Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI Acquisitions
2.3. Image Preparation
2.3.1. Extraction of the Region of Interest (ROI): Left Ventricle Segmentation
Image Preprocessing for Segmentation
Concat-U-Net Segmentation
Superposition
2.3.2. Image Resizing
2.3.3. Data Augmentation
2.4. Deep Learning Classification
2.4.1. Model Description
2.4.2. Model Assessment: Training, Validation, and Test
2.4.3. Evaluation Metrics
2.4.4. Computational Setting
2.5. Evaluation of Comparative Models
2.6. Contribution Evaluation of Preprocessing, Spatial Attention Mechanism, and Depthwiseconv2D Layers
2.7. Visual Reader Analysis
2.8. Statistical Analysis
3. Results
3.1. Left Ventricle Segmentation
3.2. Performance of Models on Segmented Images
VGG16-MLP Performance
3.3. Contribution Evaluation of Preprocessing, Spatial Attention Mechanism, and Depthwiseconv2D Layers
3.3.1. Effect of Extracting the Region of Interest
3.3.2. Effect of Data Augmentation
3.3.3. Effect of Spatial Attention Mechanism
3.3.4. Effect of Depthwiseconv2D Layers
3.4. Visual Reader Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, V.; Lovato, L.; Ligabue, G. Cardiac MRI: Technical basis. La Radiol. Med. 2020, 125, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Sechtem, U.; Mahrholdt, H.; Vogelsberg, H. Cardiac magnetic resonance in myocardial disease. Heart 2007, 93, 1520–1527. [Google Scholar] [CrossRef]
- Nucifora, G.; Miani, D.; Di Chiara, A.; Piccoli, G.; Artico, J.; Puppato, M.; Slavich, G.; De Biasio, M.; Gasparini, D.; Proclemer, A. Infarct-like acute myocarditis: Relation between electrocardiographic findings and myocardial damage as assessed by cardiac magnetic resonance imaging. Clin. Cardiol. 2013, 36, 146–152. [Google Scholar] [CrossRef]
- Valevičienė, N.; Petrulionienė, Z.; Petrauskienė, B.; Lauraitis, G.; Glaveckaitė, S.; Palionis, D.; Tamošiūnas, A.; Laucevičius, A. Differentiation of acute myocarditis and acute myocardial infarction by the regional distribution of myocardial irreversible injury using cardiovascular magnetic resonance imaging. Medicina 2012, 48, 132–137. Available online: https://pubmed.ncbi.nlm.nih.gov/22588344/ (accessed on 8 November 2023). [CrossRef]
- Di Noto, T.; von Spiczak, J.; Mannil, M.; Gantert, E.; Soda, P.; Manka, R.; Alkadhi, H. Radiomics for Distinguishing Myocardial Infarction from Myocarditis at Late Gadolinium Enhancement at MRI: Comparison with Subjective Visual Analysis. Radiol. Cardiothorac. Imaging 2019, 1, e180026. [Google Scholar] [CrossRef]
- Al’Aref, S.J.; Anchouche, K.; Singh, G.; Slomka, P.J.; Kolli, K.K.; Kumar, A.; Pandey, M.; Ma-liakal, G.; van Rosendael, A.R.; Beecy, A.N.; et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur. Heart J. 2019, 40, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.; et al. Machine learning prediction in cardiovascular diseases: A meta-analysis. Sci. Rep. 2020, 10, 16057. [Google Scholar] [CrossRef] [PubMed]
- Nagavelli, U.; Samanta, D.; Chakraborty, P. Machine Learning Technology-Based Heart Disease Detection Models. J. Healthc. Eng. 2022, 2022, 7351061. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kidoh, M.; Kido, T.; Sueta, D.; Fujimoto, S.; Kumamaru, K.K.; Uetani, T.; Tanabe, Y.; Ueda, T.; Sakabe, D.; et al. Evaluation of Significant Coronary Artery Disease Based on CT Fractional Flow Reserve and Plaque Characteristics Using Random Forest Analysis in Machine Learning. Acad. Radiol. 2020, 27, 1700–1708. [Google Scholar] [CrossRef]
- Leiner, T.; Rueckert, D.; Suinesiaputra, A.; Baeßler, B.; Nezafat, R.; Išgum, I.; Young, A.A. Machine learning in cardiovascular magnetic resonance: Basic concepts and applications. J. Cardiovasc. Magn. Reson. 2019, 21, 61. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, Z.; Xin, Y.; Zhao, S.; Jiang, H.; Li, J.; Li, J.; Jiang, H. Contrast-Enhanced CT Imaging Features Combined with Clinical Factors to Predict the Efficacy and Prognosis for Transarterial Chemoembolization of Hepatocellular Carcinoma. Acad. Radiol. 2023, 30, S81–S91. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, D.; Lerch, A.; Hitziger, S.; Farkas, M.; Weiland, E.; Lemke, A.; Grimm, M.; Kubik-Huch, R.A. AI-Supported Autonomous Uterus Reconstructions: First Application in MRI Using 3D SPACE with Iterative Denoising. Acad. Radiol. 2023, 31, 1400–1409. [Google Scholar] [CrossRef]
- Henglin, M.; Stein, G.; Hushcha, P.V.; Snoek, J.; Wiltschko, A.B.; Cheng, S. Machine Learning Approaches in Cardiovascular Imaging. Circ. Cardiovasc. Imaging 2017, 10, e005614. [Google Scholar] [CrossRef]
- Shi, Y.-J.; Zhu, H.-T.; Li, X.-T.; Zhang, X.-Y.; Liu, Y.-L.; Wei, Y.-Y.; Sun, Y.-S. Histogram array and convolutional neural network of DWI for differentiating pancreatic ductal adenocarcinomas from solid pseudopapillary neoplasms and neuroendocrine neoplasms. Clin. Imaging 2023, 96, 15–22. [Google Scholar] [CrossRef]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Germain, P.; Vardazaryan, A.; Padoy, N.; Labani, A.; Roy, C.; Schindler, T.H.; El Ghannudi, S. Classification of Cardiomyopathies from MR Cine Images Using Convolutional Neural Network with Transfer Learning. Diagnostics 2021, 11, 1554. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Aimo, A.; Barison, A.; Della Latta, D.; Vergaro, G.; Aquaro, G.D.; Ripoli, A.; Emdin, M.; Chiappino, D. Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2020, 22, 84. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Wang, Y.; Ping, B.; Li, D.; Du, J.; Qin, Y.; Lu, H.; Wan, X.; Xiang, J. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: A pilot study. J. Cancer 2019, 10, 4876–4882. [Google Scholar] [CrossRef]
- Messaoud, N.H.; Mansour, A.; Aissi, M.; Ayari, R.; Frih, M.; Ben Abdallah, A.; Bedoui, M.H. Automated segmentation of multiple sclerosis lesions based on convolutional neural networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 1359–1377. [Google Scholar] [CrossRef]
- Bodapati, J.D.; Shaik, N.S.; Naralasetti, V. Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9825–9839. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, B.; Li, Y.; Zhang, J.; Li, T.; Ke, W. Image Classification of Alzheimer’s Disease Based on External-Attention Mechanism and Fully Convolutional Network. Brain Sci. 2022, 12, 319. [Google Scholar] [CrossRef]
- Li, J.; Dou, Q.; Yang, H.; Liu, J.; Fu, L.; Zhang, Y.; Zheng, L.; Zhang, D. Cervical cell multi-classification algorithm using global context information and attention mechanism. Tissue Cell 2022, 74, 101677. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Cheng, J. Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion. Biomed. Signal Process. Control. 2022, 77, 103772. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.; Khosla, A.; Chand, T.; Chouhan, D.K.; Prakash, M. Automated knee osteoarthritis severity classification using three-stage preprocessing method andVGG16architecture. Int. J. Imaging Syst. Technol. 2023, 33, 1028–1047. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Huang, Z.; Xiao, J.; Wang, X.; Li, Z.; Guo, N.; Hu, Y.; Li, X.; Wang, X. Clinical Evaluation of the Automatic Coronary Artery Disease Reporting and Data System (CAD-RADS) in Coronary Computed Tomography Angiography Using Convolutional Neural Networks. Acad. Radiol. 2022, 30, 698–706. [Google Scholar] [CrossRef]
- Mahmood, T.; Rehman, A.; Saba, T.; Nadeem, L.; Bahaj, S.A.O. Recent Advancements and Future Prospects in Active Deep Learning for Medical Image Segmentation and Classification. IEEE Access 2023, 11, 113623–113652. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Nash, W.; Drummond, T.; Birbilis, N. A review of deep learning in the study of materials degradation. npj Mater. Degrad. 2018, 2, 37. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Y.; Wu, Z.; Zhang, F.; Zheng, D.; Liu, X.; Tao, L.; Liang, Z.; Yang, Z.; Li, X.; et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Eur. J. Nucl. Mol. Imaging 2020, 48, 350–360. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, D.A.; Ferreira, F.M.F.; Peixoto, Z.M.A. Diabetic retinopathy classification using VGG16 neural network. Res. Biomed. Eng. 2022, 38, 761–772. [Google Scholar] [CrossRef]
- Sitaula, C.; Hossain, M.B. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl. Intell. 2021, 51, 2850–2863. [Google Scholar] [CrossRef]
- Bakasa, W.; Viriri, S. VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction. J. Imaging 2023, 9, 138. [Google Scholar] [CrossRef]
- Naveen, P.; Diwan, B. Pre-trained VGG-16 with CNN architecture to classify X-Rays images into normal or pneumonia. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021, Pune, India, 5–7 March 2021; pp. 102–105. [Google Scholar] [CrossRef]
- Nishio, M.; Noguchi, S.; Matsuo, H.; Murakami, T. Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: Combination of data augmentation methods. Sci. Rep. 2020, 10, 17532. [Google Scholar] [CrossRef]
- Landsmann, A.; Ruppert, C.; Borkowski, K.; Hejduk, P.; Ciritsis, A.; Wieler, J.; Rossi, C.; Boss, A. Detection of microcalcifications in photon-counting dedicated breast-CT using a deep convolutional neural network: Proof of principle. Clin. Imaging 2023, 95, 28–36. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Day, O.; Khoshgoftaar, T.M. A survey on heterogeneous transfer learning. J. Big Data 2017, 4, 29. [Google Scholar] [CrossRef]
- Athalye, C.; Arnaout, R. Domain-guided data augmentation for deep learning on medical imaging. PLoS ONE 2023, 18, e0282532. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Anguita, D.; Ghelardoni, L.; Ghio, A.; Oneto, L.; Ridella, S. The “K” in K-fold Cross Validation. In Proceedings of the 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 25–27 April 2012; pp. 441–446. [Google Scholar]
- An, F.; Li, X.; Ma, X. Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN. Oxidative Med. Cell. Longev. 2021, 2021, 6280690. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, X.; Zhou, X.; Liu, S. Parallel Structure Deep Neural Network Using CNN and RNN with an Attention Mechanism for Breast Cancer Histology Image Classification. Cancers 2019, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
Healthy | MI | Myocarditis | p Value | |
---|---|---|---|---|
Number of patients | 27 | 89 | 47 | |
Age | 42.25 (±14.62) | 58.50 (±11.57) | 29.06 (±10.19) | <0.001 |
Sex (F/M) | 8/19 | 15/74 | 6/41 | 0.433 |
Number of images | 254 | 361 | 222 | |
Total number of images | 837 |
Tested Models | Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) | p Value | Training Time (s) | Inference Time (s) |
---|---|---|---|---|---|---|---|
VGG16-MLP | 96 * | 97 * | 96 * | 96 * | - | 2372 | 0.738 |
VGG19-MLP | 86 | 85 | 86 | 86 | 0.842 | 2921 | 0.954 |
DenseNet121-MLP | 82 | 82 | 82 | 81 | 0.042 ‡ | 2450 | 0.606 |
DenseNet201-MLP | 79 | 80 | 80 | 79 | 0.042 ‡ | 2481 | 0.870 |
MobileNet-MLP | 77 | 79 | 78 | 77 | 0.043 ‡ | 2088 | 0.210 |
InceptionV3-MLP | 77 | 78 | 77 | 77 | 0.043 ‡ | 2383 | 0.510 |
InceptionResNetV2-MLP | 89 | 88 | 88 | 88 | 0.197 | 2610 | 0.984 |
VGG16-SVM | 89 | 89 | 89 | 89 | 0.593 | 2422 | 0.702 |
Classes | Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) |
---|---|---|---|---|
Myocardial infarction | 97 | 95 | 99 | 97 |
Myocarditis | 98 | 100 | 91 | 95 |
Healthy | 98 | 96 | 98 | 97 |
Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) | |
---|---|---|---|---|
VGG16-MLP | 96 | 97 | 96 | 96 |
VGG16-MLP without image segmentation | 87 | 89 | 86 | 86 |
VGG16-MLP without data augmentation | 86 | 86 | 87 | 86 |
VGG16-MLP without spatial attention mechanism | 86 | 86 | 87 | 86 |
VGG16-MLP without Depthwiseconv2D layers | 89 | 89 | 89 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Khalifa, A.; Mili, M.; Maatouk, M.; Ben Abdallah, A.; Abdellali, M.; Gaied, S.; Ben Ali, A.; Lahouel, Y.; Bedoui, M.H.; Zrig, A. Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation. Diagnostics 2025, 15, 207. https://doi.org/10.3390/diagnostics15020207
Ben Khalifa A, Mili M, Maatouk M, Ben Abdallah A, Abdellali M, Gaied S, Ben Ali A, Lahouel Y, Bedoui MH, Zrig A. Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation. Diagnostics. 2025; 15(2):207. https://doi.org/10.3390/diagnostics15020207
Chicago/Turabian StyleBen Khalifa, Amani, Manel Mili, Mezri Maatouk, Asma Ben Abdallah, Mabrouk Abdellali, Sofiene Gaied, Azza Ben Ali, Yassir Lahouel, Mohamed Hedi Bedoui, and Ahmed Zrig. 2025. "Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation" Diagnostics 15, no. 2: 207. https://doi.org/10.3390/diagnostics15020207
APA StyleBen Khalifa, A., Mili, M., Maatouk, M., Ben Abdallah, A., Abdellali, M., Gaied, S., Ben Ali, A., Lahouel, Y., Bedoui, M. H., & Zrig, A. (2025). Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation. Diagnostics, 15(2), 207. https://doi.org/10.3390/diagnostics15020207