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Abstract: In this study, a systematic test of 36 organic liquid compounds as lubricants in the SiC/PI
friction pair was conducted to investigate their friction-reducing performance. The back propagation
neural network (BPNN) method was employed to establish a quantitative structure tribo-ability
relationship (QSTR) model for the friction performance of these lubricants. The developed BPNN-
QSTR model exhibited excellent fitting and predictive accuracy, with R2 = 0.9700, R2 (LOO) = 0.6570,
and q2 = 0.8606. The impact of different descriptors in the model on the friction-reducing performance
of the lubricants was explored. The results provide valuable guidance for the design and optimization
of lubricants in SiC/PI friction systems, contributing to the development of high-performance
lubrication systems.

Keywords: organic liquid lubricants; quantitative structure tribo-ability relationship; back propagation
neural network; friction-reducing performance

1. Introduction

Currently, the Earth is facing numerous serious environmental issues. Against the
backdrop of global climate change, the “low-carbon economy” based on low energy con-
sumption and low pollution has become a global hotspot. Adopting new concepts, technolo-
gies, and methods in the industrial sector to improve energy efficiency, develop emerging
industries, and reduce energy consumption is an inevitable choice for achieving win-win
economic development and resource and environmental protection. The research on tri-
bology has continuously made significant contributions to meeting the needs of these
advanced technological developments [1]. Friction is one of the important pathways for
energy loss, and reducing friction can effectively improve production efficiency, reduce
energy consumption, and is an important aspect of achieving a low-carbon economy and
sustainable social development. In recent years, due to its ability to significantly improve
the energy utilization efficiency of motion systems, the study of superlubricity has become
a research hotspot in the field of friction [2]. In macroscopic systems, the phenomenon
of ultra-low friction with friction coefficients on the order of 0.001 or below is generally
referred to as superlubrication. Since the concept was proposed in the 1990s [3], extensive
research has been conducted on the superlubricity of solids and liquids over the past three
decades [4–7].

The design and development of novel lubrication systems are effective means to
achieve superlubricity. One important element of a lubrication system is the friction pair
material. Polyimide is a type of high-performance engineering plastic material, typically
synthesized from diamines and dianhydrides. Its molecular chain contains imide bonds
and stable aromatic heterocyclic structures, which give it excellent mechanical properties,
radiation resistance, self-lubricating properties, and processability [8]. As a result, research
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and applications of polyimide in the field of friction are gradually expanding [9–13]. Ce-
ramic materials also possess high hardness, strength, stiffness, low density, and excellent
chemical stability. Their excellent mechanical properties at high temperatures make them
widely used in space technology, sealing components, critical engine parts, high-efficiency
high-speed cutting tools, and other fields, making them one of the best choices for high-
temperature wear-resistant materials [14]. In recent years, researchers have conducted
studies on friction systems composed of SiC ceramics as friction components paired with dif-
ferent materials such as metals, composite materials, and SiC itself [15–19]. However, there
have been no reports on the SiC/PI friction pair system to date. Due to the excellent fric-
tional properties of both materials, it can be anticipated that exploring a high-performance
lubrication system using SiC and PI as a pair would be a feasible approach.

Due to the strict requirement for atomic-level smooth contact on material surfaces,
frictional systems under dry sliding conditions at the macroscopic scale rarely achieve
solid superlubricity. In comparison, many lubrication systems incorporating liquid media
(such as water, alcohols, acids, ionic liquids, etc.) exhibit macroscopic superlubricity [6].
The prospects of the liquid superlubricity in industrial applications are excellent. Based
on the demand for environmentally friendly industrial applications, this study focuses
on high-performance, low-cost, environmentally friendly organic liquid compounds as
the target, to explore the tribological performance of SiC/PI friction pairs lubricated with
such lubricants.

The development of novel lubricants in the past required extensive experimental
work to synthesize compounds, followed by tribological performance testing, and further
screening and optimization of molecular structures. This entire process lacked clear theo-
retical guidance and was prone to some degree of trial and error. By using Quantitative
Structure Tribo-ability Relationship (QSTR) theory to predict the tribological performance
of compounds, it is possible to effectively avoid large-scale repetitive experimental work
and achieve efficient and low-energy design or selection of lubricants. QSTR is a concept
derived and developed from Quantitative Structure-Activity Relationship (QSAR) methods
widely used in fields such as pharmacology. QSAR is an effective method for quantita-
tive calculation or approximate estimation, which establishes mathematical relationships
between the physicochemical properties and physical and chemical activities (descrip-
tors) of a class of compounds. Based on the foundation of QSAR theory, our research
team has attempted to view the tribological performance of lubricating media as complex
physicochemical properties of compounds. We have developed the concept of QSTR and
conducted extensive work. QSTR models were established for the tribological performance
of lubricating oils and lubricant additives, respectively. The results have confirmed the
feasibility of the QSTR method in studying the relationship between the structure and tribo-
logical ability of materials. Additionally, the analysis of these models allows us to further
understand the relationship between material structural characteristics and tribological
features. Based on these models, we have successfully conducted molecular design of
new lubricants [20–22]. Based on our previous research findings, the BPNN-QSTR models
have shown excellent performance in predicting the tribological properties of lubricants.
As an important nonlinear modeling method, back propagation neural network (BPNN)
plays a crucial role in quantitative structure-activity relationship studies. The field of
tribology encompasses intricate frictional phenomena and interactions, often involving
nonlinear factors. Consequently, when compared to linear methods, the BPNN approach
exhibits superior adaptability and explanatory power in relation to these complex frictional
phenomena, thereby providing more precise and comprehensive prediction outcomes.

This article aims to investigate the correlation between the friction-reducing perfor-
mance and molecular structure of organic liquid lubricants on the SiC/PI friction pair
based on the theory of QSTR. By establishing a quantitative model using BPNN method,
the friction-reducing performance of these lubricants in the system will be predicted, and
the mechanisms of friction reduction will be explored. Furthermore, guidance and recom-
mendations will be provided for the synthesis or modification of lubricant molecules with
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good friction-reducing performance. As this is our first time establishing a BPNN-QSTR
model for the lubricant medium in SiC/PI system, we will choose a selection of compounds
from different categories with relatively simple structures to conduct this work. This choice
will allow us to accurately understand the influence of lubricant structural factors.

2. Materials and Methods
2.1. Experimental Materials

In this study, 36 different types of common organic compounds, including alcohols,
alkanes, and esters, were selected as lubricants for frictional testing. All reagents were
purchased from Aladdin Reagent Company, Shanghai, China and remained stable in a
liquid state under normal temperature and pressure conditions. The specific molecular
names and chemical formulas can be found in Table 1. The friction pair materials consisted
of SiC ceramic balls (with a diameter of 4.76 mm) produced by Fanlian Technology Co., Ltd.,
Shanghai, China, and a polyimide film composed of pyromellitic dianhydride (PMDA)
and 4,4′-oxydianiline (ODA) produced by DuPont Company, Wilmington, DE, USA(with a
thickness of 127 µm). The structure of the polyimide (PI) is shown in Figure 1.

Table 1. Experimental and predicted data of lubricants.

No. Name Formula COF MFexpt MFpred ∆

1 ethane-1,2-diol C2H6O2 0.06891 1.502 1.498 −0.004
2 * butane-1,4-diol C4H10O2 0.00391 1.353 1.499 0.146
3 propane-1,2,3-triol C3H8O3 0.00461 1.380 1.378 −0.002
4 6-chlorohexan-1-ol C6H13ClO 0.01082 1.642 1.678 0.036
5 octan-1-ol C8H18O 0.05532 1.800 1.744 −0.056
6 2-ethylhexan-1-ol C8H18O 0.05811 1.805 1.785 −0.020
7 octan-2-ol C8H18O 0.05267 1.795 1.808 0.013

8 * nonan-1-ol C9H20O 0.01969 1.732 1.693 −0.039
9 2-(benzylamino)ethanol C9H13NO 0.01860 1.747 1.742 −0.005

10 decan-1-ol C10H22O 0.00239 1.544 1.661 0.117
11 undecan-1-ol C11H24O 0.01486 1.779 1.693 −0.086
12 octanoic acid C8H16O2 0.03073 1.781 1.777 −0.004
13 (Z)-octadec-9-enoic acid C18H34O2 0.02924 2.067 2.071 0.004

14 * nonanal C9H18O 0.02535 1.754 1.705 −0.049
15 decanal C10H20O 0.01193 1.713 1.712 −0.001
16 1-(4-methylphenyl)propan-1-one C10H12O 0.02911 1.787 1.763 −0.024
17 methylsulfinylmethane C2H6SO 0.04652 1.559 1.555 −0.004
18 2-chloro-1,3-benzoxazole C7H4ClNO 0.02501 1.784 1.783 −0.001
19 1-bromooctane C8H17Br 0.04780 1.953 1.943 −0.010
20 1-chlorodecane C10H21Cl 0.04655 1.913 1.925 0.012

21 * 1-bromodecane C10H21Br 0.05172 2.021 2.025 0.004
22 1-iododecane C10H21I 0.03699 2.070 2.054 −0.016
23 1-bromododecane C12H25Br 0.03017 2.015 2.019 0.004
24 1-chlorotetradecane C14H29Cl 0.04010 2.017 1.994 −0.023

25 * 1-bromotetradecane C14H29Br 0.01808 2.005 1.969 −0.036
26 hexadecane C16H34 0.05724 2.044 2.060 0.016
27 1-bromohexadecane C16H33Br 0.00716 1.947 1.942 −0.005
28 methyl 2-phenylacetate C9H10O2 0.01423 1.715 1.706 −0.009
29 methyl decanoate C11H22O2 0.04978 1.944 1.939 −0.005

30 * methyl dodecanoate C13H26O2 0.03207 1.957 2.084 0.127
31 dimethyl propanedioate C5H8O4 0.02299 1.711 1.716 0.005

32
tert-butyl

(2-methylpropan-2-yl)oxycarbonyl
carbonate

C10H18O5 0.01156 1.854 1.867 0.013

33 * dibutyl butanedioate C12H22O4 0.00850 1.844 1.893 0.049
34 dibutyl benzene-1,2-dicarboxylate C16H22O4 0.00793 1.919 1.918 −0.001
35 triphenyl phosphite C18H15O3P 0.06006 2.186 2.171 −0.015
36 tris(2-methylphenyl) phosphate C21H21O4P 0.01231 2.089 2.099 0.010

* Test set.
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2.2. Tribological Test

The tribological tests of the 36 organic compounds as lubricants was conducted using
the rotating module of a multi-functional tribometer (UMT-3, CETR, CA, USA). The SiC
ceramic ball and the PI (PMDA-ODA) film formed the friction pair. Prior to testing, the
SiC ceramic ball, polyimide film and tribometer accessories were placed in petroleum
ether, ultrasonically cleaned for 5 min, and then dried. The SiC ceramic ball was fixed
on a steel holder as the stationary specimen (upper specimen), while the polyimide film
was adhered to a smooth metal disc. The metal disc was then mounted on the fixed steel
disc of the tribometer as the rotating specimen (lower specimen). Liquid lubricant was
dropped onto the surface of the polyimide film to initiate the test. The applied load during
the test was 5 N, the rotation speed was 250 rpm, the radius of rotation was 8.5 mm, and
the test duration was 1 h. The tests were conducted at room temperature (25 ◦C) with a
point-to-plane contact configuration. The coefficient of friction (COF) obtained during the
test was automatically recorded and the average COF within 1 h was generated by the
computer. The experimental data obtained are listed in Table 1.

2.3. Quantitative Structure Tribo-Ability Relationship Model
2.3.1. Experimental Data Processing

According to Formula (1), the experimental friction coefficient obtained from the tests
on the lubricant are subjected to simple mathematical processing. This processing converts
the data into a standardized quantity called the friction coefficient measurement (MF), as
shown in Table 1. The MF value is used to characterize the friction-reducing performance
of the lubricant and is employed for subsequent modeling analysis.

MFexpt = log10[COF
1/4 ×MW] (1)

In the formula, MFexpt represents the friction coefficient measurement for the organic
lubricants, while COF and MW, respectively, denote the coefficient of friction and the
molecular weight of the organic lubricants. It is evident that a smaller value of MF indicates
better friction-reducing properties of the lubricant.

Randomly selecting 29 molecules (approximately 4/5 of the entire sample) from the
sample population, they were assigned as the training set to adjust the model parameters
and establish the QSTR model. The remaining 7 molecules (approximately 1/5 of the
entire sample) were designated as the test set to evaluate the predictive capability of the
model. During the grouping process, it was also important to ensure a relatively uniform
distribution of the test set data within the entire dataset, avoiding the accidental bias
in evaluation results caused by concentration or imbalanced distribution. The selected
molecules for the test set in this study are indicated in Table 1, covering four categories:
alcohols, aldehydes, alkanes, and esters. The MF values of the test set range from 1.353 to
2.021, which is within the distribution range of the entire dataset (1.353 to 2.186). Therefore,
the selection of the test set is reasonable.

2.3.2. Modeling Method

In this study, an artificial neural network model was established using the backpropa-
gation learning algorithm. Artificial neural networks are nonlinear processing techniques
that simulate the structure and functionality of the human brain. Due to their strong adap-
tive capabilities, they have become an important method for quantitative structure-activity
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relationship (QSAR) studies. The error backpropagation (BP) algorithm is commonly
employed to establish the network model [23]. One advantage of this technique is its
ability to construct complex models based on a large amount of data. During the training
process, the network automatically disregards descriptors that do not contribute to the
dependent attributes.

The BPNN-QSTR model was established following the four steps outlined below:
Firstly, the molecular structures of all 36 sample molecules were generated using Chem-
BioOffice 2008. Secondly, the generated structures were subjected to energy minimization
and database file generation using Tripos Sysbyl-X 1.1. Thirdly, molecular structure descrip-
tors, including lipophilicity parameters, 2D topological parameters, and 3D Jurs parameters,
were calculated using Discovery Studio 2.5 software. Finally, the training dataset was used
to fit a BPNN model, with the structure descriptors as input layer variables and the friction
coefficient measurement as the output layer variable. Suitable descriptors were selected to
obtain the QSTR model. A detailed process is outlined in Figure 2.

Lubricants 2023, 11, x FOR PEER REVIEW 5 of 11 
 

 

tire sample) were designated as the test set to evaluate the predictive capability of the 
model. During the grouping process, it was also important to ensure a relatively uniform 
distribution of the test set data within the entire dataset, avoiding the accidental bias in 
evaluation results caused by concentration or imbalanced distribution. The selected 
molecules for the test set in this study are indicated in Table 1, covering four categories: 
alcohols, aldehydes, alkanes, and esters. The MF values of the test set range from 1.353 to 
2.021, which is within the distribution range of the entire dataset (1.353 to 2.186). There-
fore, the selection of the test set is reasonable. 

2.3.2. Modeling Method 
In this study, an artificial neural network model was established using the back-

propagation learning algorithm. Artificial neural networks are nonlinear processing 
techniques that simulate the structure and functionality of the human brain. Due to their 
strong adaptive capabilities, they have become an important method for quantitative 
structure-activity relationship (QSAR) studies. The error backpropagation (BP) algorithm 
is commonly employed to establish the network model [23]. One advantage of this tech-
nique is its ability to construct complex models based on a large amount of data. During 
the training process, the network automatically disregards descriptors that do not con-
tribute to the dependent attributes. 

The BPNN-QSTR model was established following the four steps outlined below: 
Firstly, the molecular structures of all 36 sample molecules were generated using Chem-
BioOffice 2008. Secondly, the generated structures were subjected to energy minimization 
and database file generation using Tripos Sysbyl-X 1.1. Thirdly, molecular structure de-
scriptors, including lipophilicity parameters, 2D topological parameters, and 3D Jurs 
parameters, were calculated using Discovery Studio 2.5 software. Finally, the training 
dataset was used to fit a BPNN model, with the structure descriptors as input layer var-
iables and the friction coefficient measurement as the output layer variable. Suitable de-
scriptors were selected to obtain the QSTR model. A detailed process is outlined in Fig-
ure 2. 

 
Figure 2. The Process of establishing the BPNN-QSTR Model. Figure 2. The Process of establishing the BPNN-QSTR Model.

In BPNN modeling, the number of nodes in the hidden layer is a crucial parameter
that significantly impacts the performance of the BPNN model. Insufficient nodes in the
hidden layer can lead to inadequate fitting accuracy, resulting in underfitting. Conversely,
an excessive number of nodes may cause overfitting [24]. The fundamental principle
for determining the number of hidden layer nodes is to select as few nodes as possible
while meeting the accuracy requirements of the problem. Through multiple rounds of
optimization training, the final number of nodes in the hidden layer is determined. The
Leave One Out (LOO) method is employed for cross-validation during training.

3. Results and Discussion
3.1. Result of the Model

After multiple rounds of training and optimization, the optimal network structure
obtained by the training set is 11-5-1. It means that there are 11 input variables (structural
descriptors), 5 nodes in the hidden layer, and 1 output variable (MF). The fitting results of
the obtained model are listed in Table 2, while the predicted values MFpred and prediction
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deviations ∆ for the friction coefficient measurement are simultaneously presented in
Table 1.

Table 2. Results of BPNN-QSTR model.

Network R2 R2 (LOO) q2

11-5-1 0.9700 0.6570 0.8606

3.2. Validation of the Model
3.2.1. Internal Predictive Ability

The evaluation of the internal predictive ability of the BPNN model primarily focuses
on the degree of fitting and prediction accuracy, as reflected by the correlation coefficient R2

and the Leave-One-Out cross-validated correlation coefficient R2 (LOO) in Table 2. These
two fitting indices can measure the degree of fitting of the model to the training set, with
values closer to 1 indicating a better fit to the data. From the results, the model demonstrates
good accuracy (R2 > 0.9, R2 (LOO) > 0.6).

3.2.2. External Predictive Ability

The external predictive ability refers to the capability of using the established model to
predict new compounds that were not used in the model training. This is a crucial indicator
for evaluating the generalization ability and reliability of the model. Table 2 presents the
correlation coefficient q2 of the test set, calculated by Formula (2). This coefficient represents
the error metric of the model and can be used to assess the external predictive ability.

q2 = 1−
∑
i
(predi − exp ti)

2

∑
i
(exp ti − exp t)2 (2)

In the equation, predi represents the predicted values of the test set, expti represents
the experimental values of the test set, and expt represents the average value of the exper-
imental values in the test set. Typically, when q2 > 0.5, the model is considered to have
reliable predictive ability [25]. In this study, the calculated result for q2 is 0.8606, which
demonstrates a good external predictive ability.

3.2.3. Comparison of Predicted and Observed Values

Figure 3 displays the correlation between the calculated predicted results and the
actual observed values for the entire dataset, providing a more intuitive representation of
the model’s strong predictive capability.
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3.3. Sensitivity Analysis on Descriptors

The sensitivity of descriptors in the BPNN model refers to the extent to which de-
scriptors influence the output results of the model. Conducting sensitivity analysis on
descriptors is of significant importance in optimizing the model, interpreting its prediction
results, and guiding feature selection. It can enhance the predictive ability and interpretabil-
ity of the BPNN model while also aiding in the optimization of data collection and feature
selection processes. The input layer of the aforementioned BPNN model consists of 11
structural descriptors, which describe relevant molecular structural information as pre-
sented in Table 3. Figure 4 illustrates the magnitudes of sensitivity coefficients for each
structural descriptor, which can be utilized to evaluate their relative contributions to the
BPNN model. Larger absolute values of sensitivity coefficients indicate a greater impact of
the descriptor on the model’s output, while the positive or negative sign of the sensitivity
coefficient represents its positive or negative influence on the model’s predictive ability.

Table 3. Descriptors for the friction-reducing performance.

Descriptor Description

ALogP Log of the octanol-water partition coefficient using the atom-based method.
ES_Count_sOH Calculate the E-state count for OH with one single bond.

Molecular_Weight The sum of the atomic masses.
HBD_Count Number of hydrogen bond donating groups in the molecule.

Num_H_Donors_Lipinski Number of Hydrogen Bond Donors which are defined as heteroatoms (N, O, P, and S) with
one or more attached Hydrogen atoms.

Molecular_PolarSASA the sum of the solvent accessible surface area of all the selected polar elements, which can
include N, O, P, and S.

Jurs_DPSA_2 Total charge weighted positive solvent-accessible surface area minus total charge weighted
negative solvent-accessible surface area.

Jurs_DPSA_3 Atomic charge weighted positive solvent-accessible surface area minus atomic charge
weighted negative solvent-accessible surface area.

Jurs_RNCG Charge of most negative atom divided by the total negative charge.

Jurs_TASA Sum of solvent-accessible surface areas of atoms with absolute value of partial charges less
than 0.2.

Jurs_WNSA_2 Partial negative solvent-accessible surface area multiplied by the total negative charge, then
multiplied by the total molecular solvent-accessible surface area and divided by 1000.
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3.3.1. Jurs Descriptors

Jurs descriptors are a type of three-dimensional molecular feature descriptor that
combine shape and electronic information. They are calculated by mapping the partial
charges of atoms onto individual atom-accessible surfaces [26]. These descriptors can
be used to predict molecular polarity, solubility, adsorption properties, and more. The
sensitivity results in Figure 3 indicate that Jurs descriptors play an important role in the
model. A total of five Jurs descriptors were introduced in the model, suggesting that the
polarity interaction between the lubricant molecules of this type and the SiC/PI friction
pair surface plays a crucial role in their friction-reducing performance.

These five descriptors exhibit varying sensitivities and positive/negative influences
in the model. Each descriptor reflects the molecular shape and charge distribution infor-
mation from different perspectives, revealing the tendencies and differences of different
types of atoms or functional groups in polar interactions. Specifically, Jurs_DPSA_2 and
Jurs_DPSA_3 consider the charge states of the entire molecule and each individual atom,
providing information about the polarity and solvent interactions of the entire molecule
and different atoms within the molecule. Jurs_TASA only calculates atoms with lower
electronegativity, while Jurs_WNSA_2 and Jurs_RNCG target negatively charged atoms.
These descriptors yield abstract numerical values through complex calculations, making it
difficult to provide a structural interpretation intuitively. However, the friction-reducing
performance exhibited by lubricants is ultimately the result of the combined influence
of these multiple factors. Therefore, by directly calculating these quantified values and
utilizing the BPNN model, we can effectively predict the friction-reducing performance of
the target molecule.

3.3.2. Molecular Property Counts

Molecular Property Counts are a simple and computationally efficient type of descrip-
tor that represents the characteristics of a molecule based on the counts of different types
of atoms and chemical bonds present. In this model, two Molecular Property Counts de-
scriptors are involved: HBD_Count and Num_H_Donors_Lipinski. HBD_Count counts the
number of groups that can act as hydrogen bond donors, while Num_H_Donors_Lipinski
counts the number of heteroatoms (O, N, S, P) with hydrogen atoms. In this study, the
structure of PI friction pair contains various hydrogen bond acceptors, such as oxygen
atoms in carbonyl groups, nitrogen atoms in amine groups, and oxygen atoms in ether
groups. These acceptors can form hydrogen bond interactions with hydrogen bond donors
of the lubricant molecules, confirming the importance of hydrogen bonding in improving
friction-reducing performance.

3.3.3. Solvent-Accessible Surface Area

Solvent Accessible Surface Area (SASA) is a geometric descriptor related to the three-
dimensional conformation of a molecule. It describes the regions on the molecular surface
that are accessible to solvent molecules and is calculated by simulating the positions
and interactions of solvent molecules on the molecular surface. Among them, Molecu-
lar_PolarSASA refers to the polar solvent accessible surface area of the molecule. It is used
to evaluate the size and distribution of polar regions in the molecule, providing information
about the molecule’s polarity characteristics. When calculating Molecular_PolarSASA, only
atoms containing polar elements such as N, O, P, and S are selected to calculate their solvent
accessible surface area, and their values are summed to obtain the final numerical value.
This is because these elements typically exhibit strong interactions with solvents (such as
water) and play an important role in the molecule’s solubility and interactions.

Molecular_PolarSASA exhibits a strong negative correlation with the friction coeffi-
cient measurement in the model. This indicates that molecules with larger polar solvent
accessible surface areas tend to have lower friction coefficients during the friction process,
resulting in friction reduction. For example, in this sample set, glycerol has the largest



Lubricants 2023, 11, 387 9 of 10

polar solvent accessible surface area, and its friction coefficient is close to the lowest value
(COF = 0.004613), achieving a state of ultra-low friction.

3.3.4. Estate Keys

Estate Keys descriptors can be used to calculate numerical values related to the
electronic topological state of specific atoms or record the count of specific types of atoms in
a molecular structure. These descriptors are obtained by computing the molecular topology
and electronic structure information, providing a comprehensive description of properties
such as molecular topology, substituent groups, and electronegativity effects. In this model,
a negatively correlated descriptor, ES_Count_sOH, is introduced, which represents the
count of -OH groups present in the molecule. This indicates that the presence of hydroxyl
or carboxyl groups in the molecule is beneficial for improving friction reduction.

3.3.5. AlogP

AlogP is an atom-based method used to calculate the octanol-water partition coeffi-
cient (LogP), which is an indicator of compound hydrophobicity (lipophilicity). It quantifies
the tendency of a compound to partition between organic solvents and water. Higher AlogP
values indicate greater lipophilicity, while lower AlogP values indicate greater hydrophilic-
ity of the molecular. According to our model, AlogP values exhibit a positive correlation
with the friction coefficient measurement. This suggests that organic lubricants with higher
hydrophilicity may exhibit better friction-reducing performance in the friction system.

In the above discussion, we have explored in detail the impact of each descriptor
on the friction-reducing performance of organic lubricants in the SiC/PI friction system.
This provides valuable guidance for the initial screening of lubricant molecular structures.
However, it is important to note that each descriptor is just one factor in lubricant design,
and their influence on friction-reducing performance varies in terms of direction and
weight. Considering the comprehensive impact of all descriptors and using the BPNN-
QSTR model for quantitative calculations can provide a more accurate prediction and
design of lubricant molecular structures with excellent friction-reducing performance. By
taking into account multiple factors simultaneously, we can better understand the complex
relationship between molecular descriptors and friction reduction, leading to more effective
lubricant design and optimization.

4. Conclusions

In this study, the friction-reducing performance of 36 organic liquid compounds as
lubricants in the SiC/PI friction pair was systematically tested. By using the backprop-
agation neural network method, a QSTR model was successfully established to predict
the friction-reducing performance of these lubricants. The optimal network structure of
the model was determined to be 11-5-1, with a result of R2 = 0.9700, R2 (LOO) = 0.6570,
q2 = 0.8606. The BPNN-QSTR model indicates that these five categories of descriptors,
namely Jurs, Molecular Property Counts, Estate Keys, and the octanol-water partition coef-
ficient, consisting of a total of 11 descriptors, influence the friction-reducing performance
of the lubricants.

Compared to traditional qualitative analysis methods, quantitative analysis can com-
prehensively and accurately reveal the synergistic effects of molecular structural factors on
lubricant friction reduction performance. The obtained model is characterized by simplic-
ity, non-experimentality, and good predictive ability, making it suitable for screening or
designing organic liquid lubricants with excellent friction-reducing performance. This is of
great significance for the development of high-performance lubrication systems.
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