Internal Crack Prediction of Continuous Casting Billet Based on Principal Component Analysis and Deep Neural Network
Abstract
:1. Introduction
2. Factors Affecting Internal Cracks
2.1. Internal Factor Analysis
- Sulfur (S) and phosphorus (P)
- Carbon (C) and manganese sulfur ratio (Mn/S)
2.2. External Factor Analysis
- Casting parameters
- Cooling parameters
- Electromagnetic stirring parameters
- Other parameters
3. Data Collection and Pre-Processing
- High dimensions and nonlinearity of the production data
- Selection and optimization of prediction models
3.1. Data Collection
3.2. Dimension Reduction
4. Modeling and Results Analysis
4.1. Establishment of DNN Prediction Model
4.2. Establishment of Comparison Models
- BP neural network
- ELM
- DT
4.3. Model Improvement by PCA
4.4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.P.; Zhang, J.S.; Guo, W.D.; Gao, S.; Liu, Q. End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation. ISIJ Int. 2021, 61, 2100–2110. [Google Scholar] [CrossRef]
- Xin, Z.C.; Zhang, J.S.; Lin, W.H.; Zhang, J.G.; Liu, Q. Sulphide capacity prediction of CaO-SiO2-MgO-Al2O3 slag system by using regularized extreme learning machine. Ironmak. Steelmak. 2020, 48, 275–283. [Google Scholar] [CrossRef]
- Chen, M.; Linkens, D. Impact toughness prediction for TMCP steels using knowledge-based neural-fuzzy modelling. ISIJ Int. 2006, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Fu, H.D.; Zhou, H.Y.; Wu, Y.; Lu, Z.P.; Dong, H.B. A general and transferable deep learning framework for predicting phase formation in materials. NPJ Comput. Mater. 2021, 7, 10. [Google Scholar] [CrossRef]
- Brimacombe, J.K.; Sorimachi, K. Crack formation in the continuous casting of steel. Metall. Mater. Trans. B 1977, 8, 489–505. [Google Scholar] [CrossRef]
- Brimacombe, J.K.; Weinberg, F.; Hawbolt, E.B. Formation of longitudinal, midface cracks in continuously-cast slabs. Metall. Mater. Trans. B 1979, 10, 279–292. [Google Scholar] [CrossRef]
- Brimacombe, J.K.; Hawbolt, E.B.; Weinberg, F. Formation of off-corner internal cracks in continuously-cast billets. Can. Metall. Quart. 1980, 19, 215–227. [Google Scholar] [CrossRef]
- Thomas, B.G.; Samarasekera, I.V.; Brimacombe, J.K. Investigation of panel crack formation in steel ingots: Part II. Off-corner panel cracks. Metall. Mater. Trans. B 1988, 19, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Brimacombe, J.K. The challenge of quality in continuous casting processes. Metall. Mater. Trans. A 1999, 30A, 1899–1912. [Google Scholar] [CrossRef]
- Won, Y.M.; Han, H.N.; Yeo, T.J.; Oh, K.H. Analysis of solidification cracking using the specific crack susceptibility. ISIJ Int. 2007, 40, 129–136. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, W.Q.; Zheng, H.G. Analysis and control of central cracks in the bloom continuous casting of microalloy 49MnVS3 steel. Ironmak. Steelmak. 2017, 44, 676–684. [Google Scholar] [CrossRef]
- Won, Y.M.; Yeo, T.J.; Dong, J.S.; Oh, K.H. A new criterion for internal crack formation in continuously cast steels. Metall. Mat. Trans. B 2000, 31, 779–794. [Google Scholar] [CrossRef]
- Dou, K.; Qing, J.S.; Wang, L.; Zhang, X.F.; Wang, B.; Liu, Q.; Dong, H.B. Research on internal crack susceptibility of continuous-casting bloom based on micro-segregation model. Acta Metal. Sin. 2014, 50, 1505–1512. [Google Scholar]
- Han, Z.; Cai, K.; Liu, B. Prediction and analysis on formation of internal cracks in continuously cast slabs by mathematical models. ISIJ Int. 2001, 41, 1473–1480. [Google Scholar] [CrossRef] [Green Version]
- Poltarak, G.; Ferro, S.; Cicutti, C. Estimation of internal cracking risk in the continuous casting of round bars. Steel Res. Int. 2016, 88, 1–9. [Google Scholar] [CrossRef]
- Kong, Y.W.; Chen, D.F.; Liu, Q.; Long, M.J. A prediction model for internal cracks during slab continuous casting. Metals 2019, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Li, G.L.; Ji, C.; Zhu, M.Y. Prediction of internal crack initiation in continuously cast blooms. Metall. Mat. Trans. B 2021, 52, 1165–1178. [Google Scholar] [CrossRef]
- Preissl, H.; Fastner, T. Automatic quality control of cast slabs at the VOEST-ALPINE steel works. In Proceedings of the Steelmaking Conference Proceedings, Pittsburgh, PA, USA, 2–5 March 1995; pp. 621–627. [Google Scholar]
- Schwedmann, J.; Wochnik, J. Instrumentation system, automation control and quality control for products of the continuous casting process. In Proceedings of the Second International Conference on Continuous Casting of Steel, Wuhan, China, 19–21 May 1995. [Google Scholar]
- Morsut, L. Technological packages for the effective control of slab casting. Iron and Steel. 2003, 38, 25–29. [Google Scholar]
- Normanton, A.S.; Hewitt, P.N.; Hunter, N.S.; Scoones, D.; Harris, B. Mould thermal monitoring: A window on the mould. Ironmak. Steelmak. 2004, 31, 357–363. [Google Scholar] [CrossRef]
- Cemernek, D.; Cemernek, S.; Gursch, H.; Pandeshwar, A.; Leitner, T.; Berger, M.; Klösch, G.; Kern, R. Machine learning in continuous casting of steel: A state-of-the-art survey. J. Intell. Manuf. 2021, 1–19. [Google Scholar] [CrossRef]
- Normanton, A.S.; Barber, B.; Bell, A.; Spaccarotella, A.; Holappa, L.; Laine, J.; Peters, H.; Link, N.; Ors, F.; Lopez, A. Developments in online surface and internal quality forecasting of continuously cast semis. Ironmak. Steelmak. 2004, 31, 376–382. [Google Scholar] [CrossRef]
- Zhao, L.P.; Dou, R.S.; Yin, J.J.; Yao, Y.Y. Intelligent prediction method of quality for continuous casting process. In Proceedings of the Electronic and Automation Control Conference, Xi’an, China, 3–5 October 2016; pp. 1761–1764. [Google Scholar]
- Hore, S.; Das, S.K.; Humane, M.M.; Peethala, A.K. Neural network modelling to characterizesteel continuous casting process parameters and prediction of castingdefects. Trans. Indian Inst. Met. 2019, 72, 3015–3025. [Google Scholar] [CrossRef]
- Varfolomeev, I.A.; Ershov, E.V.; Vinogradova, L.N. Statistical control of defects in a continuously cast billet based on machine learning and data analysis methods. Autom. Remote Control. 2018, 79, 1450–1457. [Google Scholar] [CrossRef]
- Ye, X.; Wu, X.; Guo, Y. Real-time quality prediction of casting billet based on eandom forest algorithm. In Proceedings of the 6th IEEE International Conference on Progress in Informatics and Computing, Suzhou, China, 14–16 December 2018; pp. 140–143. [Google Scholar]
- García-Nieto, P.J.; García-Gonzalo, E.; Álvarez-Antón, J.C.; González-Suárez, V.M.; Mayo-Bayón, R.; Mateos-Martín, F. A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance. J. Comput. Appl. Math. 2018, 330, 877–895. [Google Scholar] [CrossRef]
- Zou, L.L.; Zhang, J.S.; Liu, Q.; Zeng, F.Z.; Chen, J.; Guan, M. Prediction of central carbon segregation in continuous casting billet using a regularized extreme learning machine model. Metals 2019, 9, 1312. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Z.; Yang, J.P.; Lu, X.C.; Yu, X.Z.; Liu, Q. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin. J. Eng. 2018, 40, 815–821. [Google Scholar]
- Matsumiya, T.; Ito, M.; Kajioka, H.; Yamaguchi, S.; Nakamura, Y. An evaluation of critical strain for internal crack formation in continuously cast slabs. Tetsu-to-Hagane 2006, 76, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.C.; Wang, B.; Zhang, D.; Song, W.L. Optimization of secondary cooling water distribution for improving the billet quality for a small caster. ISIJ Int. 2018, 58, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Zarandi, F.; Yue, S. Mechanism for loss of hot ductility due to deformation during solidification in continuous casting of steel. ISIJ Int. 2004, 44, 1705–1713. [Google Scholar] [CrossRef]
- Famili, A.; Shen, W.M.; Webe, R.; Simoudis, E. Data preprocessing and intelligent data analysis. Intell. Data Anal. 1997, 1, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Punnose, S.; Mukhopadhyay, A.; Sarkar, R.; Alam, Z.; Das, D.; Kumar, V. Determination of critical strain for rapid crack growth during tensile deformation in aluminide coated near-α titanium alloy using infrared thermography. Mater. Sci. Eng. A 2013, 576, 217–221. [Google Scholar] [CrossRef]
- Wu, C.H.; Ji, C.; Zhu, M.Y. Numerical simulation of bulging deformation for wide-thick slab under uneven cooling conditions. Metall. Mater. Trans. B 2018, 49, 1346–1359. [Google Scholar] [CrossRef]
- El-Bealy, M.O. On the formation of interdendritic internal cracks during dendritic solidification of continuously cast steel slabs. Metall. Mat. Trans. B 2012, 43, 1488–1516. [Google Scholar] [CrossRef]
- Niu, L.; Qiu, S.T.; Zhao, J.X.; Chen, Y.Q.; Yang, S.F. Processing parameter optimization for continuous casting of 38CrMoAl round bloom based on a prediction model of the equiaxed crystal ratio. Ironmak. Steelmak. 2019, 46, 835–844. [Google Scholar] [CrossRef]
- Shibata, H.; Itoyama, S.; Kishimoto, Y.; Takeuchi, S.; Sekiguchi, H. Prediction of equiaxed crystal ratio in continuously cast steel slab by simplified columnar-to-equiaxed transition model. ISIJ Int. 2006, 46, 921–930. [Google Scholar] [CrossRef]
- Hou, Z.B.; Jiang, F.; Cheng, G.G. Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method. ISIJ Int. 2012, 52, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- El-Bealy, M.O. On the formation of macrosegregation and interdendritic cracks during dendritic solidification of continuous casting of steel. Metall. Mat. Trans. B 2014, 45, 988–1017. [Google Scholar] [CrossRef]
- He, F.; Zhang, L.Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network. J. Process Contr. 2018, 66, 51–58. [Google Scholar] [CrossRef]
- Baldi, P.; Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural Netw. 1989, 2, 53–58. [Google Scholar] [CrossRef]
- Hinton, G.; Osindero, S.; The, Y. A fast learning algorithm for deep belief nets. Neural. Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Barui, S.; Mukherjee, S.; Srivastava, A.; Chattopadhyay, K. Understanding dephosphorization in basic oxygen furnaces (BOFs) using data driven modeling techniques. Metals 2019, 9, 955. [Google Scholar] [CrossRef] [Green Version]
- Bulsari, A.B.; Kraslawski, A.; Saxen, H. Implementing a fuzzy expert system in an artificial neural network. Comput. Chem. Eng. 1993, 17, 405–410. [Google Scholar] [CrossRef]
- Shan, D.; Xu, A.J.; Wang, H.B.; Tian, N.Y. Survey on continuous casting slab quality evaluation system. Contin. Casting 2011, 2, 16–28. [Google Scholar]
C | Si | Mn | P | S | Cr | Al |
---|---|---|---|---|---|---|
0.4034 | 0.1394 | 0.6648 | 0.0133 | 0.0056 | 0.9339 | 0.0066 |
Symbols | Variable Name | Variable Classification |
---|---|---|
X1 | Carbon content (wt.%) | Chemical composition ■Impurity elements [11,14,17] ■Critical strain [31,35] |
X2 | Manganese content (wt.%) | |
X3 | Phosphorus content (wt.%) | |
X4 | Sulfur content (wt.%) | |
X5 | Manganese sulfur ratio | |
X6 | Sum of impurity elements (wt.%) | |
X7 | Water flux of mold cooling (L/min) | Cooling parameters ■Bulging stress [36,37] ■Thermal stress [5,32] |
X8 | Mold water temperature difference (°C) | |
X9 | Specific water (L/kg) | |
X10 | Water flow rate in zone1 (L/min) | |
X11 | Water flow rate in zone2 (L/min) | |
X12 | Water flow rate in zone3 (L/min) | |
X13 | Casting speed (m/min) | Casting parameters ■Solidification structure [38,39,40] |
X14 | Superheat (°C) | |
X15 | Frequency of F-EMS (Hz) | Electromagnetic stirring parameters ■Element segregation [11,41] |
X16 | Current of F-EMS (A) | |
X17 | Frequency of M-EMS (Hz) | |
X18 | Current of M-EMS (A) | |
Y | Internal crack grade | — |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.405 | 0.692 | 0.020 | 0.003 | 209.6 | 0.024 | 1890 | 4 | 0.96 | 25 | 31 | 8 | 2.51 | 27 | 14 | 360 | 3 | 300 | 2 |
2 | 0.419 | 0.732 | 0.010 | 0.003 | 215.4 | 0.014 | 1890 | 5 | 0.97 | 28 | 33 | 6 | 2.42 | 28 | 16 | 360 | 2 | 300 | 1 |
3 | 0.417 | 0.693 | 0.017 | 0.002 | 433.3 | 0.019 | 1914 | 6 | 0.96 | 26 | 33 | 7 | 2.55 | 26 | 14 | 360 | 3 | 300 | 3 |
4 | 0.413 | 0.740 | 0.021 | 0.006 | 119.3 | 0.028 | 1913 | 4 | 0.95 | 25 | 31 | 7 | 2.53 | 31 | 16 | 350 | 3 | 300 | 2 |
5 | 0.416 | 0.659 | 0.022 | 0.005 | 143.3 | 0.026 | 1909 | 4 | 0.97 | 26 | 33 | 5 | 2.51 | 30 | 16 | 360 | 3 | 300 | 4 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
876 | 0.403 | 0.687 | 0.020 | 0.006 | 118.4 | 0.025 | 1917 | 6 | 0.96 | 25 | 32 | 6 | 2.52 | 26 | 16 | 350 | 3 | 300 | 2 |
877 | 0.401 | 0.711 | 0.010 | 0.004 | 192.2 | 0.014 | 1917 | 6 | 0.98 | 26 | 31 | 8 | 2.51 | 26 | 16 | 360 | 3 | 300 | 2 |
878 | 0.418 | 0.699 | 0.014 | 0.009 | 76.8 | 0.023 | 1905 | 4 | 0.98 | 26 | 31 | 8 | 2.52 | 26 | 16 | 360 | 3 | 320 | 4 |
879 | 0.406 | 0.650 | 0.014 | 0.009 | 69.2 | 0.023 | 1894 | 5 | 0.96 | 26 | 30 | 8 | 2.62 | 31 | 16 | 360 | 3 | 300 | 3 |
880 | 0.403 | 0.739 | 0.018 | 0.003 | 284.3 | 0.021 | 1897 | 4 | 0.91 | 26 | 31 | 6 | 2.64 | 27 | 16 | 360 | 3 | 300 | 4 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
1596 | 0.413 | 0.729 | 0.018 | 0.005 | 151.9 | 0.023 | 1914 | 4 | 0.99 | 26 | 32 | 8 | 2.62 | 26 | 16 | 360 | 3 | 320 | 1 |
1597 | 0.409 | 0.719 | 0.016 | 0.004 | 167.2 | 0.021 | 1919 | 5 | 1.01 | 28 | 35 | 8 | 2.40 | 33 | 16 | 360 | 2 | 300 | 3 |
1598 | 0.408 | 0.704 | 0.020 | 0.004 | 185.3 | 0.024 | 1921 | 4 | 1.01 | 28 | 31 | 8 | 2.51 | 29 | 16 | 350 | 3 | 300 | 1 |
1599 | 0.419 | 0.654 | 0.016 | 0.002 | 327.1 | 0.018 | 1917 | 4 | 1.03 | 26 | 32 | 8 | 2.67 | 24 | 16 | 360 | 3 | 300 | 1 |
1600 | 0.415 | 0.738 | 0.013 | 0.002 | 369.0 | 0.015 | 1922 | 6 | 0.94 | 25 | 33 | 6 | 2.62 | 28 | 16 | 360 | 3 | 300 | 1 |
Principal Component | Eigenvalue | Contribution Rate % | Cumulative Contribution Rate % |
---|---|---|---|
F1 | 3.527 | 19.596 | 19.596 |
F2 | 1.906 | 10.587 | 30.184 |
F3 | 1.287 | 7.151 | 37.335 |
F4 | 1.257 | 6.982 | 44.317 |
F5 | 1.129 | 6.272 | 50.589 |
F6 | 1.062 | 5.899 | 56.488 |
F7 | 1.011 | 5.619 | 62.107 |
F8 | 0.971 | 5.395 | 67.502 |
F9 | 0.946 | 5.258 | 72.760 |
F10 | 0.921 | 5.115 | 77.874 |
F11 | 0.890 | 4.946 | 82.820 |
F12 | 0.873 | 4.848 | 87.668 |
F13 | 0.838 | 4.653 | 92.321 |
F14 | 0.798 | 4.431 | 96.752 |
F15 | 0.408 | 2.266 | 99.018 |
F16 | 0.177 | 0.982 | 100.000 |
F17 | 0.000 | 0.000 | 100.000 |
F18 | 0.000 | 0.000 | 100.000 |
Model Parameter | Result |
---|---|
Network structure | 18-(8-6-4)-4 |
Learning rate | 0.2 |
Training target value | 0.05 |
Hidden layer activation function | ‘logsig’ |
Training function | ‘trainlm’ |
Number of iterations | 300 |
Algorithm | Model Parameter | Result |
---|---|---|
BP | Network structure | 18-9-4 |
Learning rate | 0.3 | |
Training target value | 0.05 | |
Activation function | ‘logsig’ | |
Training function | ‘traingdx’ | |
The number of iterations | 300 | |
ELM | Number of neurons | 200 |
Activation function | ‘sigmoid’ | |
DT | Core algorithm | C4.5 |
min_sample_leaf | 15 |
Prediction Model | Simulation Result | Computation Time/s | |||
---|---|---|---|---|---|
Hit Ratio/% | Variance | ||||
PCA | no-PCA | PCA | no-PCA | ||
DNN | 92.2 | 88.8 | 1.36 | 2.56 | 1.468 |
ELM | 69.8 | 68.0 | 4.16 | 5.20 | 0.004 |
BP | 73.2 | 69.4 | 1.76 | 3.44 | 1.053 |
DT | - | 84.8 | - | 2.96 | 4.762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Zhang, J.; Han, Y.; Zeng, F.; Li, Q.; Liu, Q. Internal Crack Prediction of Continuous Casting Billet Based on Principal Component Analysis and Deep Neural Network. Metals 2021, 11, 1976. https://doi.org/10.3390/met11121976
Zou L, Zhang J, Han Y, Zeng F, Li Q, Liu Q. Internal Crack Prediction of Continuous Casting Billet Based on Principal Component Analysis and Deep Neural Network. Metals. 2021; 11(12):1976. https://doi.org/10.3390/met11121976
Chicago/Turabian StyleZou, Leilei, Jiangshan Zhang, Yanshen Han, Fanzheng Zeng, Quanhui Li, and Qing Liu. 2021. "Internal Crack Prediction of Continuous Casting Billet Based on Principal Component Analysis and Deep Neural Network" Metals 11, no. 12: 1976. https://doi.org/10.3390/met11121976