients, we
hypothesized that the SVRIII patients would have reduced global efficiency, increased
modularity, and increased small-worldness compared to controls [46].

Here, we present the study design for the NHLBI-funded Pediatric Heart Network
(PHN) SVRIII Brain Connectome study, which has finished enrollment and data collection.
We discuss our experience with recruitment and technical challenges and our implementa-
tion of solutions that resulted in meeting our adjusted enrollment goals approximately one
year after the completion of the parent study (during the COVID-19 pandemic) [47]. We
also present our plans for final data processing and final statistical analysis.

2. Materials and Methods
2.1. Study Design and Funding

The NHLBI-funded PHN SVR III study, “Long-term Outcomes of Children with
HLHS and the Impact of Norwood Shunt Type,” is a prospective follow-up study of an
existing cohort of children with HLHS and other single RV anomalies who were enrolled as
newborns in a randomized clinical trial of the Norwood procedure with a modified Blalock-
Taussig-Thomas shunt (MBTTS) versus a right ventricular-to-pulmonary artery shunt
(RVPAS). The SVR III study was designed to determine whether the shunt assignment at the
time of the Norwood procedure is associated with cardiac function, transplant-free survival,
exercise function, and neurodevelopmental outcomes at ages 10 to 12 years. Transplant-free
survivors of the original SVR trial were invited to participate in the multidisciplinary
evaluation, including performance of a cardiac MRI, echocardiogram, exercise testing, and
neurocognitive evaluations (Table 1). In the ancillary Brain Connectome Study to the SVR
III study, selected SVR sites added a brain imaging component to the standard follow-up
testing in the parent SVR III study. Specifically, we compared findings in SVR participants
using brain imaging in concert with a complete neurodevelopmental battery and clinical
information collected through the SVR III study to findings in healthy controls.

Table 1. SVRIII Study procedures: schematic showing the parent SVRIII study procedures that were
prioritized before ancillary study procedures (brain MRI).

8AM 9AM 10AM 11AM 12PM 1PM 2PM 3PM 4PM

Day 1 Ramped Cycle Exercise Test Cardiac MRI Lunch Echo

Day 2 Neurodevelopmental Testing Lunch ND Testing (Cont’d) Brain MRI

We will pursue the mapping of brain connectivity using two state-of-the-art neu-
roimaging techniques: (1) mapping structural connectivity using diffusion tensor imaging
(DTI) to assess white matter tracts; [34,38,48–50] and (2) mapping functional connectivity
using large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the functional
MRI or “resting” BOLD signal that is temporally correlated across functionally related
regions of the brain [51–55]. These data will be analyzed using cutting-edge quantitative
complex network construction with graph theory to construct a brain connectome to char-
acterize brain network topology [30–33]. By combining these innovative techniques within
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the setting of the PHN SVR long-term follow-up study (SVR III), our specific aims are: 1. to
characterize the global brain network topology of the SVR III cohort compare to healthy
referents; 2. to determine which neurocognitive and behavioral outcomes are predicted by
global brain network topology; 3. to determine which patient factors (e.g., birth weight,
gestational age, and maternal education) and medical factors (e.g., intraoperative tech-
niques during the Norwood procedure, hemodynamic complications, types and a number
of interventions, and measures of global morbidity) predict global brain network topology;
and 4. to precisely characterize inter-relationships between global brain network topology,
patient/medical factors, and adverse neurocognitive/behavioral outcomes and quality
of life.

2.2. Screening, Consent, and Entry Criteria for Parent and Ancillary Study

The SVR III study subjects were initially eligible to participate in the Brain Connectome
Study at 10 to 12 years of age. Over the course of the study period, the participation window
was extended to age 12.5 years, and then, ultimately, to any age reached by a participant
by the close of the study in September 2020, when the oldest SVR subject was 15 years
of age. The Principal Investigator at each site, their designees, and the study coordinator
were responsible for participant recruitment into the ancillary study. All SVR III subjects
were contacted to assess vital status. The transplant-free survivors were approached to
participate in the ancillary study at in-person assessment SVR III study visits. SVR Trial
subjects who underwent cardiac transplantation or biventricular conversion were excluded.
The inclusion criteria were transplant-free survivors of the SVR cohort. The exclusion
criteria included: MRI contraindication (i.e., claustrophobia, braces, metal screen failure).

2.3. Sites, Participants and Imaging Acquisition Protocol

PHN sites with more than ten eligible SVR III participants were initially invited for
site participation in the SVR III Brain Connectome study. In addition, each site was asked to
complete a detailed MRI questionnaire related to 3T neuro scanner capabilities (including
vendor type, ability to run resting BOLD, 45 direction isotropic DTI, and research capacity
for running a special customized multiband DTI-256 direction). We also queried for avail-
ability and interest of neuro-based personnel, including a neuroradiologist, MR physicist,
and MR technologists’ presence and capability. We developed an imaging protocol in which
at least one of the connectome sequences at 3T (42-direction DTI) could be performed at all
potential PHN recruiting sites. We also developed the rest of the neuroimaging protocol to
facilitate the acquisition of multi-band multi-shell HARDI diffusion imaging and multiband
resting state, in addition to volumetric T2 and T1 3D imaging, which was in alignment
with the Adolescent Brain Cognitive Development (ABCD) study [56], accounting for the
variability of the gradient strengths of the scanner (Supplementary Table S1).

2.4. Multicenter MRI Quality Assurance and Quality Control (QA/QC)

For this study, we used Siemens and Phillips 3T MRI systems. We conducted a method-
ological PHN inter-site reliability study to assure that the studies performed on these
systems could be compared [57,58]. As proof of concept, we analyzed human multimodal
data (resting BOLD, DTI, and MR spectroscopy) from five PHN sites with standardized
protocols for Siemens and Philips units on a small sample of control subjects who were
age-matched to the SVR subjects (n = 10). The temporal signal-to-noise ratio (tSNR) of the
Siemens and Philips resting BOLD data was comparable (Siemens: average SNR = 169;
Philips: average tSNR = 161; 4 mm × 4 mm × 4 mm voxel size). We also found that the DTI
data had a similar distribution of FA values for the two vendors. In addition, we noted that
the quality of spectra showed no significant differences in line width, SNR, or reliability of
measurements, suggesting the feasibility of high-quality multi-site MRS data. These data
suggested that reliable neuroimaging data could be obtained across the PHN sites, and
these metrics were integrated into our QA/QC protocol.
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Proper QA/QC procedures are complex multi-step processes that involve both phan-
tom and subject data. We adapted a QA procedure [59] used by multiple NIH-funded
multicenter studies including the Human Brain Connectome, TRACK-TBI, Pediatric Brain
Tumor Consortium (PBTC), and the ABCD study [60–68]. For our prospective QA plan,
each site scanned at least two phantoms (ACR-anatomic and f-BIRN-functional) for QA
purposes on months that a subject was scanned (approximately once/month/site). While
our initial plan was to obtain diffusion QA data using the NIST phantom, we utilized a
synthetic HARDI phantom, given the single band and multiple band/multi-shell protocol
that was incorporated into the study [69–71]. For the DTI phantom and human stud-
ies, we evaluated multiple values: (1) SNR at the center and periphery of the phantom;
(2) comparison of image distortion in phase-encoding direction between EPI and spin
echo image; and (3) comparison of image distortion between nonzero b-value DWI and
b = 0 image caused by gradient encoding directions. From this, we corrected for image
distortion in EPI readout caused by B0 inhomogeneity, distortion caused by eddy cur-
rents induced by diffusion-encoding gradients, uniformity of the b-value along different
diffusion-encoding directions, and correct calibration for accurate diffusivity measurements.
For resting state data and the fBIRN phantom, we used Weisskoff plots and guidelines of
the fBIRN research group, including average tSNR [72–76]. For anatomic quality (T1/T2
weighted), we incorporated metrics [59] including geometry accuracy, high contrast spatial
resolution, the accuracy of slice thickness and position, image intensity homogeneity, and
low-contrast object detectability. The QA/QC procedure was used to establish compatibility
of data from different sites and long-term reproducibility of the results at each location.

2.5. Data Collection, Data Transfer and Participant Data Acceptance

Data were acquired from multiple sites from two different scanner platforms, which
are likely to produce different sample means as well as different variances [56]. Imaging
data transfer from the study sites was performed through a secure virtual private network
(VPN) login into our network at Pediatric Imaging Research Center at Children’s Hospital
of Pittsburgh, contained within the University of Pittsburgh secure firewall. File transfer
used an encrypted secured file transfer protocol (SFTP), with user authentication ensuring
only approved users can connect to our portal. The upload portal was developed at
the University of Pittsburgh, built on the XNAT framework. XNAT is an open-source
informatics platform developed at Washington University specifically for high throughput
management and sharing imaging data, including connectivity data [65,77–79]. This
platform is highly extensible and contains a robust network security foundation. The
portal has study-specific user management, which allows the site-specific users to input
de-identified participant and protocol information and images in native DICOM format,
to enforce uniformity across sites. Furthermore, the XNAT framework provides for the
incorporation of advanced processing pipelines, which allows each study site to perform
data integrity checks and quality assurance before sharing the data. Long-term data storage
was provided by servers at the University of Pittsburgh running a dedicated study-specific
PostgreSQL database and built-in parity against data loss. The PHN clinical data from the
SVR studies in the form of SAS datasets (export files) were transferred from the PHN Data
Coordinating Center for analysis with the imaging findings using a secure FTP site.

2.6. Measures of Neurodevelopmental and Psychosocial Functioning

Standardized psychological assessments were performed by a psychologist and/or a
supervised psychometrician at each site (Table 2). These measures were obtained in the SVR
participants as part of the parent study [47] (Figure 1 and were explicitly included in our
protocol for assessing the healthy controls. Comprehensive assessment of all domains of
function including intellectual, language, visual spatial/nonverbal, learning/memory, fine
motor, attention/executive, and social skills (Table 2). Caregivers completed standardized
parent report measures for attention/executive, social-emotional, behavior, adaptive, and
quality of life (Table 2). Our study includes quality of life questionnaires and Behavior
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Rating Inventory of Executive Functioning (BRIEF), which provides parent reporting of
the child’s experience in everyday life activities as potential outcome measures (Table 2).
The testing required approximately five hours. Breaks were provided for snacks/lunch as
appropriate for the participant. Evaluations occurred at least six weeks after any hospital-
ization. The psychologist or psychometrician at each site was blinded to the shunt type at
the time of the Norwood procedure.

Table 2. Neurocognitive Battery for SVR III Subject and Healthy Controls.

Domain Instruments and Subtests Completion Time-
Child

Completion Time-
Respondent

Intelligence

Wechsler Intelligence Scale for Children-V
(WISC-V; original test kit)

Block design
Similarities

Matrix reasoning
Digit span forward

Backward
Sequencing

Coding
Vocabulary

Figure weights
Visual puzzles
Picture span

Symbol search

65–80 min

Math

Wechsler Individual Achievement Tests III
(WIAT-III)

Math problem solving
Numerical operations

30 min

Reading

Wechsler Individual Achievement Tests III
(WIAT-III)

Word reading
Reading comprehension
Pseudoword decoding

32 min

Language
NEPSY-II

Comprehension of instructions
Oromotor sequence

13 min

Executive Function and
Attention

Delis-Kaplan Executive Function System
(DKEFS)

Tower
Trail making (all 5 Trials)

Verbal fluency (Letter, Category, Switching) Behavior Rating Inventory of
Executive

Functioning (BRIEF)
Parent and teacher report
Conners’ III ADHD Index
Parent and teacher report

35 min 15 min
8 min

Visual and Perceptual
Skills

Beery Developmental Test of Visual Visual-
Motor Integration (VMI-6)

Beery VMI
Visual perception

8 min

Fine Motor Lafayette Grooved Pegboard (use
administration instructions from manual record raw time in seconds) 5 min

Memory

Wide Range Assessment of Memory and
Learning (WRAML-2)

Story memory, Story memory recall, Story recognition; Design memory,
Design recognition; Verbal learning, Verbal Learning recall, Verbal learning
recognition; Picture memory, Picture memory recognition; Finger windows;

Number letter; Verbal working memory; Symbolic working memory;
Sentence memory

11 min 7 min

Social Skills
NEPSY-II

Theory of Mind and Affect Recognition Autism Spectrum Rating Scale
(ASRS) Parent report

Behavior
Behavioral Assessment System for Children

– Second Edition (BASC-2)
Parent and teacher report

20 min

Quality of Life PedsQL Generic and Cardiac Modules Parent and Child reports 15 min

Adaptive Function Adaptive Behavior Assessment System—Third Edition (ABAS-3)
Parent report 20 min

Total Time Required 199–214 min 85 min
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2.7. Planned Imaging Post-Processing

Standard 45 direction-DTI, Resting BOLD data, and MB-DTI (Figure 2) will be analyzed
separately for the generation of graph data.

DTI Pre-processing. All images will be corrected for motion, eddy current, and slice
dropout artifacts using standard routines in FSL (FMRIB, Oxford UK). DTI data will be
segmented into 90 cortical regions by applying the Brain Suite Custom Atlas [80–87] to
produce cortical surface meshes and tissue classification maps.

Standard DTI. DTI metrics—including fractional anisotropy (FA), signal intensity with-
out diffusion weighting (S0), and direction of the principal eigenvector—will be computed
for each voxel. Deterministic tractography will be performed using in-house software
written in Interactive Data Language (IDL) (http://www.ittvis.com, Boulder, CO, USA;
accessed 22 June 2022). Streamlines will be computed from each white matter voxel (de-
termined as all voxels with FA > 0.25) in both directions. Stopping thresholds for the
tractography will be turning angle > 45 degrees or FA < 0.25.

MB-DTI. For the MB-DTI data, due to the large number of directions, the orientation
distribution function (ODF) will be computed according to routines in DSI Studio [88–90].
Tractography will be performed according to routines in DSI Studio. The ODF allows
for the detection of crossing fiber tracts within a voxel and thus allows a more accurate
reconstruction of fiber tracts than is possible with standard DTI. A more accurate metric of
anisotropy generalized fractional anisotropy (GFA) will also be computed. Streamlines will
be computed from each white matter voxel (GFA > 0.25) and stopping thresholds will be
turning angle > 45 degrees or GFA < 0.25.

Graph Construction DTI. Weighted graphs (estimate of connection strength between
two regions) will be computed based on: (1) the total number of streamlines beginning and
ending at two regions; and (2) the average FA or GFA value of all streamlines beginning
and ending at two regions.

http://www.ittvis.com
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Figure 2. Methodology for Structural and Functional Network Topology Analysis. A flow diagram
for the construction of WM structural and functional networks from DTI, Resting BOLD and multi-
band DTI including registration, segmentation, generation of WM fiber tracts using deterministic
tractography, generation of adjacency matrix and nodes, and visualization of connectivity with
spring-board and circle diagrams.

Resting BOLD. The Resting BOLD data will be processed through a robust motion
detection and correction pipeline described by Powers et al., [91,92] which involves volume
censoring according to motion and intensity metrics, low-pass filtering, and regressing out
of nuisance variables including motion parameters and global signal. The Resting BOLD
data will also be parcellated using the Brain Suite atlas into 90 cortical regions. Correlation
matrices will be constructed with each matrix element equal to the cross-correlation of the
fMRI time series averaged in each of two regions.

Graph construction (Resting BOLD). Binary unweighted graphs will be computed based
on thresholding the correlation matrices at various values of cost ranging from 0.05 to 0.45 [93].

Graph analysis. Graph metrics (global efficiency, modularity, and transitivity) [94]
will be computed via the C++ modules available from the Brain Connectivity Toolbox
(BCT; Indiana University) (For further details, see the BCT documentation at https://sites.
google.com/site/bctnet/and ref. [95]). Small-worldness, another graph metric, will be
computed using routines in IDL. For Resting BOLD (Blood Oxygen Level Dependent),
values of the graph theory metrics will be averaged over all values of cost [96]. At the nodal
level, participation coefficient and clustering coefficient will be computed using the BCT.

https://sites.google.com/site/bctnet/and
https://sites.google.com/site/bctnet/and
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A spring load diagram and circle connectivity diagram will be used for visualization of
relationships [97,98].

2.8. Planned Brain Connectome Outcome Measures

Primary outcome measure will include global graph measures derived from the
42-direction DTI data including global efficiency (primary) with modularity, transitivity,
and small-worldness measured secondarily. Additionally, sub-network (anatomically
defined) and nodal level (degree, participation coefficient, nodal efficiency, clustering
coefficient) will be measured secondarily depending on the global metrics previously
delineated. A similar approach will be applied to other imaging modalities collected
(Resting BOLD, HARDI, etc.).

2.9. Planned Statistical Analysis

Using a standard generalized linear model, we will compare global metrics (efficiency,
transitivity, modularity, and small-worldness) and sub-network/nodal metrics (clustering
coefficient and participation coefficient) between the SVR III and control cases.

Analysis of indirect effects: To precisely determine the effect of single ventricle diag-
nosis on network topology (and ultimately on neurocognitive outcome), we will perform a
statistical mediation analysis, as we have previously defined [99]. In these analyses, single
ventricle diagnosis status (verses control) will be the independent variable, neurocognitive
outcome will be the dependent variable, and the graph metrics will be mediating variables
(with the same covariates as the standard generalized linear model above). Bootstrap-
ping (25,000 iterations, resampling with replacement) will be used to test for statistical
significance, as the indirect effect (which is the product of two regression parameters)
has a well-known non-normal distribution. Bias-corrected and accelerated confidence
intervals [100], shown to provide accurate control with optimal power for mediation anal-
yses [101], will be computed. Since many mediating variables will be tested, the false
discovery rate (FDR) method [102] will be used to control for false positives at q < 0.05.
Additionally, to assess the possible effects of perioperative variables, further analyses will
be conducted on the cohort of SVR participants with perioperative variables, the indepen-
dent variable, neurocognitive outcome of the dependent variable, and graph metrics of
the mediating variables. These analyses will be performed on a global basis and only at a
sub-network/nodal level as a post hoc analysis. Correlation of structure and function will
be estimated with: (1) visual correlations of nodal mapping; and (2) using AAL template
anatomically-defined seed region processing of resting state fMRI and DTI data.

Covariate Measures (Independent Risk Factors): The unique nature of this large inception
SVR III cohort presents the opportunity to examine the association between the clinical
events that commonly occur in this population in relation to brain connectivity and neu-
rodevelopment, as we did for the BCAS trial. Covariates that are available from the SVR
trial and SVR follow-up studies (SVR II, III) include extensive pre-operative, peri-operative
and annual follow-up measurements. We will prioritize those variables that are known to
be associated with poor neurodevelopmental outcomes (Table 3).

Power analysis: We calculated the required sample size for 80% power and the
two-sided α = 0.05 to detect effect sizes estimated from the graph theory data on DTI
in the BCAS (preliminary data) in relation to the global metrics for aims 1–3 using G*Power
3.1.3. Effect sizes f2 were computed as (variance explained by effect)/(error variance), con-
verted to effect size f for aim 1 as the desired input in G*Power 3.1.3. Effect sizes of f2 < 0.15
(f < 0.39) are considered to be small effects. Aim 1: The effect sizes for differences be-
tween SVR participants and controls are: (a) global efficiency: effect size f = 0.29, requires
a sample size of 97 subjects total for 0.8 power; (b) modularity: effect size f2 = 0.15 re-
quires a sample size of 54 subjects total for 0.8 power; and (c) small worldness: an effect
size of f = 0.34 requires a sample size of 69 subjects for 0.8 power. Aim 2: The effect size
for the correlation between full-scale IQ and global efficiency (combined SVR/control
group) is estimated to be f2 = 0.093, requiring a sample size of 87 subjects for 0.8 power.
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A similar given power was detected for other domains (visual spatial, memory, executive
function), which were also tested in the BCAS study. Aim 3: The effect size for the correla-
tion between total cooling time and global efficiency in the SVR cohort is estimated to be
f2 = 0.096, requiring a sample size of 84 subjects for 0.8 power and p = 0.05. These cal-
culations demonstrate that the required sample size to detect effect sizes similar to those
observed in the BCAS with 80% power are all smaller than our initially targeted sample
size of 140 SVR subjects and 100 referents. Furthermore, the study is well-powered to detect
small effect sizes for our study hypotheses. From this power analysis, we determined that
a sample size of at least 100 SVR subjects with analyzable MRI data would be ideal. Given
that we expected a certain portion of SVR participants to fail the imaging procedures (based
on non-compliance and too much motion artifact), we decided to initially target approx-
imately 140 total SVR participants, expecting 1/3 of data points to be unanalyzable. We
also initially targeted 100 age-matched controls to be recruited from the same sites. There-
fore, our initial planned targeted enrollment for the study was approximately 240 subjects
(SVR + Controls).

Table 3. Examples of longitudinal clinical risk factors in the SVR Trial Dataset [47].

Pre-Stage I and
Demographics

Stage I, II, III
Hospitalization Medication Use Procedural History Data

• prenatal diagnosis
• genetic syndrome
• birth weight
• gestational age
• intubation
• socioeconomic status
• maternal education

• mechanical ventilation
time

• cardiopulmonary bypass
and deep hypothermic
circulatory
arrest/regional cerebral
perfusion times

• ICU/hospital length of
stay

• delayed sternal closure
• use of extracorporeal

membrane oxygenation
(ECMO)

• unplanned
surgical/catheter
interventions

• treatment with heart
failure medications
(angiotensin-converting
enzyme inhibitors)

• angiotensin receptor
blockers, beta blockers

• treatment for pulmonary
hypertension

use of anticoagulation

• unanticipated
interventions
(catheterization or
surgery, such as
pacemaker implantation,
stent implantation,
Fontan revision)

• lack of Fontan
completion

2.10. Initial Recruitment Challenges

In this ancillary study of the longitudinal SVRIII parent study, we aimed to add a
brain imaging component in addition to the parent’s study multidisciplinary evaluation
including the performance of a cardiac MRI study, echocardiogram, exercise testing, and
neurocognitive evaluations over two full days (Table 1). To avoid interference with the
parent study, we performed the brain MRI component after the measures required for
the parent study. However, while most participants completed the full program for the
parent study, some participants and parents deemed the extra allotted time for the MRI too
taxing, especially after the neurocognitive assessment. While incentives and extra travel
accommodations were available to reschedule the brain MRI, some participants were lost
to this ancillary study who were enrolled in the main SVR study.

To counteract participant fatigue and avoid losing participants, we devised a strong
coordinator-driven explanation of the study, and direct benefits to the participants and
indirect benefits to the community in general to increase interest. We also increased the
number of meetings with direct key study personnel (study investigators, e.g., doctors, co-
ordinators, MRI specialists) to enhance successful participant recruitment for this ancillary
study. We devised a bi-monthly call between coordinators of all sites to discuss challenges
and help each other identify various successful recruitment strategies. These twice-monthly
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multi-site coordinator calls were extremely well-attended and allowed communication
between sites regarding recruitment difficulties, addressing MRI safety and screening is-
sues, and reviewing case report forms and protocol revisions. Strategies to recruit healthy
controls were expanded at multiple sites to include the use of clinical translational research
registries, pediatric clinics seeing healthy patients, and community sites (schools, churches,
and special neighborhoods). Of note, ADHD is more prevalent in the HLHS population,
and our neuroimaging protocol was designed to maximize data acquisition but minimize
scanner time. We also increased the number of enrolling sites to assist with the enrollment
of both SVR and control subjects.

2.11. Initial Technical Challenges

Some of the initial technical challenges of the study were related to imaging acquisition,
imaging harmonization, and data transfer/storage. With regard to image acquisition, there
were challenges to the acquisition of multi-band (MB) BOLD and HARDI scans (Figure 3.
Many of the errors were operator errors. Both MB scans require a reference scan to be
acquired prior to running the main body of sequences for purposes of reconstruction.
Hence, running the main body of sequences without first running the reference scan was a
common mistake. A related mistake was copying scan parameters from BOLD images or
using the BOLD reference image for HARDI sequences, which have different image and
slice resolutions, resulting in lower resolution HARDI images and an unusable data set.
Another common mistake was prescribing an inadequately-sized shim box, resulting in
distorted HARDI images. Less frequent but still encountered was the failure to turn on
coil elements, leading to images with low SNR. Lastly, in a few cases, fat saturation bands,
used to estimate multiband coverage by some sites, were left on, leading to images with a
swath of HARDI image slices with suppressed signal. These errors were documented in
a technical manual and information was disseminated to all sites to prevent these errors
from recurring. In addition, frequent site visits were conducted to provide education about
these issues.

With regard to imaging harmonization, given the anticipated scanner variance from
using two different vendor scanners, QA/QC procedures include a complex multi-step
harmonization process that involves: (1) development and surveillance of a standard-
ized neuroimaging protocol across sites; (2) prospective ongoing synthetic and human
phantom studies to provide cross-calibration across scanner; and (3) retrospective or sta-
tistical harmonization of human subject neuroimaging data, knowing that inter-scanner
variation will still occur despite the implementation of (1) and (2). To address some of
these issues, we increased the number of both synthetic and human phantom data (a total
of five human phantoms and two synthetic phantoms scanned three times) (Figure 4).
We specifically introduced the use of a HARDI phantom, given the data that were being
collected in the study, knowing that diffusion imaging tends to have the greatest inter-
scanner variance even after protocol matching. We currently have a database of greater
than 100 synthetic and single human phantom HARDI diffusion tensor data on PHN 3T
MRI scanners (Siemens/Phillips vendors). We have recently developed a new pipeline that
incorporates both synthetic phantom and human individual subject-specific template/tract
generation via a semi-automated approach. This dataset will allow for future analyses that
can directly estimate the effect of scanner type. For diffusion MRI, our synthetic phantom
simulates various axonal configurations including varying density, fiber crossing, etc., con-
structed from textile “taxons” of similar diameter to actual axons. By scanning the phantom
repeatedly across sites, estimates may be obtained for within-site and across-site variability,
and these estimates may be incorporated into the final analysis. However, this approach is
limited by the type of diffusion metrics that can be estimated using the phantom, such as
voxelwise fractional anisotropy or mean diffusivity, and is unavailable if more advanced
diffusion metrics (e.g., along-tract FA/MD values derived from tractography, estimates of
myelin water fraction, graph analysis parameters, etc.) are desired that cannot be computed
from the phantom. For these more advanced metrics, we will be able to utilize our human
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phantoms, which are scanned repeatedly at each site. Again, these data will yield estimates
of within- and across-site variability for each desired parameter, which can be incorporated
into the final analysis.
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pipeline to generate tract-specific information to estimate inter-scanner variance and then applied
this to the in vivo analysis. Bottom-left: FA measurements of taxon blocks from seven PHN sites.
The results show a reduced variability in the calibrated FA in the corrected scan (blue double line)
compared to the uncorrected scan (blue dotted line). Bottom-right: along-tract FA analysis of an
individual human phantom across multiple sites. The tract shown is the left SLF showing portions of
tract that are more sensitive to scanner variability (blue arrows).

With regard to image transfer, some of the sites were within secure hospital firewalls,
while other sites were within pure research imaging environments. To address the vari-
ability in firewalls and ability to transfer de-identified neuroimaging data, we set up our
study database using the open-source neuroimaging specific framework XNAT. We then
customized a secure, externally accessible portal on our University of Pittsburgh domain
with standardized forms for demographics and data entry. Our protocol provided two op-
tions for each site to upload imaging data: (A) directly to our XNAT database, accessible
via the web portal; and (B) via an sFTP transfer into a local server behind our firewall.
Option A was the preferred method, as images were directly archived into our database
and linked to the appropriate subject data. We required sites to anonymize the studies
prior to uploading (regardless of upload method), and our XNAT server performed a sec-
ondary safety-net anonymization prior to archiving in case any remaining personal health
information were present in the DICOM headers. At time of development, the upload
portal required a Java plugin to upload DICOM studies. Due to varying internet security
measures at each site, some of the clinical sites were restricted from using a Java plugin. In
these instances, if IT support was not provided to implement a white-list exception to this
plugin, sites were unable to upload the images via this method. Subject forms (including
consent, demographics, and behavioral testing) were still entered here, however, as no
plugin was necessary. Therefore, option B was presented as an alternative to image transfer.
Via option B, DICOM studies were uploaded into our local server, and our own database
manager archived it in the XNAT database. This method was used solely on a need-basis,
as it required an additional step for our coordinating site, and sites were required to receive



Diagnostics 2023, 13, 1604 14 of 21

University of Pittsburgh guest accounts with two-factor authentication (2FA), which can be
a technical challenge for some users. Finally, if a site was unable to use methods A or B
due to technical, security, or personnel difficulties, we requested that physical copies of the
anonymized images be sent via secure courier to our facility for archival by our database
manager. Updates to our technical protocol and frequent site visits to troubleshoot these
image transfer issues helped with developing a robust image transfer process.

2.12. Timeline and Impact of COVID-19 Pandemic

The first participant in the SVRIII Brain Connectome study was enrolled on April 6,
2016, nine months after the first study participant was enrolled in the parent SVR III study.
Planned enrollment was predicted to last until approximately April 2020 (4 years). We
prolonged the extension of this ancillary study after the parent study finished enrolling
in September 2019 to increase study participation up until January 2022. Importantly, the
COVID-19 pandemic prevented the completion of in-person evaluations, more common
over the summer, between March 2020 and August 2020 at most sites (Figures 1 and 5–7.
The SVRIII Brain Connectome study, which finished enrolling in January of 2022, enrolled
125 SVRIII participants (116 analyzable scans) and 93 control participants (89 analyzable
scans). From our power analysis (see power analysis section), we determined that a sample
size of at least 100 analyzable SVR subjects would be ideal. As such, the final enrollment
number of n = 218 subjects did achieve our goal.
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3. Results and Discussion

The SVRIII Brain Connectome study will be the first to validate connectome neu-
roimaging biomarkers to prognosticate outcomes in early adolescent HLHS patients. It
leverages a rich longitudinal dataset of HLHS patients collected as part of the parent
study. The SVRIII Brain Connectome study will not only help to elucidate the impact of
complex CHD on brain development, but also the manner in which a developing neural
architecture—connectome—gives rise to cognitive-behavioral phenotypes in the SVRIII
longitudinal cohort. The data generated will allow us to determine whether brain network
topology can serve as a biomarker for specific behavioral and neuropsychiatric phenotypic
deficits and whether peri-operative and patient factors are associated with the develop-
ment of specific brain network topology. The results of these studies will provide the
basis for future predictive modeling, and ultimately, targeted interventions to improve
neurodevelopmental outcomes of HLHS patients.

Our study overcame several obstacles, as described in detail above. Initial lagging
recruitment was successfully addressed by multiple approaches, including addition of
recruiting sites and frequent multi-site coordinator calls to maintain enthusiasm and brain-
storm about recruiting techniques. Technical challenges that emerged early in the study
were related to neuroimaging acquisition, harmonization and transfer. We responded to
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these challenges with modification of the study protocol and frequent site visits, which
involved traveling human and synthetic phantoms. A specific challenge of multi-site MRI
studies is harmonization of MRI data across different sites and scanner platforms. Between
different MRI vendors (e.g., Philips, Siemens, GE), the same apparent MRI pulse sequence
(e.g., identical parameters are entered at the console) is quite often variable in practice
due to RF pulse shape, diffusion-encoding gradient (e.g., amplitudes and duration can be
vendor distinct even for the identical “b-value” entered at the console), and bandwidth
in slice-select direction. For the same MRI vendor but a different scanner platform (e.g.,
Siemens Skyra vs. Siemens Prisma), the actual pulse sequence is often different due to dif-
ferent hardware specifications between the two platforms (e.g., maximum gradient strength,
slew rate, RF power, etc.), as the actual pulse sequence run is optimized dependent on the
available hardware.

We have recently developed multiple retrospective harmonization approaches that
can eventually be applied to this dataset, if needed. For example, if the number of subjects
per site is adequate and the SVR III participant/control ratio is approximately equal
across sites, data may be analyzed separately for each site and the final result combined
afterwards, with negligible loss of statistical power. We have previously used this approach
in a two-site study comparing DTI analyses (graph analysis and voxelwise) between
neonates with CHD and healthy controls [45]. Data were analyzed separately to estimate
the between-subject variance separately for each platform, and site-specific estimates were
then combined to perform an aggregate analysis (with scanner platform incorporated as
a nuisance parameter). Another retrospective neuroimaging harmonization approach is
the empirical Bayes method (COMBAT). If the total sample size is sufficiently large, it is
possible to estimate a (site-independent) prior distribution from the data itself. Site-specific
correction factors are then able to be estimated and applied to the data. The final analysis is
performed using the combined, harmonized data. We have recently successfully applied
this COMBAT technique to a four-center DTI dataset of 763 neonates with congenital heart
disease [103].

4. Conclusions

The SVR III Brain Connectome study leverages the PHN SVR III study, adding brain
MRI and the inclusion of healthy controls to undergo neurocognitive evaluation and brain
MRI to understand not only the basis of important brain-behavior phenotypes that are
present in single ventricle patients, but also the modifiable and non-modifiable longitudinal
risk factors that predict these relationships. Our study will provide further validation
of brain connectome metrics about neurocognitive and neurobehavioral outcomes and
essential clinical risk factors that are associated with poor brain health outcomes in pedi-
atric neurodevelopmental disorders. Since this was a multi-center brain imaging study,
harmonization was prioritized with initial protocol matching, use of human/synthetic
phantoms and development of novel retrospective neuroimaging techniques. Through the
conduct of this study, we learned about some of the challenges and solutions related to
adding neuroimaging ancillary procedures to a parent study design. Analyses will eluci-
date not only the impact of single ventricle heart disease on brain development, but also
the relationships between the human connectome and cognitive-behavioral phenotypes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13091604/s1, Table S1: SVRIII Brain Connectome
Protocol: Harmonized Parameters for Siemens and Phillips 3T MRI.
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