Finite Element Analysis of Laser Peening of Thin Aluminum Structures
Abstract
:1. Introduction
2. LP Process Modeling
2.1. LP Process
2.2. Computational Model
2.3. Material Model
2.4. Pressure Model
2.5. Model Confirmation
3. Results and Discussion
3.1. Single Shot Simulations
3.1.1. Effects of Peening Pressure
3.1.2. Effects of Peen Layers
3.1.3. Observations
3.2. Simulation of a Peened Line
3.2.1. Effects of Adjacent Spots
3.2.2. Effects of Peen Layers
3.2.3. Effects of Peen Patterning
4. Conclusions
- In thin plates of aluminum, above a threshold value of peak applied pressure, laser peening can lead to undesirable local “hotspots” of tensile residual stress as a consequence of the interaction of the shock wave with the geometry. In thin sections, reflected stress waves occur that, in combination with the smaller amount of constraining material, can lead to tensile stress on the peened surface through localized reverse yielding.
- Mitigation of the tensile regions can be affected by layering of the peen spots, where additional layers can reduce the tensile zones and generate compression. However, for a given specimen or component geometry, the resultant stress fields are dependent upon the peening parameters and the precise geometry of the patterning that is applied.
- In thin structures, the residual stresses resulting from applying multiple peen spots to a single location do not necessarily match the results obtained from applying multiple peen spots using offset peen patterning.
- Peen patterning can affect the biaxiality of the residual stress field, most notably if a line of peen spots is generated to overlay a surface scratch, for example, where the lowest magnitude of residual stress is found to be perpendicular to the peen line.
Author Contributions
Funding
Conflicts of Interest
References
- Tenaglia, R.D.; Lahrman, D.F. Preventing Fatigue Failures with Laser Peening. In AMPTIAC Quarterly; Defense Technical Information Center: Fort Belvoir, VA, USA, 2003; pp. 3–7. [Google Scholar]
- Bair, R. Application of Surface Residual Stresses for Durability and Damage Tolerance Improvement in F-22 Wing Attachment Lugs. In Proceedings of the Aircraft Structural Integrity Program (ASIP) Conference, Jacksonville, FL, USA, 1–3 December 2009. [Google Scholar]
- Fairand, B.P.; Wilcox, B.A.; Gallagher, W.J.; Williams, D.N. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J. Appl. Phys. 1972, 43, 3893–3895. [Google Scholar] [CrossRef]
- Fairand, B.P.; Clauer, A.H.; Jung, R.G.; Wilcox, B.A. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Appl. Phys. Lett. 1974, 25, 431–433. [Google Scholar] [CrossRef]
- Montross, C.S.; Wei, T.; Ye, L.; Clark, G.; Mai, Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue 2002, 24, 1021–1036. [Google Scholar] [CrossRef]
- Ding, K.; Ye, L. Laser Shock Processing, Process Performance and Simulation; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wu, J.; Zhao, J.; Qiao, H.; Liu, X.; Zhang, Y.; Hu, T. Acoustic wave detection of laser shock peening. Opto Electron. Adv. 2018, 1, 180016. [Google Scholar] [CrossRef]
- US Air Force Scientific Advisory Board. Sustaining Air Force Aging Aircraft into the 21st Century, Report SAB-TR-11-01. 01 August 2011.
- Clauer, A.H.; Lahrman, D.F. Laser Shock Processing as a Surface Enhancement Process; Durable Surfaces: Malvern, PA, USA, 2001; pp. 121–142. [Google Scholar]
- Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Mater. Sci. Eng. A 2012, 548, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Bhamare, S.; Ramakrishnan, G.; Mannava, S.R.; Langer, K.; Vasudevan, V.K.; Qian, D. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy. Surf. Coat. Technol. 2013, 232, 464–474. [Google Scholar] [CrossRef]
- Smyth, N.A.; Toparli, M.B.; Fitzpatrick, M.E.; Irving, P.E. Recovery of fatigue life using laser peening on 2024-T351 aluminium sheet containing scratch damage: The role of residual stress. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1161–1174. [Google Scholar] [CrossRef]
- Toparli, M.B.; Fitzpatrick, M.E. Residual Stresses Induced by Laser Peening of Thin Aluminium Plates. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2011; pp. 504–509. [Google Scholar]
- Achintha, M.N.; Nowell, D.; Shapiro, K.; Withers, P.J. Eigenstrain modelling of residual stress generated by arrays of laser shock peening shots and determination of the complete stress field using limited strain measurements. Surf. Coat. Technol. 2013, 216, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Cellard, C.; Retraint, D.; François, M.; Rouhaud, E.; Le Saunier, D. Laser shock peening of Ti-17 titanium alloy: Influence of process parameters. Mater. Sci. Eng. A 2012, 532, 362–372. [Google Scholar] [CrossRef]
- Toparli, M.B.; Fitzpatrick, M.E. Through Thickness Residual Stress Measurements by Neutron Diffraction and Hole Drilling in a Single Laser-Peened Spot on a Thin Aluminium Plate. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2014; pp. 167–172. [Google Scholar]
- Ding, K.; Ye, L. FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy. Surf. Eng. 2003, 19, 127–133. [Google Scholar] [CrossRef]
- Hong, Z.; Chengye, Y. Laser shock processing of 2024-T62 aluminum alloy. Mater. Sci. Eng. A 1998, 257, 322–327. [Google Scholar] [CrossRef]
- Yang, J.M.; Her, Y.C.; Han, N.; Clauer, A. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes. Mater. Sci. Eng. A 2001, 298, 296–299. [Google Scholar] [CrossRef]
- Ivetic, G.; Meneghin, I.; Troiani, E.; Molinari, G.; Ocana, J.; Morales, M. Fatigue in laser shock peened open-hole thin aluminium speciemens. Mater. Sci. Eng. A 2012, 534, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Braisted, W.; Brockman, R. Finite element simulation of laser shock peening. Int. J. Fatigue 1999, 21, 719–724. [Google Scholar] [CrossRef]
- Ding, K.; Ye, L. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surf. Eng. 2003, 19, 351–358. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Morales, M.; Molpeceres, C.; Torres, J. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments. Appl. Surf. Sci. 2004, 238, 242–248. [Google Scholar] [CrossRef]
- Singh, G.; Grandhi, R.; Stargel, D.; Langer, K. Modeling and optimization of a laser shock peening process. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canada, 10–12 September 2008; pp. 5838–5850. [Google Scholar]
- Brockman, R.A.; Braisted, W.R.; Olson, S.E.; Tenaglia, R.D.; Clauer, A.H.; Langer, K.; Shepard, M.J. Prediction and characterization of residual stresses from laser shock peening. Int. J. Fatigue 2012, 36, 96–108. [Google Scholar] [CrossRef]
- Hasser, P.J.; Malik, A.S.; Langer, K.; Spradlin, T.J. Simulation of Surface Roughness Effects on Residual Stress in Laser Shock Peening. In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference: American Society of Mechanical Engineers, Madison, WI, USA, 10–14 June 2013. [Google Scholar]
- ABAQUS Version 6.14 User’s Manual; Dassault Systèmes: Providence, RI, USA, 2015.
- Peyre, P.; Fabbro, R. Laser Shock Processing: A Review of the Physics and Applications. Opt. Quantum Electron. 1995, 27, 1213–1229. [Google Scholar]
- Peyre, P.; Fabbro, R.; Merrien, P.; Lieurade, H.P. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater. Sci. Eng. A 1996, 210, 102–113. [Google Scholar]
- Spradlin, T.J.; Grandhi, R.V.; Langer, K. Experimental validation of simulated fatigue life estimates in laser-peened aluminum. Int. J. Struct. Integr. 2011, 2, 74–86. [Google Scholar] [CrossRef]
- Zhou, Z.; Gill, A.S.; Qian, D.; Mannava, S.R.; Langer, K.; Wen, Y.; Vasudevan, V.K. A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. Int. J. Impact Eng. 2011, 38, 590–596. [Google Scholar] [CrossRef]
- Zhou, Z.; Bhamare, S.; Ramakrishnan, G.; Mannava, S.R.; Langer, K. Thermal relaxation of residual stress in laser shock peened Ti-6Al-4V alloy. Surf. Coat. Technol. 2012, 206, 4619–4627. [Google Scholar] [CrossRef]
- Spradlin, T.; Grandhi, R.; Langer, K. Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures. In Proceedings of the 2011: ICSP-11, South Bend, IN, USA, 12–15 September 2011; pp. 111–116. [Google Scholar]
- Hatamleh, M.I.; Mahadevan, J.S.; Malik, A.S.; Qian, D. Variable Damping Profiles for Laser Shock Peening Simulation Using Modal ANalysis and the SEATD Method. In Proceedings of the ASME 12th International Manufacturing Science and Engineering Conference MSEC2017, Los Angeles, CA, USA, 4–8 June 2017. [Google Scholar]
- Meyers, M.A. Dynamic Behavior of Materials; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–20 April 1931; pp. 541–547. [Google Scholar]
- Lesuer, D.R. Experimental Investigations of Material Models for T-6Al-4V Titanium and 2024-T3 Aluminum; Lawrence Livermore National Laboratory: Berkeley, CA, USA, 2000.
- Langer, K.; Olson, S.; Brockman, R.; Braisted, W.; Spradlin, T.; Fitzpatrick, M.E. High strain-rate material model validation for laser peening simulation. J. Eng. 2015, 13, 150–157. [Google Scholar] [CrossRef]
- Amarchinta, H.K.; Grandhi, R.V.; Langer, K.; Stargel, D.S. Material model validation for laser shock peening process simulation. Model. Simul. Mater. Sci. Eng. 2009, 17, 015010. [Google Scholar] [CrossRef]
- Amarchinta, H.K.; Grandhi, R.V.; Clauer, A.H.; Langer, K.; Stargel, D.S. Simulation of residual stress induced by a laser peening process through inverse optimization of material models. J. Mater. Process. Technol. 2010, 210, 1997–2006. [Google Scholar] [CrossRef]
- Angulo, I.; Cordovilla, F.; García-Beltrán, A.; Smyth, N.S.; Langer, K.; Fitzpatrick, M.E.; Ocaña, J.L. The effect of material cyclic deformation properties in residual stress generation by laser shock processing. Int. J. Mech. Sci. 2019, 156, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Fabbro, R.; Fournier, J.; Ballard, P.; Devaux, D.; Virmont, J. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 1990, 68, 775–784. [Google Scholar] [CrossRef]
- Ocana, J.L.; Morales, M.; Molpeceres, C.; Torres, J.; Porro, J.A.; Gomez, G.; Rubio, C. Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys. High Power Laser Ablation V 2004, 5548, 642–653. [Google Scholar]
- Morales, M.; Ocana, J.L.; Molpeceres, C.; Porro, J.A.; García-Beltrán, A. Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing. Surf. Coat. Technol. 2008, 202, 2257–2262. [Google Scholar] [CrossRef] [Green Version]
- Ocaña, J.L.; Morales, M.; Molpeceres, C.; Porro, J.A. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues. High Power Laser Ablation 2010, 1278, 902–913. [Google Scholar]
- Morales, M.; Correa, C.; Porro, J.; Molpeceres, C.; Luis Ocaña, J. Thermomechanical modelling of stress fields in metallic targets subject to laser shock processing. Int. J. Struct. Integr. 2011, 2, 51–61. [Google Scholar] [CrossRef]
Material | A/MPa | B/MPa | C | n |
---|---|---|---|---|
Al 2024-T3 | 369 | 684 | 0.014 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langer, K.; Spradlin, T.J.; Fitzpatrick, M.E. Finite Element Analysis of Laser Peening of Thin Aluminum Structures. Metals 2020, 10, 93. https://doi.org/10.3390/met10010093
Langer K, Spradlin TJ, Fitzpatrick ME. Finite Element Analysis of Laser Peening of Thin Aluminum Structures. Metals. 2020; 10(1):93. https://doi.org/10.3390/met10010093
Chicago/Turabian StyleLanger, Kristina, Thomas J. Spradlin, and Michael E. Fitzpatrick. 2020. "Finite Element Analysis of Laser Peening of Thin Aluminum Structures" Metals 10, no. 1: 93. https://doi.org/10.3390/met10010093