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Abstract: Introduction: Widespread adoption of AI for medical decision-making is still
hindered due to ethical and safety-related concerns. For AI-based decision support systems
in healthcare settings, it is paramount to be reliable and trustworthy. Common deep
learning approaches, however, have the tendency towards overconfidence when faced with
unfamiliar or changing conditions. Inappropriate extrapolation beyond well-supported
scenarios may have dire consequences highlighting the importance of the reliable estimation
of local knowledge uncertainty and its communication to the end user. Materials and
Methods: While neural network ensembles (ENNs) have been heralded as a potential
solution to these issues for many years, deep learning methods, specifically modeling the
amount of knowledge, promise more principled and reliable behavior. This study compares
their reliability in clinical applications. We centered our analysis on experiments with low-
dimensional toy datasets and the exemplary case study of mortality prediction for intensive
care unit hospitalizations using Electronic Health Records (EHRs) from the MIMIC3 study.
For predictions on the EHR time series, Encoder-Only Transformer models were employed.
Knowledge uncertainty estimation is achieved with both ensemble and Spectral Normalized
Neural Gaussian Process (SNGP) variants of the common Transformer model. We designed
two datasets to test their reliability in detecting token level and more subtle discrepancies
both for toy datasets and an EHR dataset. Results: While both SNGP and ENN model
variants achieve similar prediction performance (AUROC: ≈ 0.85, AUPRC: ≈ 0.52 for in-
hospital mortality prediction from a selected MIMIC3 benchmark), the former demonstrates
improved capabilities to quantify knowledge uncertainty for individual samples/patients.
Discussion/Conclusions: Methods including a knowledge model, such as SNGP, offer
superior uncertainty estimation compared to traditional stochastic deep learning, leading
to more trustworthy and safe clinical decision support.

Keywords: uncertainty estimation; epistemic uncertainty; knowledge uncertainty; clinical
decision support; electronic health records; trustworthy AI

1. Introduction
1.1. Background

Electronic Health Records (EHRs) encapsulate an immense volume of data, en-
compassing intricate patient histories, treatment pathways, diagnostic information, and
clinical outcomes [1,2]. However, the sheer magnitude and complexity of EHR data is
often beyond the capacity of human practitioners to effectively process in its entirety.
This limitation necessitates the development of automated methods capable of identify
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complex patterns, summarizing vast data [3–5], and indicating critical points that require
human attention [6–8].

Machine learning (ML) approaches have shown promising results in the analysis
of EHR data in plenty of studies centered around a multitude of predictive clinical ap-
plications [9]. In the healthcare domain, where decisions are safety-critical and ethically
relevant, it is imperative that such automated methods employed in clinical decision sup-
port systems (CDSSs) are not only effective but also trustworthy [6–8,10,11]. While many
studies focus on certifying predictive performance during model validation on unseen yet
familiar in-distribution (ID) data, performance on unfamiliar out-of-distribution (OoD)
data remains unchecked and inconsistent [7,12]. Standard ML approaches often naturally
extrapolate in an uncontrolled fashion from available data [11], potentially producing confi-
dent predictions misleading users into overestimating the evidence supporting a prediction.
In the medical context, this is particularly concerning, as it may lead to a false sense of
security (or unwarranted concern), potentially influencing a clinicians decision-making
inappropriately. The consequence may be false decision-making and decreased quality of
medical care [8,10–14]. A striking example is prevailing racial bias in datasets leading to
real-world problems for underrepresented populations [14]. CDSSs deployed in real-world
applications are very likely to encounter OoD data, but distinguishing between complex
ID and OoD data through human observation alone is unfeasible in real-world scenar-
ios [12,14]. The inability to decide which predictions to trust and which not to renders the
reliability of every prediction questionable. If there is a possibility that such uncertainty
remains undetected, clinicians would need to assume such uncertainty for every sample,
leading to a pervasive mistrust in any given prediction. This general distrust may prevent
AI from contributing meaningfully to improve patient outcomes, even in cases where they
could provide significant clinical value. Hence, it is crucial for CDSSs to convey the extent
of the evidence supporting their predictions [6–8,10,11,15,16]. This scenario is distinct
from cases where there is simply a lot of noise for a given prediction. Stochasticity in
the prediction arises from inherent noise within the data or the real world and is not a
limitation of the model or evidence itself. In certain patient cases, predictions cannot be
more precise. Inconclusive predictions may still be statistically sound and clinically usable.
In contrast, predictions not backed by evidence are not practically usable. In such situations,
clinicians should disregard the prediction, the uncertainty should be clearly reflected in the
prediction or the prediction should not be presented at all to prevent undue influence on
clinical decision-making.

1.2. Related Work

Early analysis of medical reasoning processes and the wish for computerized support
in the medical field has been around since 1959 [17] and uncountable progress has been
made in the field ever since [9,18,19]. While many different use cases such as image
detection have received a lot of attention even in the medical field, the recent large-scale
collection of patient EHR data [20,21] and continued improvements in computational
resources has lead to a whole new class of systems entering the medical field [9,22,23].
Tapping into the patients timeline, these models access longitudinal information that is
important for clinical decision-making [24]. Models for EHR data need the ability to
process sequential data. Its similarity to textual data has lead to the application of models
known from the natural language processing (NLP) domain, namely variants of recurrent
neural networks (RNNs), Long Short-Term Memory networks (LSTM) and lately the
Transformer [19,25,26].

In [27], the authors developed DoctorAI that predicts next-visit diagnosis and medica-
tion codes utilizing a classical RNN-based architecture. Building on prior work, they
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propose RETAIN, an architecture more specifically targeted and inspired by medical
decision-making [28]. Two LSTMs are used to direct attention at certain visits and features.
Important information pieces are extracted, combined and passed through a classification
network. In [29], a set of benchmarks based on the MIMIC3 dataset [30] is introduced and a
baseline is established with different LSTM-based architectures. To the authors’ knowledge,
these are the only rigorously defined EHR benchmarks including preprocessing that are
usable for the objective comparison of models providing predictions for a selected number
or medically relevant use cases, and they have been used in multiple studies since [22,31,32].
The authors of [22] apply a Transformer to the [29] benchmarks. Due to the Transformer’s
inherent lack of recurrence, temporal information must be specifically given. While in the
landmark paper [25], temporal information is given via temporal embedding and many
others have relied on this approach, the studies [33,34] developed other explicit methods of
including arbitrary temporal information. While in [33] temporal information is included
in the attention layer, in [34] time information is directly applied to the tokens. Research
in [23] shows how the embedding of medical tokens can be enriched by including infor-
mation from medical ontologies. Their model is a combination of a graph neural network
for the embedding and a BERT-style Transformer for the inclusion of the longitudinal data
aspect. Multiple studies by different autors have extensively investigated the perfromance
of Transformer-based models [18,35,36] on different large-scale real-world medical datasets,
showcasing the performance beyond typical benchmark datasets and potential real-word
applications. While in [37] information contained in medical notes is utilized by training
two separate models and combining their embedding for various downstream tasks, the
authors of [38] focus specifically on semantical differences between in- and outpatients.

However, with the goal of introducing AI into medical practice on a large scale,
AI models are not only expected to be performant but also safe and trustworthy under
real-world circumstances [7,8,13,15,16,24,31,32]. Among the multitude of additional re-
quirements and concerns for medically applied AI, [16] found a lack of trust from clinicians
to be a major limiting factor. While previous methods have demonstrated impressive
performance, they lack mechanisms to enhance trust in the predictions they provide. As
previously discussed, these methods can confidently make predictions on unseen data,
even in cases where such confidence may not be warranted. This overconfidence, coupled
with the absence of transparent uncertainty quantification, has understandably reinforced
the skepticism of medical professionals regarding the reliability of AI-based predictions in
clinical practice. Providing a measure of uncertainty for a given decision can help alleviate
such distrust [7,8,31,32]. While reliable uncertainty estimation has been a research focus for
AI for a while, it has made its way into the medical space only recently.

In [32], uncertainty is learned through optimization/regularization. The study pre-
sented in [31] investigates the capabilities of RNN and Gated Recurrent Unit (GRU)-based
architectures to estimate different types of uncertainty. To produce knowledge uncertain-
ties, they use the dropout method and deep ensembles. Using uncertainty information,
they are able to significantly boost results when discarding uncertain examples and show
correlations between certain data manipulations and resulting uncertainty. As argued
in [7], capturing uncertainty is important for the identification and communication of cases
where the model’s decision is likely to be questionable and more data should be collected.
They tested ensembles of LSTMs as well as different configurations of Bayesian LSTMs.
Work in [39] explores the role of uncertainty in enhancing collaborative decision-making
in mental health care based on the MIMIC3 dataset. It emphasizes that uncertainty is
inherent in clinical environments, particularly in mental health, and highlights significant
improvements in performance and safety by referring uncertain predictions to clinicians.
The study done in [40] shows how uncertainty impacts clinical decision-making processes
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by employing a bootstrapped counterfactual inference framework. This methodology
allows for the quantification of uncertainty in treatment effects and outcomes, thereby
enhancing the robustness of clinical decisions made in the face of incomplete information
and variability in patient responses.

Although some studies have underscored the importance of incorporating sample-
wise uncertainty, its practical implementation remains uncommon. Broader adoption could
significantly enhance ethical standards, address legal considerations, and foster greater
trust in decision-support systems.

Detection of OoD samples is intricately linked to the estimation of knowledge uncer-
tainty. Knowledge uncertainty represents the ambiguity in the model function learned
from data. Unlike stochastic uncertainty, which stems from inherent data variability and is
typically addressed by modern ML approaches, knowledge uncertainty is unrecognized by
point estimators or typical single model approaches [11]. In the quest to quantify knowl-
edge uncertainty, common methodologies involve sampling from a functional posterior
distribution consistent with the training data [13]. Among these methods, model ensembles
and implicit ensembling methods such as dropout or stochastic model parameters stand
out as particularly prominent and are as of today widely used for uncertainty quantifica-
tion in diverse fields [15]. In this work, we critically evaluate the effectiveness of these
models in estimating predictive uncertainty within a practical, application-driven CDSS
scenario and compare it with a state-of-the-art Neural Gaussian Process approach [41]. This
evaluation is pivotal in understanding how these models perform in real-world healthcare
settings, where the distinction between ID and OoD data is vital for making reliable clinical
decisions. To our knowledge, we are among the first to employ and compare these methods
for applications in the medical domain and discuss their behaviour on sound medical
decision-making either with or based on AI.

2. Materials and Methods
2.1. Estimation of Predictive Uncertainty

In the presented context, predictive uncertainty can be divided into stochastic un-
certainty (SU) indicating stochastic noise, and knowledge uncertainty (KU) which stems
from a lack of knowledge [11]. Given a specific feature set, SU defines the upper limit of
certainty for a prediction as the data does not support lower ambiguity. This reflects the
stochastic nature of the system—such as overlapping classes, measurement noise, or inher-
ent randomness—making SU proportional to these effects (i.e., high SU for a prediction
indicates significant noise). KU is the ambiguity of the correct model function. Assuming
certain smoothness constraints, the set of possible functions within tightly sampled regions
is small, resulting in little ambiguity of the model function. However, in regions sparsely
sampled or far away from known data points, ambiguity about the model function grows
rapidly. KU can thus be regarded as a measure of the extent to which the predictions
are supported by the evidence [7,42,43] (i.e., high KU indicates little/no data supporting
the prediction).

For a classification task, neural networks are SU-aware by design as it is usually
gained as a byproduct of the training procedure (likelihood optimization) [7,31], while
KU is less easily accessible [7]. Hence, attention is usually directed towards enabling a
model to quantify KU. A recent paper [13] reviewed a large number of current methods.
In the scope of this paper, we focus on two, a classical, yet still widely used [15], model
ensemble approach and the recently developed method of Spectral Normalized Neural
Gaussian Processes [41].
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2.1.1. Ensemble Neural Networks (ENNs)

An ENN consists of multiple individual models. Due to random initialization, stochas-
tic optimization and high-dimensional loss surfaces, models learn different solutions. The
resulting difference in the built functions could theoretically approximate a posterior dis-
tribution from which KU can be measured. In areas of high sample density, models will
tightly agree on the solution and thus collectively signal low KU. Consequently, in areas
of low sample density or for unfamiliar samples, divergent model solutions should signal
high KU [13]. Highly over-parameterized models such as neural networks should be espe-
cially suitable due to their universal function approximator capability that enables highly
dissonant behaviors. A simple illustration is shown in the Appendix A.1 in Figure A1.

We utilize an approach similar to that of [44], making use of heterogeneous models
in terms of overall structure, combining smaller and larger models varying the number of
layers and layer sizes. Our experiments, classification of low dimensional toy data and
mortality prediction, are structured as binary classification tasks. We utilize the functional
variance observed in the output space across ensemble members, denoted as σ(L) where L
represents the output of the members, as a measure of KU.

2.1.2. Spectral Normalized Neural Gaussian Process (SNGP)

The SNGP was recently introduced in [41] and can be summarized as a Laplace approx-
imated neural Gaussian process with a radial basis function kernel. Spectral normalization
of hidden layers preserves distances between data points across the model while a distance-
aware Gaussian Process enabled by Random Fourier Features and Laplace approximation
calculates a variance measure σ that is proportional to the distance to previously seen points.
The output approximates a regular Gaussian process f (xq) ∼ GP(0, k(xq, xt)) resulting in
a distribution over predictions p( f (xq)|Xt, yt) ∼ N (µ(xq), σ(xq)), where q indicates the
current query and k represents the training samples. As such, we use σ(xq) as a measure
for KU. Details of the SNGP go beyond the scope of this work but can be found in the
source publication.

2.2. Toy Datasets

We feature two different toy datasets: the popular two-dimensional two moons dataset
highlighting general behavior and ensuring comparability, and a custom two-dimensional
stripes dataset featuring vertical stripes of different data densities, class distributions and
gaps of varying sizes between the stripes. Due to the stripes’ vertical orientation, the x2

direction is theoretically inert on a macroscopic level. This will allow us to examine the
extrapolation behavior in the inert direction and challenges the behavior of classical neural
networks due to random edge effects dominating the prediction.

We also generate a synthetic OoD dataset by producing points that are at least a
dataset-dependent length scale away from their nearest data point. For the two moons
dataset, we select half the minimum width of the moons (≈0.2), and for the stripes dataset,
half the minimum width of the stripes (≈0.5). We utilize these OoD datasets to determine
how well the uncertainty measures produced by the different methods are able to differen-
tiate between ID and OoD data, and where OoD points are located that are not properly
distinguished from ID points. All datasets are shown in Figure 1.
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Figure 1. Left: The common two moons dataset and the stripes dataset. Right: Synthetic OoD datasets
for both the two moons and the stripes dataset. The colorbar indicates the distance to the nearest
known data point from the source dataset.

2.3. Medical Dataset

MIMIC3 [30,45,46] is a large publicly available dataset of roughly 40 k patients who
where admitted to the ICU at Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts. It includes a wide range of clinically relevant information such as vital parame-
ters, laboratory results, clinical procedures, medications, and outcome measures such as
mortality. Recently, a benchmark based on MIMIC3 was introduced in [29]. In their work,
the authors delineate preprocessing methodologies, outline cohort selection strategies,
identify multiple clinical predictive tasks, and set performance baselines for prevalent
deep learning models. Depending on the selected predictive task, the cohort selection is
slightly different to accommodate task-specific exclusion criteria and the data is prepro-
cessed according to the needed structure. For a more detailed description of the data and
preprocessing steps, see [29].

This work specifically uses the in-hospital mortality prediction task. At its core, the
dataset is comprised of 21,139 patients (further selected based on age, completeness of
records, minimum length of stay, etc.) and a subset of 17 continuous and discrete features.
Episodes begin at the time the patient is admitted to the ICU. Prediction of patient death
occuring in-hospital is made 48 hours later. Signals are discretized to an hourly step size.

2.4. Medical Data Model for Transformer Application

To effectively process the time-dependent EHR data, we employ an Encoder-Only
Transformer model and propose a data model designed to capture various clinical data
modalities and unify them in a single embedding space for processing by the Trans-
former models.

EHR data can be viewed as a longitudinal stream of heterogeneous tokens. The to-
ken nomenclature is borrowed from the NLP domain and indeed there are similarities
between language information and EHR records that have been exploited by numerous
works [9,18,22,34,38]. There are, however, fundamental differences on the token level that
need to be addressed [18,33]. Medical tokens are not restricted to words but encompass a
multitude of heterogeneous concepts such as diagnostic values, laboratory results, vital
parameters, medical imaging data, entire medical notes, medical procedures and medi-
cations, as well as data from the omics spectrum. During the presented study, we limit
ourselves to singular values, but the concept could be extended to more complex inputs
through summarization by upstream models or processing. Addtionally, medical records
include a temporal component, in contrast to written language, which relies on information
of order only.

For the task of outcome prognosis on EHR time series, we define two types of med-
ical tokens: Boolean (token(b)) and value tokens (token(v)). Boolean tokens represent sin-
gular concepts (i.e., a patient’s verbal response is categorized as confused on the Glas-
gow Coma Scale (GCS)). Value tokens represent a concept with an attached continuous
value (i.e., a measured heart rate at a value of 88 bpm). The token types are shown in
Equations (1) and (2). Both incorporate a concept c and a timestamp t. Value tokens further
include a value v.



J. Pers. Med. 2025, 15, 58 7 of 17

token(b)
i = (t, c)i (1)

token(v)
i = (t, c, v)i (2)

We employ a standard 1-hot encoding technique for the concept part of both token
types. To include the value component, we use a similar “1-value” encoding which is
the same as 1-hot but multiplied by the value. To incorporate time, we translate the time
stamps to a scalar and utilize the result as input to the circular time embedding also used
by the authors of [25].

2.5. Medical OoD Dataset

The medical dataset does not allow for a straightforward distance measure, unlike
the simpler, toy datasets (see Section 2.2). Determining how far apart patients are from
each other is challenging and may not be strictly feasible. This difficulty arises from several
factors, including the mix of categorical and continuous features, variations between
samples in terms of time span, measurement frequency, and the attributes measured, as
well as differences in the relative importance of specific features. For example, a single
anomalous heart rate reading does not necessarily equate in significance to an unexpected
medication event.

To generate OoD patients, we employ two strategies designed to test distinct scenarios:

Random Token Replacement (RTR): Instead of the correct token, we feed random
input drawn from N (0, 1) into the models. These randomized tokens are highly
recognizable at the individual token level.
Patient Token Swapping (PTS): We replace tokens with randomly selected tokens
form other patients. While these substituted tokens are realistic at the individual token
level, the resulting combination of tokens may be unfamiliar only in the context of the
remaining patient data.

In both approaches, we require a proxy that correlates with the conceptual distance
from known patients. We consider an unmodified patient as a known data point, while a
patient in which all tokens are either replaced with random tokens or completely swapped
with tokens from other patients represents the maximum possible distance. Consequently,
we define a distance measure ranging from 0 to 1, representing the ratio of changed tokens
to the total number of tokens in a patient.

dproxy =
nchanged

ntotal
(3)

where nchanged represents the number of tokens changed either by random token replace-
ment or by patient token swapping and ntotal represents the number of tokens in a patient.

3. Results
We conducted a series of experiments in a bottom-up fashion, beginning with small-

scale experiments and scaling up to a more complex use case. This approach allowed us
to trace the behaviors (predictive and uncertainty estimation) observed in the small-scale
experiments. The large-scale experiment, based on the previously introduced MIMIC3
dataset, enables us to demonstrate the implications for informed medical decision-making
using uncertainty-enabled AI models.
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3.1. Toy Data Experiments

A simple ReLU-activated, fully connected feed forward network serves as the back-
bone of each model. ENN models consist of 27 different architectures. Network depths
range between one and three layers and widths of 100–150 neurons. All model outputs
are pooled (output space mean and variance; see Section 2.1.1) for a single prediction and
uncertainty measure. SNGP results are pooled (output space mean and averaged variance
output; see Section 2.1.2) over nine models of comparable depths and widths. All models
are trained using Adam and early stopping. Uncertainty measures are transformed using a
log(10σ) scale in order to enhance minute details in areas of generally lower uncertainty
such as the “interior” of the datasets.

Detailed AUROC and AUPRC performance measures are shown in Appendix A.2 and
indicate that all models are generally performing well (AUROC: >0.90, AUPRC: >0.85), as is
to be expected for such simple datasets. The similarity across models of both AUROC and
AUPRC measures shows that all models solve the underlying problem to equal degrees.
The different behaviors in terms of prediction and uncertainty estimation can be seen
in Figure 2.

min(σ)
min(p(c0))

max(σ)
max(p(c0))

Figure 2. Results from the toy data experiments. Top: Class predictions. Bottom: KU measures.
Left: ENN. Right: SNGP.

The two methods exhibit distinct differences in prediction and uncertainty estimation,
as observed in both the two moons and stripes examples. The ENN-based approach
demonstrates a typical decision boundary separating the two moons and, upon closer
inspection, a separation between the stripes. However, this separation becomes chaotic at
the top and bottom of the stripes dataset, leading to overconfident class predictions if not
properly managed by uncertainty estimation.

The SNGP presents a behavior akin to the Gaussian process it is approximating,
forming “class islands” surrounded by mean predictions in regions without data. The
uncertainty estimation shows a controlled and principled behavior where the distance from
but not the topology of the actual data is relevant for the amount of uncertainty in both the
experiments, providing a more stable assessment of uncertainty.

In contrast, the ENN’s uncertainty estimation appears to be less controlled, often
underestimating uncertainty. This is especially evident in the region between the two
moons, where there is an area of low uncertainty. For the stripes experiment, the ENN
method displays further issues, with significantly higher uncertainty at the bottom than at
the top, which may be influenced by edge effects in the dataset. However, this discrepancy
does not align with an intuitive understanding of certainty (based on the distance to the
nearest known point), as the stripes dataset is theoretically constant in the x2 direction.
Thus, no difference in uncertainty between the top and bottom should be expected. This
issue contributes to unchecked overconfidence, particularly at the top.

We evaluate the estimated uncertainty based on the nearest neighbor (NN) distance
from the respective ID datasets (see Figure 3). To distinguish between ID and OoD samples,
we chose a threshold derived from the KU measures recorded on the test splits of the
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training data for the two datasets. Specifically, we set the threshold at the 90th percentile of
these KU values (horizontal line in Figure 3 plots), meaning that 10% of the test samples
were classified as OoD, while the remaining 90% were considered ID. While this has no
deeper reason, a higher threshold would result in even more undetected OoD samples and
a lower threshold would result in the classification of more test samples as OoD, which
is undesirable.

The results reveal that the ENN-based model struggles to effectively differentiate
between ID and OoD samples, even in these simple scenarios. For the two moons example,
there are clear instances of OoD detection failures, particularly in the region between
the two moons. The stripes dataset presents an even more pronounced issue, with the
model failing to reliably identify OoD samples inside and outside the stripes. Notably, in
the regions between the stripes, almost none of the OoD samples are detected using the
established threshold.

The notion that some OoD examples may be indistinguishable from test samples
is challenged by the performance of the SNGP model, which successfully differentiates
between OoD samples and test samples without any detection failures.

The code used for this analysis is provided in the Supplmentary Material.
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Figure 3. OoD detection experiments on the two moons and stripes datasets. Top: KU heat maps
with red markers indicating samples from the OoD datasets that are not recognized as OoD by the
threshold. Bottom: EU values of the test dataset are shown as a kernel density estimate (ptest(log(10σ))
in orange together with the threshold (black line) based on the 90th quantile. KU values of the OoD
samples are shown as blue dots. Left: ENN. Right: SNGP.

3.2. MIMIC Mortality Prediction

For the SNGP and ENN methods, we train a collection of models and aggregate
their results. In the ENN-based approach, we average the outputs to generate the overall
prediction and derive an uncertainty measure based on the deviation among the model
predictions (σ(L)) (see Section 2.1.1). For the SNGP-based approach, we average both their
prediction and uncertainty outputs (σ) (see Section 2.1.2).

All methods utilize a common backbone structure of an Encoder-only Transformer.
The network depths range from two to four layers, with widths between 64 and 512 neurons.
However, due to computational limitations, we do not include models that are both wide
and deep (e.g., four layers with 512 neurons).

For the SNGP models, all feed-forward layers are modified to be bi-Lipschitz (meaning
distance preserving up to a constant factor), as outlined in the source publication [41] to
preserve distances between data points. As there is currently no established method for
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bi-Lipschitz Attention mechanisms, we employ the standard Attention mechanism as a
fallback for all models.

We ensemble eight different models for the ENN approach, varying in model sizes
and architectures. For the SNGP-based approach, we ensemble four models, also spanning
various sizes and architectures.

We study model performance on the in-hospital mortality task from the [29] bench-
marks (see Section 2.3) which uses 48 h of patient intensive care signals and predicts if death
occurs within the current hospital stay. For further details, we refer the reader to the source
publication. Our two models are compared against performance metrics (AUROC and
AUPRC) of two models published in the benchmark [29], including the Standard-LSTM
(S-LSTM), trained in a similar fashion to our two models on only the in-hospital mortality
use case. Secondly, the Multitask Channel-wise LSTM Model (MTCW-LSTM) was selected
as it represents the best model published with the benchmark while not being entirely
comparable due to its multi-task training.

To assess the robustness of the ENN- and SNGP-based approaches, we apply the same
OoD detection experiment that was previously conducted on the toy datasets. By setting a
threshold derived from the uncertainty measures of the ID test samples, we analyze the
proportion of OoD examples that are not captured by this threshold. Finally, we provide an
analysis of which OoD samples are detected by the threshold and explore the underlying
reasons for their successful identification. Results are shown in Figure 4.
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Figure 4. OoD detection experiments PTS and RTR on the MIMIC3 benchmark dataset. Left: ENN.
Right: SNGP. Uncertainty measures of the test dataset are shown as the kernel density estimation
(ptest(log(10σ + 1)) in orange together with the threshold (black line) based on the 70th quantile. KU
values of the OoD samples are shown as points. Points are colored according to the number of tokens
for each sample.

The performances of the ENN and SNGP models together with reference models
from [29] in terms of AUROC and AUPRC metrics are shown in Table 1. All models
reached an AUROC of ≈0.85 and an AUCPR of ≈0.52. While both the ENN and the SNGP
slightly outperform the S-LSTM, their performance falls marginally short of the MTCW-
LSTM. The MTCW-LSTM, however, was trained on multiple tasks and is only shown as
it represents the best model published in [29]. As the observed performance differences
fall well within the calculated confidence intervals, we conclude that the models exhibit
comparable performance and SNGP does not significantly decrease performance compared
to the ENN model.

For the large-scale outlier detection experiment, we applied a threshold at the 70th
percentile of the uncertainty values within the test set, taking into account a lower toler-
ance for uncertainty in safety-critical domains. Using this threshold for OoD detection,
Figure 4 and Table 2 show that the SNGP significantly outperformed the ENN, as indicated
by the much lower percentage of altered (RTR and PTS) patients unrecognized by the
applied threshold. Both ENN- and SNGP-driven models demonstrated a high degree of
success in detecting RTR outliers, with the ENN missing approximately 1.62% and the
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SNGP missing <0.7%. Despite these strong results, the ENN method exhibited instances of
failure to detect distant outliers, while the SNGP showed flawless detection, particularly
for larger dproxy values. For dproxy values greater than 0.5, the ENN method continued to
fail to detect some RTR patients, even though these patients were at least 50% composed of
random input tokens.

The most significant and practically relevant differences between the ENN and
the SNGP were observed in the detection of PTS outliers. Both methods missed a
substantial proportion of PTS outliers, but the SNGP, which missed 22.3% of PTS pa-
tients, demonstrated an increase in detection performance over the ENN, which missed
approximately 33.7%.

Table 1. Predictive performance on MIMIC Mortality Prediction Benchmark [29].

Model AUROC (min/max) ↑ AUPRC (min/max) ↑
ENN 0.858 (+0.00868/−0.0125) 0.532 (+0.031/−0.0197)
SNGP 0.855 (+0.00839/−0.0142) 0.521 (+0.0268/−0.0184)

S-LSTM [29] 0.855 (+0.018/−0.02) 0.485 (+0.052/−0.054)
MTCW-LSTM [29] 0.87 (+0.017/−0.018) 0.533 (+0.051/−0.053)

Table 2. OoD detection performance in terms of % undetected OoD samples in PTS and RTR experiments.

Model Undetected PTS Samples
% (min/max) ↓

Undetected RTR Samples
% (min/max) ↓

ENN 33.7 (+1.67/−4.12) 1.62 (+0.214/−0.429)
SNGP 22.3 (+0.697/−0.791) 0.615 (+0.11/−0.0725)

4. Discussion
While the SNGP and the ENN had similar predictive performance, the SNGP demon-

strated a superior capacity for OoD detection in both toy experiments and the real-world
predictive case study of ICU mortaility prediction. OoD detection with the ENN was less
correlated to the degree of modification from the original EHR sequences. Translating
this behavior to the medical domain implies that such a predictor could overlook critical
discrepancies within a patient’s history—an outcome that is clearly undesirable. In contrast,
the SNGP was considerably more reliable, detecting OoD samples with randomized feature
values in the RTR experiment, even when alterations were relatively minor.

In the PTS experiments, discrepancies in altered patients are much more subtle, man-
ifesting primarily across the patient’s overall history rather than at the individual token
level. This presents a much more challenging, but also more clinically relevant, scenario.
In this context, the differences between the ENN- and SNGP-based approaches became
evident primarily by contrast, with the SNGP detecting ≈11% more PTS patients than
the ENN. Translating this to the medical domain results in an SNGP-driven uncertainty
detector that is not only more sensitive at the token level but also at the inter-feature and
sequence level across the entire patient’s history.

While an in-depth investigation is outside the scope of this work, several reasons why
the SNGP, despite its strong performance in the toy data experiments, missed a significant
proportion of PTS samples and performed worse for longer sequences in the large-scale
experiment could be because of several factors:

1. Data-induced effects:

(a) The MIMIC dataset is highly repetitive, composed largely of frequently monitored
variables such as heart rate, blood pressure, and oxygen saturation. If such tokens
are swapped, the overall consistency of the patient representation may not deviate
significantly from known samples.
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(b) The dproxy distance measure is only weakly correlated to epistemic uncertainty. Thus,
the true distance is not precisely captured, leading to a potentially fuzzy relationship.

(c) The discrepancy between long and short timelines may stem from the fact that
swapping tokens also swaps their associated timestamps. In short timelines, a
swapped token from a long timeline may be more noticeable due to the time
signal, whereas in long timelines, this effect is less pronounced, leading to de-
creased sensitivity.

2. Model-induced effects:

(a) The SNGP-driven models for the toy data experiments consisted entirely of bi-
Lipschitz continuous layers, meaning a mathematically guaranteed preservation
of distances across the model. As previously mentioned, there is currently no
widely accepted bi-Lipschitz continuous Attention block driving the Transformer
models used within the experiments involving EHRs. This could also lead to the
model suppressing subtle distinctions by minimizing the impact on the larger
patient mortality prediction and as such on the uncertainty prediction.

(b) While Transformer models are capable of processing inputs of varying lengths, in
most architectures, the final prediction is derived from some form of summary
representation (e.g., a specialized token, an average over all tokens, etc.). In our
architecture, we employ the averaged-token approach. However, this operation is
inherently not distance-preserving, which means that crucial information regarding
the relative distances between patients may be lost during this summation process.

While this study provides valuable insights and demonstrates clear advantages of
the SNGP over ENNs that rely on random training dynamics, several limitations must
be acknowledged. Our analysis was restricted to relatively simple ensemble methods,
despite the existence of more advanced approaches that could further enhance performance.
Incorporating these modern ensemble techniques may yield additional improvements in
uncertainty estimation.

Additionally, while the generated OoD datasets serve as a useful tool to assess the
model’s ability to delineate unfamiliar data, their practical relevance to real-world patient
populations remains unknown. The synthetic nature of these datasets may introduce
unrealistic patient profiles, potentially featuring mutually exclusive attributes that are
unlikely to co-occur in clinical settings. In practice, such inconsistencies are typically
attributable to erroneous data entries rather than inherent pathological characteristics.

Future research could address model-induced artifacts by refining the underlying
mechanisms. Notably, the current self-attention mechanism employed in our approach is
not Lipschitz continuous, as demonstrated in [47]. However, recent advancements have
introduced alternative formulations that uphold Lipschitz continuity [47–50], offering
promising avenues for enhancing SNGP Transformers. Implementing these methods
may contribute to more robust and reliable uncertainty quantification in medical decision
support systems.

5. Conclusions
Recognizing the need for trustworthy and reliable AI in safety-critical clinical decision-

making, we investigated the KU estimation performance of an ENN, and compared its
accuracy to the KU quantification of a novel method, a SNGP. Several differences between
ENN- and SNGP-driven models were highlighted in this work, particularly in terms of
prediction behavior, uncertainty estimation, and the resulting capability to detect OoD
samples. A bottom-up approach was employed, first showcasing distinct behaviors through
experiments on toy datasets and then tracing findings to a large relevant prediction task on
EHR data.
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Our results indicate that the ID predictive performance remains unaffected by the
use of a SNGP, demonstrating comparability to an ENN and models reported in other
comparative studies. However, the estimation of KU varies significantly between the two
models, with the ENN exhibiting a pronounced tendency to underestimate KU—both in
toy datasets and in the case study experiments. The SNGP consistently outperformed the
ENN, particularly for highly modified patients in both the RTR and PTS experiments. In
certain instances, the ENN failed to detect any KU for patients composed almost entirely of
random inputs or tokens from other patients, whereas the SNGP demonstrated sensitivity
in such scenarios.

The deployment of AI models in the medical domain presents significant implications
for sound medical decision-making, with trustworthiness being a key challenge that con-
tinues to hinder widespread adoption. A critical concern is the inability of commonly used
AI models to reliably detect their own ignorance, which severely undermines trust in all
predictions, thereby diminishing their practical utility.

A robust mechanism for distinguishing between predictions that can be trusted and
those that cannot would significantly enhance the overall trustworthiness, acceptance,
and utility of AI models in medical practice. We showed on the clinically relevant use
case of mortality prediction on EHR data that deep learning methods incorporating a
specific mechanism or model to represent the amount of knowledge such as an SNGP
are a promising step forward to more reliable and trustworthy AI application in clinical
decision-making.
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ENN Ensemble Neural Network or Neural Network Ensemble
EHR(s) Electronic Health Record(s)
SNGP Spectral Normalized Neural Gaussian Process
AUROC Area Under the Receiver Operating Characteristic Curve
AUPRC Area Under the Precision–Recall Curve
ML Machine Learning
CDSS Clinical Decision Support System
ID In-distribution

OoD Out-of-distribution
NLP Natural Language Processing
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
SU Stochastic Uncertainty
KU Knowledge Uncertainty
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S-LSTM Standard LSTM
MTCW Multitask Channel-wise LSTM
RTR Random Token Replacement
PTS Patient Token Swapping

Appendix A
Appendix A.1. Model Behaviors

−1

1
x

−1

1

y

−1

1

z

s

Figure A1. Cont.



J. Pers. Med. 2025, 15, 58 15 of 17

0 4
√

2S

1.6

0.0

−6.1

z

0 4
√

2S

2.1

−2.3

z

Figure A1. Visual representation of ENN and SNGP general behavior. Top: Exemplary problem.
Bottom: Behavior along the cut plane s. The ENN method shows typical diverging behavior resulting
in a measurable signal for knowledge uncertainty. The SNGP method shows approximated Gaussian
Process behavior with the variance (represented by the orange 95% confidence interval) directly
usable as signal for knowledge uncertainty.

Appendix A.2. Small Scale Performance Metrics

Table A1. AUROC and AUPRC performance measures on the two moons and stripes dataset.

Two Moons Stripes
Model AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑
ENN 0.93 0.93 0.85 0.87
SNGP 0.92 0.92 0.86 0.88
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