Aluminum-to-Steel Cladding by Explosive Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Welding Results and Velocities
3.2. Interface Morphology and Microstructure
3.3. Mechanical Properties
3.4. Energetic Mixture Analysis
4. Conclusions
- The coupled use of an interlayer and a low-density and low-detonation velocity explosive mixture is an effective strategy for producing aluminum-to-carbon steel and aluminum-to-stainless steel clads with sound microstructure and good mechanical behavior;
- The difference in weldability of aluminum-carbon steel and aluminum-stainless steel couples are less significant when welding under low energetic conditions;
- The tested low-density explosive mixture detonated with low detonation velocity, using a low explosive ratio, which resulted in welding with low values of both collision point velocity and impact velocity;
- Given to its properties of low-detonation velocity, low-density and the ability to detonate in small explosive thickness, the tested mixture is suitable to be used for welding very thin flyers and for welding dissimilar materials that tend to form intermetallic phases.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Hashimoto, H.; Sukedai, E.; Zhang, Y.; Zhang, Z. Morphology and structure of various phases at the bonding interface of Al/steel formed by explosive welding. J. Electron Microsc. 2000, 49, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, H.; Shen, Z. Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Des. 2015, 87, 815–824. [Google Scholar] [CrossRef]
- Guo, X.; Fan, M.; Wang, L.; Ma, F. Bonding Interface and Bending Deformation of Al/316LSS Clad Metal Prepared by Explosive Welding. J. Mater. Eng. Perform. 2016, 25, 2157–2163. [Google Scholar] [CrossRef]
- Kaya, Y. Microstructural, Mechanical and Corrosion Investigations of Ship Steel-Aluminum Bimetal Composites Produced by Explosive Welding. Metals 2018, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer. Mater. Charact. 2019, 155, 109819. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Explosive welding of aluminium to stainless steel. J. Mater. Process. Technol. 2018, 262, 340–349. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds. Mater. Charact. 2018, 142, 432–442. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Influence of base material properties on copper and aluminium–copper explosive welds. Sci. Technol. Weld. Join. 2018, 23, 501–507. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Weldability of aluminium-copper in explosive welding. Int. J. Adv. Manuf. Technol. 2019, 103, 3211–3221. [Google Scholar] [CrossRef]
- Han, J.H.; Ahn, J.P.; Shin, M.C. Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding. J. Mater. Sci. 2003, 38, 13–18. [Google Scholar] [CrossRef]
- Tricarico, L.; Spina, R.; Sorgente, D.; Brandizzi, M. Effects of heat treatments on mechanical properties of Fe/Al explosion-welded structural transition joints. Mater. Des. 2009, 30, 2693–2700. [Google Scholar] [CrossRef]
- Costanza, G.; Crupi, V.; Guglielmino, E.; Sill, A.; Tata, M.E. Metallurgical characterization of an explosion welded aluminum/steel joint. Metall. Ital. 2016, 108, 17–22. [Google Scholar]
- Corigliano, P.; Crupi, V.; Guglielmino, E.; Mariano Sili, A. Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Mar. Struct. 2018, 57, 207–218. [Google Scholar] [CrossRef]
- Izuma, T.; Hokamoto, K.; Fujita, M.; Aoyagi, M. Single-shot explosive welding of hard-to-weld A5083/SUS304 clad using SUS304 intermediate plate. Weld. Int. 1992, 6, 941–946. [Google Scholar] [CrossRef]
- Hokamoto, K.; Izuma, T.; Fujita, M. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate. Metall. Trans. A 1993, 24, 2289–2297. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers. J. Mater. Process. Technol. 2020, 283, 116707. [Google Scholar] [CrossRef]
- Aceves, S.M.; Espinosa-Loza, F.; Elmer, J.W.; Huber, R. Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 1490–1503. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.; Tavares, B. Differences between the detonation behavior of emulsion explosives sensitized with glass or with polymeric micro-balloons. J. Phys. Conf. Ser. 2014, 500, 1–6. [Google Scholar] [CrossRef]
- Mendes, R.; Ribeiro, J.B.; Plaksin, I.; Campos, J. Non Ideal Detonation of Emulsion Explosives Mixed with Metal Particles. AIP Conf. Proc. 2012, 1426, 267–270. [Google Scholar] [CrossRef]
- Mendes, R.; Ribeiro, J.B.; Loureiro, A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013, 51, 182–192. [Google Scholar] [CrossRef]
- Leitão, C.; Galvão, I.; Leal, R.M.; Rodrigues, D.M. Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Mater. Des. 2012, 33, 69–74. [Google Scholar] [CrossRef]
- Kennedy, J.E. Gurney Energy of Explosives: Estimation of the Velocity and Impulse Imparted to Driven Metal; Sandia Laboratories: Albuquerque, NM, USA, 1970; ISBN SC-RR-70-790. [Google Scholar]
- El-Sobky, H. Mechanics of Explosive Welding. In Explosive Welding, Forming and Compaction; Blazynski, T.Z., Ed.; Springer: Dordrecht, The Netherlands, 1983; pp. 189–217. [Google Scholar]
- Patterson, R.A. Fundamentals of Explosion Welding. In ASM Handbook—Volume 6: Welding, Brazing and Soldering; ASM International: Materials Park, OH, USA, 1993; pp. 160–164. [Google Scholar]
- Cooper, P.W. Explosive Engineering; Wiley-VCH: New York, NY, USA, 1996; ISBN 0-471-18636-8. [Google Scholar]
- Carvalho, G.H.S.F.L.; Mendes, R.; Leal, R.M.; Galvão, I.; Loureiro, A. Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Des. 2017, 122, 172–183. [Google Scholar] [CrossRef]
- Plaksin, I.; Campos, J.; Ribeiro, J.; Mendes, R.; Direito, J.; Braga, D.; Pruemmer, R. Novelties in physics of explosive welding and powder compaction. J. Phys. IV 2003, 110, 797–802. [Google Scholar] [CrossRef]
- Bataev, I.A.; Bataev, A.A.; Mali, V.I.; Bataev, V.A.; Balaganskii, I.A. Structural Changes of Surface Layers of Steel Plates in the Process of Explosive Welding. Met. Sci. Heat Treat. 2014, 55, 509–513. [Google Scholar] [CrossRef]
- Loureiro, A.; Mendes, R.; Ribeiro, J.B.; Leal, R.M.; Galvão, I. Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Des. 2016, 95, 256–267. [Google Scholar] [CrossRef]
- Durgutlu, A.; Gülenç, B.; Findik, F. Examination of copper/stainless steel joints formed by explosive welding. Mater. Des. 2005, 26, 497–507. [Google Scholar] [CrossRef]
- Kahraman, N.; Gülenç, B.; Findik, F. Joining of titanium/stainless steel by explosive welding and effect on interface. J. Mater. Process. Technol. 2005, 169, 127–133. [Google Scholar] [CrossRef]
- Zhao, H.; Li, P.; Zhou, Y.; Huang, Z.; Wang, H. Study on the Technology of Explosive Welding Incoloy800-SS304. J. Mater. Eng. Perform. 2011, 20, 911–917. [Google Scholar] [CrossRef]
- Manikandan, P.; Hokamoto, K.; Raghukandan, K.; Chiba, A.; Deribas, A.A. The effect of experimental parameters on the explosive welding of Ti and stainless steel. Sci. Technol. Energ. Mater. 2005, 66, 370–374. [Google Scholar]
- Manikandan, P.; Hokamoto, K.; Fujita, M.; Raghukandan, K.; Tomoshige, R. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J. Mater. Process. Technol. 2008, 195, 232–240. [Google Scholar] [CrossRef]
- Inao, D.; Mori, A.; Tanaka, S.; Hokamoto, K. Explosive Welding of Thin Aluminum Plate onto Magnesium Alloy Plate Using a Gelatin Layer as a Pressure-Transmitting Medium. Metals 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.A.A.A.; Sartangi, P.F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater. Sci. Eng. A 2008, 494, 329–336. [Google Scholar] [CrossRef]
- Mousavi, S.A.A.A.; Sartangi, P.F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater. Des. 2009, 30, 459–468. [Google Scholar] [CrossRef]
- Duan, M.; Wang, Y.; Ran, H.; Ma, R.; Wei, L. Study on Inconel 625 Hollow Structure Manufactured by Explosive Welding. Mater. Manuf. Process. 2014, 29, 1011–1016. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, K.X.; Zhang, J.L.; Liu, J. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater. Des. 2018, 154, 140–152. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, K.X.; Zhang, J.L.; Liu, J. Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding. Mater. Sci. Eng. A 2018, 731, 278–287. [Google Scholar] [CrossRef]
- Yang, M.; Ma, H.; Shen, Z. Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives. J. Mater. Res. Technol. 2019, 8, 5572–5580. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.; Wu, J.; Duan, M. Explosive welding method for manufacturing ITER-grade 316L(N)/CuCrZr hollow structural member. Fusion Eng. Des. 2014, 89, 3117–3124. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.; Wu, J.; Duan, M. Investigation of microstructure and mechanical properties of explosively welded ITER-grade 316L(N)/CuCrZr hollow structural member. Fusion Eng. Des. 2015, 93, 43–50. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Hu, X.; Yin, C.; Liu, T. Explosive Welding of Copper to High Nitrogen Austenitic Stainless Steel. Metals 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Honarpisheh, M.; Asemabadi, M.; Sedighi, M. Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer. Mater. Des. 2012, 37, 122–127. [Google Scholar] [CrossRef]
- Sedighi, M.; Honarpisheh, M. Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer. Mater. Des. 2012, 37, 577–581. [Google Scholar] [CrossRef]
- Asemabadi, M.; Sedighi, M.; Honarpisheh, M. Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal. Mater. Sci. Eng. A 2012, 558, 144–149. [Google Scholar] [CrossRef]
- Gong, S.; Li, Z.; Xiao, Z.; Zheng, F. Microstructure and property of the composite laminate cladded by explosive welding of CuAlMn shape memory alloy and QBe2 alloy. Mater. Des. 2009, 30, 1404–1408. [Google Scholar] [CrossRef]
- Kaçar, R.; Acarer, M. Microstructure–property relationship in explosively welded duplex stainless steel–steel. Mater. Sci. Eng. A 2003, 363, 290–296. [Google Scholar] [CrossRef]
- Liu, L.; Jia, Y.-F.; Xuan, F.-Z. Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. Mater. Sci. Eng. A 2017, 704, 493–502. [Google Scholar] [CrossRef]
- Rajani, H.R.Z.; Mousavi, S.A.A.A.; Madani Sani, F. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates. Mater. Des. 2013, 43, 467–474. [Google Scholar] [CrossRef]
- Rajani, H.R.Z.; Mousavi, S.A.A.A. The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mater. Sci. Eng. A 2012, 556, 454–464. [Google Scholar] [CrossRef]
- Rajani, H.R.Z.; Mousavi, S.A.A.A. The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel. J. Fail. Anal. Prev. 2012, 12, 646–653. [Google Scholar] [CrossRef]
- Lazurenko, D.V.; Bataev, I.A.; Mali, V.I.; Lozhkina, E.A.; Esikov, M.A.; Bataev, V.A. Structural Transformations Occurring upon Explosive Welding of Alloy Steel and High-Strength Titanium. Phys. Met. Metallogr. 2018, 119, 469–476. [Google Scholar] [CrossRef]
- Lazurenko, D.V.; Bataev, I.A.; Mali, V.I.; Esikov, M.A.; Bataev, A.A. Effect of Hardening Heat Treatment on the Structure and Properties of a Three-Layer Composite of Type ‘VT23-08ps-45KhNM’ Obtained by Explosion Welding. Met. Sci. Heat Treat. 2019, 60, 651–658. [Google Scholar] [CrossRef]
- Chen, P.; Feng, J.; Zhou, Q.; An, E.; Li, J.; Yuan, Y.; Ou, S. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy. J. Mater. Eng. Perform. 2016, 25, 2635–2641. [Google Scholar] [CrossRef]
- Feng, J.; Chen, P.; Zhou, Q. Investigation on Explosive Welding of Zr53Cu35Al12 Bulk Metallic Glass with Crystalline Copper. J. Mater. Eng. Perform. 2018, 27, 2932–2937. [Google Scholar] [CrossRef]
- Bataev, I.A.; Bataev, A.A.; Mali, V.I.; Pavliukova, D.V. Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater. Des. 2012, 35, 225–234. [Google Scholar] [CrossRef]
- Lazurenko, D.V.; Bataev, I.A.; Mali, V.I.; Bataev, A.A.; Maliutina, I.N.; Lozhkin, V.S.; Esikov, M.A.; Jorge, A.M.J. Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Des. 2016, 102, 122–130. [Google Scholar] [CrossRef]
- Hokamoto, K.; Chiba, A.; Fujita, M.; Izuma, T. Single-shot explosive welding technique for the fabrication of multilayered metal base composites: Effect of welding parameters leading to optimum bonding condition. Compos. Eng. 1995, 5, 1069–1079. [Google Scholar] [CrossRef]
- Chu, Q.L.; Zhang, M.; Li, J.H.; Jin, Q.; Fan, Q.Y.; Xie, W.W.; Luo, H.; Bi, Z.Y. Experimental investigation of explosion-welded CP-Ti/Q345 bimetallic sheet filled with Cu/V based flux-cored wire. Mater. Des. 2015, 67, 606–614. [Google Scholar] [CrossRef]
- Wang, P.; Chen, J.; Li, Q.; Liu, D.; Huang, P.; Jin, F.; Zhou, Y.; Yang, B. Study on the microstructure and properties evolution of CuCrZr/316LN-IG explosion bonding for ITER first wall components. Fusion Eng. Des. 2017, 124, 1135–1139. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, X.; Yan, H. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding. Fusion Eng. Des. 2018, 137, 91–96. [Google Scholar] [CrossRef]
- Yang, M.; Ma, H.; Shen, Z.; Sun, Y. Study on explosive welding for manufacturing meshing bonding interface of CuCrZr to 316L stainless steel. Fusion Eng. Des. 2019, 143, 106–114. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, F.; Li, X.; Jiang, S.; Feng, J. Interfacial evolution of explosively welded titanium/steel joint under subsequent EBW process. J. Mater. Process. Technol. 2018, 261, 24–30. [Google Scholar] [CrossRef]
- Yang, M.; Ma, H.; Shen, Z.; Chen, D.; Deng, Y. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding. Trans. Nonferr. Met. Soc. China 2019, 29, 680–691. [Google Scholar] [CrossRef]
- Bataev, I.A.; Lazurenko, D.V.; Tanaka, S.; Hokamoto, K.; Bataev, A.A.; Guo, Y.; Jorge, A.M. High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Mater. 2017, 135, 277–289. [Google Scholar] [CrossRef]
- Andreevskikh, L.A.; Drozdov, A.A.; Mikhailov, A.L.; Samarokov, Y.M.; Skachkov, O.A.; Deribas, A.A. Producing bimetallic steel-copper composites by explosive welding. Steel Transl. 2015, 45, 84–87. [Google Scholar] [CrossRef]
- Blatter, A.; Peguiron, D.A. Explosive joining of precious metals. Gold Bull. 1998, 31, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.; Tong, X.; Xu, S.; Zhang, M.; Li, J.; Yan, F.; Yan, C. Interfacial Investigation of Explosion-Welded Titanium/Steel Bimetallic Plates. J. Mater. Eng. Perform. 2020, 29, 78–86. [Google Scholar] [CrossRef]
- Greenberg, B.A.; Ivanov, M.A.; Inozemtsev, A.V.; Pushkin, M.S.; Patselov, A.M.; Besshaposhnikov, Y.R. Comparative characterisation of interfaces for two- and multi-layered Cu-Ta explosively welded composites. Compos. Interfaces 2020, 27, 705–715. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, C.; Wu, X.; Shi, H. Comprehensive investigation of effect of the charge thickness and stand-off gap on interface characteristics of explosively welded TA2 and Q235B. Compos. Interfaces 2020, 1–17. [Google Scholar] [CrossRef]
- Guo, X.; Ma, Y.; Jin, K.; Wang, H.; Tao, J.; Fan, M. Effect of Stand-Off Distance on the Microstructure and Mechanical Properties of Ni/Al/Ni Laminates Prepared by Explosive Bonding. J. Mater. Eng. Perform. 2017, 26, 4235–4244. [Google Scholar] [CrossRef]
- Zhou, Q.; Feng, J.; Chen, P. Numerical and Experimental Studies on the Explosive Welding of Tungsten Foil to Copper. Materials 2017, 10, 984. [Google Scholar] [CrossRef]
- Tao, C.; Li, J.; Lu, M.; Yang, X.; Zhao, H.; Wang, W.; Zhu, W. Microstructure and mechanical properties of Cu/CuCrZr composite plates fabricated by explosive welding. Compos. Interfaces 2020, 1–12. [Google Scholar] [CrossRef]
- Sahul, M.; Sahul, M.; Lokaj, J.; Čaplovič, L.; Nesvadba, P. Influence of Annealing on the Properties of Explosively Welded Titanium Grade 1—AW7075 Aluminum Alloy Bimetals. J. Mater. Eng. Perform. 2018, 27, 5665–5674. [Google Scholar] [CrossRef]
- Sahul, M.; Sahul, M.; Lokaj, J.; Čaplovič, Ľ.; Nesvadba, P.; Odokienová, B. The Effect of Annealing on the Properties of AW5754 Aluminum Alloy-AZ31B Magnesium Alloy Explosively Welded Bimetals. J. Mater. Eng. Perform. 2019, 28, 6192–6208. [Google Scholar] [CrossRef]
- Saravanan, S.; Raghukandan, K.; Kumar, P. Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates. J. Cent. South Univ. 2019, 26, 604–611. [Google Scholar] [CrossRef]
- Yazdani, M.; Toroghinejad, M.R.; Hashemi, S.M. Investigation of Microstructure and Mechanical Properties of St37 Steel-Ck60 Steel Joints by Explosive Cladding. J. Mater. Eng. Perform. 2015, 24, 4032–4043. [Google Scholar] [CrossRef]
- Fang, Z.; Shi, C.; Shi, H.; Sun, Z. Influence of Explosive Ratio on Morphological and Structural Properties of Ti/Al Clads. Metals 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, Y.; Dai, K.; Chen, P.; Zhou, Q.; Bhatti, A.A.; Arab, A. Experimental and Numerical Study on Microstructure and Mechanical Properties of Ti-6Al-4V/Al-1060 Explosive Welding. Metals 2019, 9, 1189. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Liu, D.; Zhang, Y.; Deng, G.; Fan, M.; Chen, D.; Sun, L.; Zhang, Z. The Microstructure and Mechanical Properties of TA1-Low Alloy Steel Composite Plate Manufactured by Explosive Welding. Metals 2020, 10, 663. [Google Scholar] [CrossRef]
Welding Conditions | Weld Series | |
---|---|---|
Al/CS | Al/SS | |
Flyer plate alloy | AA6082 | AA6082 |
Interlayer alloy | AA1050 | AA1050 |
Baseplate alloy | EN10130 | AISI 304 |
Flyer-interlayer STD | 4.5 mm | 4.5 mm |
Interlayer-baseplate STD | 1.5 mm | 1.5 mm |
Explosive Mixture | EE | EE |
Explosive Mixture Density | 485 kg.m−3 | 485 kg.m−3 |
Explosive Ratio | 0.9 | 0.9 |
Weld Series | Vd, Vc (m·s−1) | VpF (m·s−1) | VpFI (m·s−1) | Welding Results |
---|---|---|---|---|
Al/CS | 2055 | 349 | 262 | consistent |
Al/SS | 2055 | 357 | 268 | consistent |
Weld Series | Analysis Zone | Al | Fe | Cr | Ni | Average Microhardness (HV0.025) |
---|---|---|---|---|---|---|
Al/CS | 1 | 67.0 | 33.0 | -------- | -------- | 702 |
2 | 67.7 | 32.3 | -------- | -------- | ||
3 | 70.2 | 29.8 | -------- | -------- | ||
Al/SS | 4 | 82.6 | 13.1 | 3.1 | 1.2 | 414 |
5 | 87.8 | 9.5 | 2.7 | -------- | ||
6 | 97.7 | 2.3 | -------- | -------- |
Weld Series | Maximum Load (kN) | Fracture Region | Fracture Mode | |
---|---|---|---|---|
Al/CS | Lowest | 4.8 | Interlayer | Ductile (100%) |
Highest | 5.1 | Interlayer | Ductile (100%) | |
Al/SS | Lowest | 4.5 | Interlayer1 | Ductile (83%) and Brittle (17%) |
Highest | 5.0 | Interlayer | Ductile (100%) |
Analysis Zone | Al | Fe | Cr | Ni | Si |
---|---|---|---|---|---|
I | 100 | -------- | -------- | -------- | -------- |
II | 99.8 | -------- | -------- | -------- | 0.2 |
III | 100 | -------- | -------- | -------- | -------- |
IV | 78.2 | 12.9 | 3.6 | 3.2 | 2.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. S. F. L. Carvalho, G.; Galvão, I.; Mendes, R.; M. Leal, R.; Loureiro, A. Aluminum-to-Steel Cladding by Explosive Welding. Metals 2020, 10, 1062. https://doi.org/10.3390/met10081062
H. S. F. L. Carvalho G, Galvão I, Mendes R, M. Leal R, Loureiro A. Aluminum-to-Steel Cladding by Explosive Welding. Metals. 2020; 10(8):1062. https://doi.org/10.3390/met10081062
Chicago/Turabian StyleH. S. F. L. Carvalho, Gustavo, Ivan Galvão, Ricardo Mendes, Rui M. Leal, and Altino Loureiro. 2020. "Aluminum-to-Steel Cladding by Explosive Welding" Metals 10, no. 8: 1062. https://doi.org/10.3390/met10081062