RNAi-Mediated FoxO Silencing Inhibits Reproduction in Locusta migratoria
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects for Testing
2.2. Bioinformatic Analysis of LmFoxO
2.3. RNA Extraction and RT-qPCR
2.4. Tissue Expression Analysis of FoxO
2.5. RNAi-Mediated FoxO Silencing
2.6. Glycogen and Trehalose Determination
2.7. Data Statistics and Analysis
3. Results
3.1. Bioinformatics Analysis of FoxO
3.2. Tissue-Specific Expressions of FoxO and Key Hippo-Related Genes in L. migratoria
3.3. Effects of dsFoxO on Expressions of FoxO and Key Hippo-Related Genes
3.4. Effects of FoxO Silencing on L. migratoria Reproduction
3.5. Effects of FoxO Silencing on Glycogen and Trehalose in L. migratoria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Liu, B.Q.; Chen, Z.B.; Li, C.Q.; Li, X.Y.; Hong, J.S.; Luan, J.B. Vitellogenin facilitates associations between the whitefly and a bacteriocyte symbiont. mBio 2023, 14, e02990-22. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Saha, T.T.; Zou, Z.; Raikhel, A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018, 63, 489–511. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, W.; Huang, L.; Yi, G.; Jia, D.; Chen, Q.; Chen, H.; Wei, T. Insect bacterial symbiont-mediated vitellogenin uptake into oocytes to support egg development. mBio 2020, 11, e01142-20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, F.; Zeng, H.; Li, N.; Ren, C.; Su, Y.; Zhou, S.; Wang, G.; Palli, S.R.; Wang, J.; et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development 2020, 147, dev188805. [Google Scholar] [CrossRef]
- Jing, Y.P.; Wen, X.; Li, L.; Zhang, S.; Zhang, C.; Zhou, S. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc. Natl. Acad. Sci. USA 2021, 118, e2106908118. [Google Scholar] [CrossRef]
- Roth, T.F.; Porter, K.R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J. Cell Biol. 1964, 20, 313–332. [Google Scholar] [CrossRef]
- Sappington, T.W.; Raikhel, A.S. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem. Mol. Biol. 1998, 28, 277–300. [Google Scholar] [CrossRef]
- Ruohola, H.; Bremer, K.A.; Baker, D.; Swedlow, J.R.; Jan, L.Y.; Jan, Y.N. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 1991, 66, 433–449. [Google Scholar] [CrossRef] [PubMed]
- López-Schier, H.; St. Johnston, D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 2001, 15, 1393–1405. [Google Scholar] [CrossRef]
- Song, J.; Li, W.; Zhao, H.; Zhou, S. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochem. Mol. Biol. 2019, 106, 39–46. [Google Scholar] [CrossRef]
- Hansen, I.A.; Attardo, G.M.; Rodriguez, S.D.; Drake, L.L. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front. Physiol. 2014, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Dong, H.H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 2017, 233, R67–R79. [Google Scholar] [CrossRef]
- Xu, N.; Wei, S.F.; Xu, H.J. Transcriptome analysis of the regulatory mechanism of FoxO on wing dimorphism in the Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insects 2021, 12, 413. [Google Scholar] [CrossRef]
- Greer, E.L.; Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005, 24, 7410–7425. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 2011, 1813, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, Q.; Zeng, B.; Zhou, H.; Zhou, S. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis. Development 2020, 147, dev188813. [Google Scholar] [CrossRef]
- Huangfu, N.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Chen, L.; Gao, X.; Niu, L.; Gao, M.; Ji, J.; et al. Insulin Receptor Substrate-1 (IRS1) Regulates oogenesis and vitellogenesis in Propylea japonica by mediating the FOXO transcription factor expression, independent of JH and 20E signaling pathways. J. Agric. Food Chem. 2023, 71, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Süren-Castillo, S.; Abrisqueta, M.; Maestro, J.L. FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2012, 42, 491–498. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhang, C.X. Insulin receptors and wing dimorphism in rice planthoppers. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2017, 372, 20150489. [Google Scholar] [CrossRef]
- Domínguez, C.V.; Pagone, V.; Maestro, J.L. Regulation of insulin-like peptide expression in adult Blattella germanica females. Insect Biochem. Mol. Biol. 2022, 141, 103706. [Google Scholar] [CrossRef]
- Abrisqueta, M.; Süren-Castillo, S.; Maestro, J.L. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2014, 49, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, R.; Palli, S.R. Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2011, 41, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Meng, Z.; Chen, R.; Guan, K.L. The Hippo Pathway: Biology and Pathophysiology. Annu. Rev. Biochem. 2019, 88, 577–604. [Google Scholar] [CrossRef] [PubMed]
- Sayedyahossein, S.; Thines, L.; Sacks, D.B. Ca2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal. 2023, 110, 110846. [Google Scholar] [CrossRef] [PubMed]
- Kango-Singh, M.; Nolo, R.; Tao, C.; Verstreken, P.; Hiesinger, P.R.; Bellen, H.J.; Halder, G. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 2002, 129, 5719–5730. [Google Scholar] [CrossRef] [PubMed]
- Udan, R.S.; Kango-Singh, M.; Nolo, R.; Tao, C.; Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 2003, 5, 914–920. [Google Scholar] [CrossRef]
- Harvey, K.F.; Pfleger, C.M.; Hariharan, I.K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 2003, 114, 457–467. [Google Scholar] [CrossRef]
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef]
- Irles, P.; Piulachs, M.D. Unlike in Drosophila meroistic ovaries, hippo represses notch in Blattella germanica panoistic ovaries, triggering the mitosis-endocycle switch in the follicular cells. PLoS ONE 2014, 9, e113850. [Google Scholar] [CrossRef]
- Yu, J.; Poulton, J.; Huang, Y.C.; Deng, W.M. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS ONE 2008, 3, e1761. [Google Scholar] [CrossRef]
- Meignin, C.; Alvarez-Garcia, I.; Davis, I.; Palacios, I.M. The salvador-warts-hippo pathway is required for epithelial proliferation and axis specification in Drosophila. Curr. Biol. 2007, 17, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Elshaer, N.; Piulachs, M.D. Crosstalk of EGFR signalling with Notch and Hippo pathways to regulate cell specification, migration and proliferation in cockroach panoistic ovaries. Biol. Cell 2015, 107, 273–285. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Lecoq, M.; Michalakis, Y.; Loiseau, A.; Sword, G.A.; Piry, S.; Estoup, A. Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol. Ecol. 2008, 17, 3640–3653. [Google Scholar] [CrossRef]
- Sangbaramou, R.; Camara, I.; Huang, X.Z.; Shen, J.; Tan, S.Q.; Shi, W.P. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana. PLoS ONE 2018, 13, e0206816. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, X.; Yang, P.; Jiang, X.; Jiang, F.; Zhao, D.; Li, B.; Cui, F.; Wei, J.; Ma, C.; et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 2014, 5, 2957. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Tenlen, J.R. Microinjection of dsRNA in Tardigrades. Cold Spring Harb. Protoc. 2018, 11, prot102368. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, P.; Mahlapuu, M. Forkhead transcription factors: Key players in development and metabolism. Dev. Biol. 2002, 250, 1–23. [Google Scholar] [CrossRef]
- Barthel, A.; Schmoll, D.; Unterman, T.G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 2005, 16, 183–189. [Google Scholar] [CrossRef]
- Clark, K.L.; Halay, E.D.; Lai, E.; Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993, 364, 412–420. [Google Scholar] [CrossRef]
- Santos, B.F.; Grenho, I.; Martel, P.J.; Ferreira, B.I.; Link, W. FOXO family isoforms. Cell Death Dis. 2023, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, M.K.; Yuan, Z.; Boag, P.R.; Yang, Y.; Villén, J.; Becker, E.B.; DiBacco, S.; de la Iglesia, N.; Gygi, S.; Blackwell, T.K.; et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006, 125, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Gao, Y.; Bai, Y.; Yuan, Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim. Biophys. Sin. 2015, 47, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Kudryashova, T.V.; Dabral, S.; Nayakanti, S.; Ray, A.; Goncharov, D.A.; Avolio, T.; Shen, Y.; Rode, A.; Pena, A.; Jiang, L.; et al. Noncanonical HIPPO/MST Signaling via BUB3 and FOXO drives pulmonary vascular cell growth and Survival. Circ. Res. 2022, 130, 760–778. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, A.; Wu, X.; Tatar, M.; Liu, N.; Bai, H. Age-dependent changes in transcription factor FOXO targeting in female Drosophila. Front. Genet. 2019, 10, 312. [Google Scholar] [CrossRef]
- Ding, K.; Barretto, E.C.; Johnston, M.; Lee, B.; Gallo, M.; Grewal, S.S. Transcriptome analysis of FOXO-dependent hypoxia gene expression identifies Hipk as a regulator of low oxygen tolerance in Drosophila. G3 2022, 12, jkac263. [Google Scholar] [CrossRef]
- Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochem. Mol. Biol. 2010, 40, 166–178. [Google Scholar] [CrossRef]
- Hossain, M.S.; Liu, Y.; Zhou, S.; Li, K.; Tian, L.; Li, S. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem. Mol. Biol. 2013, 43, 829–838. [Google Scholar] [CrossRef]
- Cai, M.J.; Zhao, W.L.; Jing, Y.P.; Song, Q.; Zhang, X.Q.; Wang, J.X.; Zhao, X.F. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development 2016, 143, 1005–1015. [Google Scholar] [CrossRef]
- Koyama, T.; Mendes, C.C.; Mirth, C.K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. 2013, 4, 263. [Google Scholar] [CrossRef]
- Santos, C.G.; Humann, F.C.; Hartfelder, K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019, 31, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Sim, C.; Denlinger, D.L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. USA 2008, 105, 6777–6781. [Google Scholar] [CrossRef]
- Hansen, I.A.; Sieglaff, D.H.; Munro, J.B.; Shiao, S.H.; Cruz, J.; Lee, I.W.; Heraty, J.M.; Raikhel, A.S. Forkhead transcription factors regulate mosquito reproduction. Insect Biochem. Mol. Biol. 2007, 37, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Al Baki, M.A.; Lee, D.W.; Jung, J.K.; Kim, Y. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. BMC Dev. Biol. 2019, 19, 14. [Google Scholar] [CrossRef]
- Assa-Kunik, E.; Torres, I.L.; Schejter, E.D.; Johnston, D.S.; Shilo, B.Z. Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 2007, 134, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Volkova, E.I.; Dorogova, N.V.; Andreyenkov, O.V.; Tikhomirov, S.A.; Demakov, S.A. New Mutations in the 5′ Region of the Notch Gene Affect Drosophila melanogaster Oogenesis. J. Dev. Biol. 2022, 10, 32. [Google Scholar] [CrossRef]
- Chen, H.J.; Wang, C.M.; Wang, T.W.; Liaw, G.J.; Hsu, T.H.; Lin, T.H.; Yu, J.Y. The Hippo pathway controls polar cell fate through Notch signaling during Drosophila oogenesis. Dev. Biol. 2011, 357, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Polesello, C.; Tapon, N. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr. Biol. 2007, 17, 1864–1870. [Google Scholar] [CrossRef]
- Deng, W.M.; Althauser, C.; Ruohola-Baker, H. Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 2001, 128, 4737–4746. [Google Scholar] [CrossRef]
- Maitra, S.; Kulikauskas, R.M.; Gavilan, H.; Fehon, R.G. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr. Biol. 2006, 16, 702–709. [Google Scholar] [CrossRef]
- Ziegler, R.; Ibrahim, M.M. Formation of lipid reserves in fatbody and eggs of the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 2001, 47, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Broughton, S.; Alic, N.; Slack, C.; Bass, T.; Ikeya, T.; Vinti, G.; Tommasi, A.M.; Driege, Y.; Hafen, E.; Partridge, L. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS ONE 2008, 3, e3721. [Google Scholar] [CrossRef] [PubMed]
- Lenaerts, C.; Monjon, E.; Van Lommel, J.; Verbakel, L.; Vanden Broeck, J. Peptides in insect oogenesis. Curr. Opin. Insect Sci. 2019, 31, 58–64. [Google Scholar] [CrossRef]
- Leyria, J.; Orchard, I.; Lange, A.B. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. Insect Biochem. Mol. Biol. 2021, 130, 103526. [Google Scholar] [CrossRef]
- Mariano, A.C.; Santos, R.; Gonzalez, M.S.; Feder, D.; Machado, E.A.; Pascarelli, B.; Gondim, K.C.; Meyer-Fernandes, J.R. Synthesis and mobilization of glycogen and trehalose in adult male Rhodnius prolixus. Arch. Insect Biochem. Physiol. 2009, 72, 1–15. [Google Scholar] [CrossRef]
- Matsuda, H.; Yamada, T.; Yoshida, M.; Nishimura, T. Flies without trehalose. J. Biol. Chem. 2015, 290, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Chen, J.; Shen, Q.; Wang, S.; Xu, H.; Tang, B. Glycogen phosphorylase and glycogen synthase: Gene cloning and expression analysis reveal their role in trehalose metabolism in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). J. Insect Sci. 2017, 17, 42. [Google Scholar] [CrossRef]
- Seo, Y.; Kingsley, S.; Walker, G.; Mondoux, M.A.; Tissenbaum, H.A. Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2018, 115, E2791–E2800. [Google Scholar] [CrossRef]
- Lum, P.Y.; Chino, H. Trehalose, the insect blood sugar, inhibits loading of diacylglycerol by lipophorin from the fat body in locusts. Biochem. Biophys. Res. Commun. 1990, 172, 588–594. [Google Scholar] [CrossRef]
- Kono, Y.; Takahashi, M.; Mihara, M.; Matsushita, K.; Kameda, Y. Effect of a trehalase inhibitor, validoxylamine a, on oocyte development and ootheca formation in Periplaneta americana (blattodea, blattidae). Appl. Entomol. Zool. 1997, 32, 293–301. [Google Scholar] [CrossRef]
Primer Name | F-Primer Sequence [5′–3′] | R-Primer Sequence [5′–3′] | Method |
---|---|---|---|
FoxO1 | AGATGGACCCGTCGTTCGAG | GGCTGAAGTCTGAAGTTGAAGTC | cDNA Clones |
FoxO2 | CTGGACGTGGTGGTGAAGCA | CGTGCTTGATCACCTCGTCC | |
FoxO3 | GCCAAGAAGAACACCAGCC | CGTCTCGATGTTGAGGTTGAGG | |
GFP | AAGGGCGAGGAGCTGTTCACCG | CAGCAGGACCATGTGATCGCGC | |
FoxO | GAACTCGATCCGGCATAACC | CGCCTCCACCTTCTTCTTG | RT-qPCR |
VgA | CCCACAAGAAGCACAGAACG | TTGGTCGCCATCAACAGAAG | |
VgB | GCACTTAGCAGCATTAAGACCC | GGCAACGATAGATGGATAGGAC | |
VgR1 | ATAAAGGTCTACCATCCAGCCC | GACAGGCACAGGTGTAGGAGTT | |
VgR2 | GGCAAAAGGGATCACTCGA | GCCACCATCAGCCCAAAAT | |
Met | GCGGTCACCTCTTGTCAATAAT | CACTTTCTGATGCTGCCCTAA | |
Hpo | GCTGAAAACATAAAGGGAGG | CTGGAATGGATTCGGAGG | |
Sav | CTGCTTTGGTTCCTTCAGT | GTTGGTAGCCCTTCTTTCTC | |
Yki | AAGCCCCTGCTCGTATTTAT | TCTATCCGCACCACCAAGTT | |
Notch | CGGAAACCGAGTGTCAAG | CGGGCTGGGAATGCTA | |
dsFoxO | TAATACGACTCACTATAGGGAGATGGACCCGTCGTTCGAG | TAATACGACTCACTATAGGGGGCTGAAGTCTGAAGTTGAAGTC | dsRNA Synthesis |
dsGFP | TAATACGACTCACTATAGGGAAGGGCGAGGAGCTGTTCACCG | TAATACGACTCACTATAGGGCAGCAGGACCATGTGATCGCGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Yuan, Z.; Zhao, H.; Wu, X.; Cai, N.; Ma, T.; Tang, B.; Chen, G.; Wang, S. RNAi-Mediated FoxO Silencing Inhibits Reproduction in Locusta migratoria. Insects 2024, 15, 891. https://doi.org/10.3390/insects15110891
Xu J, Yuan Z, Zhao H, Wu X, Cai N, Ma T, Tang B, Chen G, Wang S. RNAi-Mediated FoxO Silencing Inhibits Reproduction in Locusta migratoria. Insects. 2024; 15(11):891. https://doi.org/10.3390/insects15110891
Chicago/Turabian StyleXu, Jiaying, Zeming Yuan, Huazhang Zhao, Xinru Wu, Nina Cai, Tingting Ma, Bin Tang, Gongxing Chen, and Shigui Wang. 2024. "RNAi-Mediated FoxO Silencing Inhibits Reproduction in Locusta migratoria" Insects 15, no. 11: 891. https://doi.org/10.3390/insects15110891