Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Flow Stress Characteristics
3.2. Establishment of Constitutive Model
3.3. Verification of Different Strain Constitutive Models
3.4. Establishment of Processing Map
3.5. Microstructure Evolution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, J.F.; Nie, Z.H.; Tan, C.W.; Zhou, G.; Chen, R.; Li, M.R.; Yu, X.D.; Zhao, X.C.; Hui, S.X.; Ye, W.J.; et al. The dynamic response of the metastable β titanium alloy Ti-2Al-9.2Mo-2Fe at ambient temperature. Mater. Sci. Eng. A 2019, 751, 191–200. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Yang, F.; Torrens, R.; Bolzoni, L. Evaluation of the hot workability and deformation mechanisms for a metastable beta titanium alloy prepared from powder. Mater. Charact. 2019, 146, 226–238. [Google Scholar] [CrossRef]
- Fan, J.; Li, J.; Li, J.S.; Zhang, Y.D.; Kou, H.C.; Germain, L.; Esling, C. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature. Mater. Charact. 2017, 130, 149–155. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspective on Titanium science and technology. Acta. Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Long, S.; Xia, Y.F.; Wang, P.; Zhou, Y.T.; Gong, F.J.; Zhou, J.; Zhang, J.S.; Cui, M.L. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation. J. Alloys Compd. 2015, 796, 65–76. [Google Scholar] [CrossRef]
- Li, C.L.; Mi, X.J.; Ye, W.J.; Hui, S.X.; Yu, Y.; Wang, W.Q. Effect of solution temperature on microstructures and tensile properties of high strength Ti-6Cr-5Mo-5V-4Al alloy. Mater. Sci. Eng. A 2013, 578, 103–109. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, V.; Ghosal, P.; Kumar, V. Characterization of fracture and deformation mechanism in a high strength beta titanium alloy Ti-10-2-3 using EBSD technique. Mater. Sci. Eng. A 2015, 623, 49–58. [Google Scholar] [CrossRef]
- Wang, W.Q.; Yang, Y.L.; Zhang, Y.Q.; Li, F.L.; Yang, H.L.; Zhang, P.H. The microstructure and mechanical properties of high-strength and high-toughness titanium alloy BTi-6554 bar. Mater. Sci. Forum 2009, 618–619, 173–176. [Google Scholar] [CrossRef]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Zhan, H.; Kent, D.; Wang, G.; Wang, G.; Dargusch, M. The dynamic response of a β titanium alloy to high strain rates and elevated temperatures. Mater. Sci. Eng. A 2014, 607, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.; Zeng, W.; Wang, G.; Kent, D.; Dargusch, M. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures. Mater. Charact. 2015, 102, 103–113. [Google Scholar] [CrossRef]
- Trimble, D.; O’Donnell, G.E. Constitutive modelling for elevated temperature flow behaviour of AA7075. Mater. Des. 2015, 76, 150–168. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 2011, 32, 1733–1759. [Google Scholar] [CrossRef]
- Rusinek, A.; Rodríguez-Martínez, J.A.; Arias, A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. Int. J. Mech. Sci. 2010, 52, 120–135. [Google Scholar] [CrossRef] [Green Version]
- He, A.; Xie, G.; Zhang, H.; Wang, X.T. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater. Des. 2013, 52, 677–685. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Balaji, A.; Narayanasamy, R. Analysis of hot deformation behavior of Al 5083-TiC nanocomposite using constitutive and dynamic material models. Mater. Des. 2012, 37, 102–110. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ning, Y.Q.; Yao, Z.K.; Guo, H.Z. Hot deformation behavior of Ti-6.0Al-7.0Nb biomedical alloy by using processing map. J. Alloys Compd. 2014, 587, 183–189. [Google Scholar] [CrossRef]
- Pilehva, F.; Zarei-Hanzaki, A.; Ghambari, M.; Abedi, H.R. Flow behavior modeling of a Ti-6Al-7Nb biomedical alloy during manufacturing at elevated temperatures. Mater. Des. 2013, 51, 457–465. [Google Scholar] [CrossRef]
- Qin, C.; Yao, Z.K.; Ning, Y.Q.; Shi, Z.F.; Guo, H.Z. Hot deformation behavior of TC11/Ti-22Al-25Nb dual-alloy in isothermal compression. Trans. Nonferrous Met. Soc. China 2015, 25, 2195–2205. [Google Scholar] [CrossRef]
- Jia, W.T.; Xu, S.; Le, Q.C.; Fu, L.; Ma, L.F.; Tang, Y. Modified Fields-Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation. Mater. Des. 2016, 106, 120–132. [Google Scholar] [CrossRef]
- Haghdadi, N.; Zarei-Hanzaki, A.; Abedi, H.R. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain. Mater. Sci. Eng. A 2012, 535, 252–257. [Google Scholar] [CrossRef]
- Ning, Y.Q.; Fu, M.W.; Chen, X. Hot deformation behavior of GH4169 superalloy associated with stick δ phase dissolution during isothermal compression process. Mater. Sci. Eng. A 2012, 540, 164–173. [Google Scholar] [CrossRef]
- Zhang, H.M.; Chen, G.; Chen, Q.; Han, F.; Zhao, Z.D. A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions. J. Alloys Compd. 2018, 743, 283–293. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, W.D.; Zhao, Y.Q.; Zhang, X.M.; Shu, Y.; Zhou, Y.G. Modeling constitutive relationship of Ti40 alloy using artificial neural network. Mater. Des. 2011, 32, 1537–1541. [Google Scholar] [CrossRef]
- Raj, R. Development of a processing map for use in warm-forming and hot-forming processes. Metall. Trans. A 1981, 12, 1089–1097. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Liu, X.M.; Yang, H.; Ning, Y.Q.; Wen, S.F.; Wang, Q.D. The deformation behavior, microstructural mechanism, and process optimization of PM/Wrought dual superalloys for manufacturing the dual-property turbine disc. Metals 2019, 9, 1127. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Lin, Y.C.; Wen, D.X.; Zhang, J.L.; He, M. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 2014, 57, 568–577. [Google Scholar] [CrossRef]
- Wu, K.; Liu, G.Q.; Hu, B.F.; Wang, C.Y.; Zhang, Y.W.; Tao, Y.; Liu, J.T. Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy. Mater. Sci. Eng. A 2011, 528, 4620–4629. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Ou, H.G.; Liu, B.; Gui, Z.S.; Long, H. Flow characteristics and intrinsic workability of IN718 superalloy. Mater. Sci. Eng. A 2015, 642, 279–287. [Google Scholar] [CrossRef]
- Sellars, C.M.; Mctegart, W.J. On the mechanism of deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Mcqueen, H.J.; Ryan, N.D. Constitutive analysis in hot working. Mater. Sci. Eng. A 2002, 322, 43–63. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Sargent, P.M.; Ashby, M.F. Deformation maps for titanium and zirconium. Scr. Metall. 1982, 16, 1415–1422. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Xiao, L.; Ge, P.; Sun, J.; Xi, Z.P. Hot deformation behavior and processing maps of Ti-1300 alloy. Mater. Sci. Eng. A 2014, 604, 111–116. [Google Scholar] [CrossRef]
- Nie, X.A.; Hu, Z.; Liu, H.Q.; Yi, D.Q.; Chen, T.X.; Wang, B.F.; Gao, Q.; Wang, D.C. High temperature deformation and creep behavior of Ti-5Al-5Mo-5V-1Fe-1Cr alloy. Mater. Sci. Eng. A 2014, 613, 306–316. [Google Scholar] [CrossRef]
- Warchomicka, F.; Poletti, C.; Stockinger, M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr. Mater. Sci. Eng. A 2011, 528, 8277–8285. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Gegel, H.L.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C. Mater. Sci. Eng. A 2005, 391, 141–150. [Google Scholar] [CrossRef]
- Dikovits, M.; Poletti, C.; Warchomicka, F. Deformation mechanisms in the near-β titanium alloy Ti-55531. Metall. Mater. Trans. A 2014, 45, 1586–1596. [Google Scholar] [CrossRef]
Cr | Mo | V | Al | Fe | Si | C | Ti |
---|---|---|---|---|---|---|---|
5.7 | 4.7 | 4.81 | 3.93 | 0.080 | 0.028 | 0.025 | Bal. |
Model Parameters | Parameters Values | |
---|---|---|
A + β Phase | β Phase | |
n’ | 5.003402 | 4.331211 |
β | 0.034779 | 0.04428 |
α | 0.006951 | 0.010223 |
n | 3.706985 | 3.197382 |
Q | 244.8959 | 183.815 |
lnA | 24.82687 | 16.08101 |
Alloy | Transformation Point Tβ/°C | Deformation Temperature T/°C | Strain Rate /s−1 | Q/kJ·mol−1 |
---|---|---|---|---|
Ti-1300 [34] | 875 | 860~890 | 10−2~10 | 178 |
800~860 | 216 | |||
Ti-55511 [35] | 845 | 850~950 | 10−3~10 | 137 |
700~800 | 288 | |||
Ti-55531 [36] | 803 | 823~843 | 10−2~1 | 148 |
763~783 | 275 | |||
Ti-6554 | 790 | 810~840 | 10−3~10 | 184 |
715~775 | 245 |
α | n | Q | lnA | ||||
---|---|---|---|---|---|---|---|
X0 | 0.00449 | N0 | 4.53506 | Q0 | 356.55303 | Y0 | 37.73193 |
X1 | 0.00117 | N1 | −6.57274 | Q1 | 390.72639 | Y1 | 46.276 |
X2 | 0.01945 | N2 | 23.81874 | Q2 | −4473.36504 | Y2 | −531.88745 |
X3 | −0.04781 | N3 | −45.73538 | Q3 | 12113.23612 | Y3 | 1449.71709 |
X4 | 0.05363 | N4 | 42.39728 | Q4 | −13845.55598 | Y4 | −1663.14237 |
X5 | −0.02422 | N5 | −13.74889 | Q5 | 5700.25554 | Y5 | 685.98485 |
α | n | Q | lnA | ||||
---|---|---|---|---|---|---|---|
X0 | 0.00794 | N0 | 3.56092 | Q0 | 457.62985 | Y0 | 42.82754 |
X1 | −0.000679 | N1 | −3.21573 | Q1 | −1759.56953 | Y1 | −191.89453 |
X2 | 0.01243 | N2 | 12.24894 | Q2 | 8148.57959 | Y2 | 890.00338 |
X3 | 0.00287 | N3 | −25.02692 | Q3 | −19516.71413 | Y3 | −2131.70623 |
X4 | −0.2847 | N4 | 25.43849 | Q4 | 20285.7594 | Y4 | 2216.20461 |
X5 | 0.01556 | N5 | −9.37857 | Q5 | −7368.92828 | Y5 | −805.47528 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, Z.; Yang, H.; Ning, Y. Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts. Metals 2020, 10, 828. https://doi.org/10.3390/met10060828
Liu Q, Wang Z, Yang H, Ning Y. Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts. Metals. 2020; 10(6):828. https://doi.org/10.3390/met10060828
Chicago/Turabian StyleLiu, Qi, Zhaotian Wang, Hao Yang, and Yongquan Ning. 2020. "Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts" Metals 10, no. 6: 828. https://doi.org/10.3390/met10060828