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Abstract: Dissimilar aluminum joints have widespread applications across various industries, in-
cluding the electronics and automotive sectors, owing to their unique combination of advantages,
including reduced density and enhanced mechanical properties. These characteristics make them an
innovative solution for multi-material processing challenges presented in the engineering industry.
This article focuses on Friction Stir-Welded butt joints made using a weld–flip–weld approach between
aluminum AA6061-T6 and pure copper C11000, exploring the effects of varying rotational speeds
(1000, 1200, and 1400 RPM), offsets (0 and 1 mm) in the joint soundness, mechanical strength, and
electrical conductivity. The welds were evaluated using non-destructive testing with phased-array
ultrasound and tensile testing. Additionally, the electrical conductivity was measured to assess their
response to electrical currents. The findings reveal a significant correlation between joint efficiency
and electrical conductivity, with the highest values corresponding to a weld executed with a rotational
speed of 1400 rpm, traverse speed of 40 mm/min, and 1 mm offset towards the aluminum, achieving
the highest joint efficiency, reaching a joint efficiency of approximately 75% and 82.42% of the IACS
for electrical conductivity.

Keywords: friction stir welding; dissimilar joints; butt joints; aluminum; copper

1. Introduction

Friction Stir Welding (FSW) is a solid-state welding process that was patented in 1991
by The Welding Institute (TWI). It is performed by utilizing a non-consumable cylindrical
tool that rotates and advances in the material to be welded. These movements produce
heat through friction and mix the softened material to produce the weld [1]. The tool
comprises a shoulder that generates heat and exerts downward forging force and a probe
that transports plasticized material along the joint [2].

FSW presents numerous advantages over conventional fusion welding methods, since
it occurs at temperatures below the melting point of the material, such as minimizing dis-
tortion in the workpiece and reducing porosity and cracking when compared to traditional
welding techniques. Additionally, FSW stands out as an environmentally conscious tech-
nology, and is often regarded as a “green” solution due to its reduced energy consumption
compared to fusion processes. It does not require filler material or the use of solvents [3].

For the execution of FSW, various types of equipment can be utilized, all of which
need to be robust enough to manage the diverse forces encountered during welding,
such as axial force, traverse force, side force, and torque. This equipment range includes
adapted conventional machine tools, dedicated FSW machines, custom-built machines,
and industrial robots. Since FSW shares similarities with manufacturing processes like
machining, deburring, grinding, and drilling, it is feasible to perform FSW on a conventional
machine with certain modifications. These modifications, which are necessary to handle
the high loads produced during FSW, might include the installation of sensors, structural
reinforcement, or the addition of extra motors to enhance the machine’s strength and
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stiffness [4,5]. FSW offers the ability to weld low-weldability alloys, which is the case
with aluminum and titanium, amongst others. Some authors, such as Zhang et al. [6]
and Nandan et al. [7], are investigating the potential of joining dissimilar materials. In
various engineering applications, dissimilar materials, including metals and polymers, are
strategically combined to harness the distinct mechanical properties of each component.
This approach creates hybrid properties on two different fronts, leveraging differences
in density to structure lighter materials or adapt them to reduce manufacturing costs in
the market.

The use of dissimilar materials results in enhanced system performance and cost
reduction, making it a top-notch engineering solution in multi-material processing. Dis-
similar welding techniques have succeeded across various sectors, including automotive,
electronics, aerospace, and numerous engineering domains [8–10]. Notably, the electrical
industry has begun embracing this approach, and this is particularly evident in applications
within generation, storage, and transmission systems. Additionally, in automation, notable
instances of the use of these materials include the fabrication of electric motor cages [11].
When seeking to obtain dissimilar joints, Friction Stir Welding (FSW) is an interesting
alternative, and the selection of appropriate parameters for this purpose is a task of interest.
Seeking to identify process parameters in the development of FSW in aluminum–copper
joints, authors such as Mehta et al. developed a review on dissimilar joints using these
materials. The article includes information regarding the tool, its process parameters, and
its mechanical properties [12]. Moreover, Al-Jarrah et al. [13] performed butt welds on
pure copper and aluminum 6061 using a square pin and flat shoulder as the welding tool.
They utilized process parameters of 60 mm/min and 1118 rpm, resulting in an ultimate
tensile strength (UTS) of approximately 140 MPa. As a reference, authors such as Ahmadi
et al. investigated a homogeneous AA6061 joint, achieving an ultimate tensile strength of
208 MPa with a square pin using 1200 RPM and 120 mm/min [14].

In the article written by Chowdhury et al. [15], the authors investigated the resulting
mechanical properties by joining dissimilar metals of 6063 aluminum alloy and copper
alloy using Friction Stir Welding (FSW) and Ultrasonic-Assisted Friction Stir Welding
(UAFSW). The maximum efficiency was obtained using a combination of 500 rpm and
25 mm/min. Furthermore, Karrar et al. [16] carried out investigations on the effects of tools’
rotational and traversal speeds on dissimilar friction stir butt welds on 3 mm thickness
AA5083 to pure copper plates. The authors found that the highest efficiency achieved
was 94.8%, using process parameters of 1400 RPM and 120 mm/min. Using the previous
information and due to the extensive applications and advantages of FSW, this work focuses
on the dissimilar FSW of aluminum AA 6061-T6 alloy and pure copper C11000 sheets.
The mechanical characteristics that resulted from the dissimilar joints were investigated.
Furthermore, non-destructive testing (NDT) was carried out.

The current study builds upon the previously mentioned information, shaping the
foundation of this topic. In the following sections, we reference the methodology and
materials employed. Utilizing a basic experimental design approach, the study engages in
a comprehensive discussion on how the process parameters influence the properties of the
welds produced.

2. Materials and Methods
2.1. Experimental Setup

Our study involved the production of butt-welded specimens utilizing aluminum alloy
AA6061-T6 and copper C11000, each with dimensions of 150 mm × 50 mm × 4.76 mm,
as illustrated in Figure 1a,b. The material compositions are in Table 1. Table 2 includes
the electrical conductivity of the materials in terms of % IACS. This term refers to the
International Annealed Copper Standard, which provides a baseline for comparing the
electrical conductivity of various materials with that of annealed copper [17]. The tool used
featured a concave shoulder of 27 mm in diameter and a threaded cylindrical probe with a
5 mm diameter. The advancing side, where the FSW tool actively stirred and plasticized the
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material, was made of aluminum, while the retracting side was copper. This information
was based on findings by authors such as Eslami et al., Yusof et al., and Argesi et al., which
illustrated the production of sound weld joints using this configuration [18–20].
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NUC 18i-MB controller. It is noteworthy that this CNC machine is primarily used for tra-
ditional machining operations like milling; however, the force involved during the execu-
tion of FSW is significantly higher [4]. In order to prevent equipment damage, the welding 
was performed using a “weld–flip–weld” sequence, which involved welding with partial 
penetration, flipping the base materials, and welding again to achieve complete penetra-
tion. Figure 2 presents a simple schematic. 

Figure 1. Welding setup. (a) Configuration of joint. (b) Fixture used for execution of welding.

Table 1. Materials composition. Adapted from Ref. [21].

Material Si Cu Zn Fe Mn Cr Sn Ti Mg Others

AA6061-T6 0.4 0.16 0.025 0.7 0.15 0.04 0.05 0.15 0.8 95.8

C11000 - 99.9 - - - - - - - 0.1

Table 2. Electrical conductivity experimentally measured on base materials.

Material Electrical Conductivity in Terms of % IACS

AA6061-T6 39

C11000 97

The FSW process was carried out using a FIRST MCV-1100 CNC machine with a
FANUC 18i-MB controller. It is noteworthy that this CNC machine is primarily used for
traditional machining operations like milling; however, the force involved during the
execution of FSW is significantly higher [4]. In order to prevent equipment damage, the
welding was performed using a “weld–flip–weld” sequence, which involved welding with
partial penetration, flipping the base materials, and welding again to achieve complete
penetration. Figure 2 presents a simple schematic.
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2.2. Selection of Parameters

Table 3 includes a comprehensive review of the key parameters employed by various
authors in dissimilar FSW joints. It highlights details such as rotational speed, traverse
speed, offset, and joint efficiency, which is defined as the strength of a welded joint com-
pared with the minimum tensile strength of the base material [22], providing a compre-
hensive overview of the diverse approaches adopted in the research literature to achieve a
high-quality weld.

Table 3. Parameters used in dissimilar FSW. Adapted from Refs. [12,13,15,16,23–48].

Aluminum
Alloy Copper Thickness

(mm)
Rotational

Speed (RPM)

Traverse
Speed

(mm/min)
Offset (mm) Joint

Efficiency (%) Reference

AA6061 DHP 3 1118 60 2 54.84% [13]

AA6063 C26000 5 600 15 - 70.3% [15]

AA5083 Pure 3 1400 120 0 96.4% [16]

AA5083-H111 DHP R204 1 750 160 - - [48]

AA6082-T6 Pure 3 1000 200 1.9 - [23]

AA6061 Pure 3 710 355 - - [12]

AA6063-T651 ETP 6.3 1500 50 2 40.5% [24]

AA6061-T6 Pure 3 1300 70 - - [25]

AA6061-T6 Pure 2.8 900 63 0.5 - [26]

AA6061-T6 C11000 3.1 1300 20 2 - [27]

AA5754 C11000 3.175 950 50 0 78% [28]

AA1060 Pure 5 600 100 2 44% [29]

AA1060 Pure 3 1050 30 1 58% [6]

AA6061-T651 Pure 6.3 1500 40 2 58% [30]

AA1050-H14 Pure 6 800 125 1.4 85% [31]

AA2024 Pure 2 948 85 70.2% [32]

AA5083 Pure 5 800 40 1 69.4% [33]

AA6061 Pure 6.3 1300 40 2 - [34]

AA6061 C11000 3.2 1000 40 - - [35]

AA5083 Pure 3 825 32 - - [36]

AA5754 C11000 3.1 950 50 - 86% [28]

AA6063 Pure 6 1800 20 - - [37]

AA6063 Pure 6 900 25 0 - [38]

AA6063 HCP 3 800 20 0 - [39]

AA6063 ETP 3 1200 15 0 - [40]

AA5086 Pure 6.3 710 69 - - [41]

AA1350 Pure 3 1000 80 2 50% [42]

AA5083 Pure 5 1200 30 - 58% [43]

AA6061 B370 6 1100 120 - - [44]

AA5083 Pure 5 600 40 - 96% [45]

AA1050-H14 Pure 2 1400 20 2 88% [46]

AA1050-H14 Pure 2 1200 20 2 96% [46]

AA5082 B36 2 1300 35 - 82% [47]
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Based on the conducted review, Figure 3 categorizes rotational and traverse speeds
into two distinct groups: those falling below an efficiency of 70%, and those surpassing it.
The selection of thicknesses ranging between 2 and 3 mm was driven by the requirements
of the conducted trials and the CNC machine limitations. Figure 3 includes a summary
of the reviewed parameter combinations and joint efficiency. The red triangles represent
efficiencies below 70%, while the green circles indicate efficiencies above 70%, showing that
most traverse speeds are between 20 mm/min and 85 mm/min and the range for rotational
speed is 950 to 1400 RPM. It should be noted that higher rotational speeds tend to lead
to higher efficiencies. Table 4 shows the parameters selected for the trials; the selection
was initially based on the biographical review that is summarized in Table 3. Once the
ranges of interest were identified, an experimental plan was proposed that used visual
inspection of the joints as the first quality assessment. In the specific case of the feed rate
in this experimental exercise, it was limited to a value that would be safe for the machine,
similar to the use of flip welding to maintain the integrity of the equipment used.
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Offset is a parameter that is commonly used in dissimilar joints to account for differ-
ences in the properties of materials. Figure 4 includes a schematic of the offset selected
for the trials. This tool movement compensates for variations in mechanical and ther-
mal properties between workpieces, thereby controlling the distribution of heat in the
joint [49]. In this case, and as some authors have suggested, the tool was moved towards
the aluminum [42,50].
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2.3. Non-Destructive Analysis

Within the context of FSW, there are standards and related information regarding non-
destructive testing methods for joints welded with homogeneous materials. However, there
is a noticeable disparity in the variety and accessibility of information regarding dissimilar
joints [51]. This discrepancy underscores the need for further research and development
in this area, particularly given the increasing prevalence of dissimilar material welding
in various industrial applications. Given the materials employed in this scenario (copper
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and aluminum alloys), PAU testing emerged as a viable non-destructive technique. Its
advantage over traditional ultrasonic inspections lies in its use of multiple wave-generating
elements and its ability to concentrate and manipulate the ultrasonic beam without necessi-
tating probe movement. This method facilitates image formation through the electronic
manipulation of multiple ultrasonic elements to steer and focus the sound beam [52].

Table 4. Process parameters combinations selected per weld number.

Weld Number Rotational Speed
(RPM)

Traverse Speed
(mm/min) Offset (mm)

1 1000 40 1
2 1200 40 0
3 1000 40 0
4 1400 40 1
5 1200 40 1
6 1400 40 0
7 1400 40 1
8 1400 40 0

2.4. Tensile Testing

Tensile test specimens were prepared according to the ASTM E8 standard [53], as
shown in the sketch in Figure 5a. It should be noted that the units are in mm. For each
welding, three specimens were prepared, as shown in Figure 5b. To ensure the accuracy
of the tests, each specimen underwent a surface polishing process to achieve a smooth
and continuous surface. The polishing process was necessary to ensure a constant cross-
sectional area in the gauge section.
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To calculate the sample size, Montgomery’s guidance was used, employing Equation
(1) [54], where Zα/2 and Zβ are the z-scores according to the confidence level and the statis-
tical power, respectively; σ is the standard deviation; and δ is the difference quantifying the
magnitude of the effect that the study is designed to detect.

N =

(
Z2

α/2 + Z2
β

)
σ2

δ2 (1)

The expected sample size was calculated considering a confidence level of 95% and
a statistical power of 80%. A preliminary test yielded a standard deviation of efficiency
at 0.16, based on previous initial experimental results. Assuming a significant detectable
difference (δ) in welding efficiency of 0.20, the calculated sample size necessary for each
group of welds was approximately 3. It is noteworthy that a larger sample size would have
been preferable; however, due to significant limitations, it was not feasible.
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2.5. Electrical Conductivity Analysis

Due to the extensive use of dissimilar joints in the electrical industry, electrical con-
ductivity testing was considered a key factor to be included in the analysis. The analysis
was conducted using a specialized conductivity meter. This device directly measured the
electrical conductivity of the material at various points along the weld line.

The assessment was performed at three different locations along the weld: when the
FSW tool entered the workpiece (axis 1), when it advanced through the joint (axis 2), and
when the FSW tool was extracted (axis 3), as shown in Figure 6.
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3. Results and Discussion

This section presents the outcomes of the NDT, tensile testing, electrical conductivity
analysis, and other evaluations.

3.1. Phased-Array Ultrasound (PAU)

A phased-array ultrasound was conducted on eight plates corresponding to the weld-
ing executed. Non-destructive testing was conducted using the Phased Array General
Electric equipment (Mentor UT model) equipped with a 32-crystal transducer (serial num-
ber 17I00CJH). The GE 20D00T4A transducer and software designed for measurements
with a 32◦ crystal beam were utilized. Adjustment was performed using the calibration
ladder with the serial number GE V39377. The PAU results can be seen in Figure 7.

Based on the measurements, it is noticeable that there are differences in densities
between aluminum and copper. The aluminum side appears in darker green (Figure 7).
After conducting non-destructive testing, it was observed that welds 1, 2, 3, 5, 7, and 8 had
significant defects in the weld zone, ranging from 53 mm to 90 mm in length, where areas
marked in red indicated lower density. Moreover, welds 1, 3, and 5 presented a continuous
tunnel of approximately 90 mm in length, showing a lack of material along the joint. Welds
4 and 6 showed smaller indications of approximately 2 mm to 5 mm in length. It should be
noted that these welds used a higher rotational speed (1400 RPM). The speed and offset
were the same for welds 4 and 7 and welds 6 and 8, although it is worth mentioning some
aspects that possibly contributed to this variability, such as tool temperature. It is important
to mention that the objective of this non-destructive testing was to assess the integrity of
the weld and understand the influence of the process parameters. Furthermore, it served
as a means to identify defect-free sections suitable for tensile testing. In each instance, a
minimum of one sample, and ideally three specimens per weld, were examined.
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1 
 

  
(a) Weld 1. (b) Weld 2. 

  
(c) Weld 3. (d) Weld 4. 

  
(e) Weld 5. (f) Weld 6. 

  
(g) Weld 7. (h) Weld 8. 

 
Figure 7. PAU results for welds (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, and (h) 8.

3.2. Electrical Properties

Table 5 shows the electrical properties results, including the welds’ resistance, resistiv-
ity, electrical conductivity, and % IACS.

As shown in Table 5, all the welds except weld 5 had an average % IACS higher than
that of aluminum (39%), but in all cases, it was lower than that of copper. The best results
were seen in weld 4, with 66.3%, which is also the soundest joint based on the PAU images.
Weld 6 presented a higher uniformity across the three axes, with values of approximately
56.3% and a standard deviation of 4.4%.
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Table 5. Electrical properties results.

Weld Number Axes Resistance
(Ohm)

Resistivity
(Ω.m)

Electrical
Conductivity (S/m) % IACS Average

1
1 6.60 × 10−5 3.37 × 10−8 2.97 × 107 51.2%

58.2%2 6.20 × 10−5 3.16 × 10−8 3.16 × 107 54.5%
3 4.90 × 10−5 2.50 × 10−8 4.00 × 107 69.0%

2
1 6.70 × 10−5 3.42 × 10−8 2.93 × 107 50.4%

39.5%2 1.07 × 10−4 5.46 × 10−8 1.83 × 107 31.6%
3 9.30 × 10−5 4.74 × 10−8 2.11 × 107 36.3%

3
1 6.90 × 10−5 3.52 × 10−8 2.84 × 107 49.0%

49.8%2 5.70 × 10−5 2.91 × 10−8 3.44 × 107 59.3%
3 8.20 × 10−5 4.18 × 10−8 2.39 × 107 41.2%

4
1 5.30 × 10−5 2.70 × 10−8 3.70 × 107 63.8%

66.3%2 4.10 × 10−5 2.09 × 10−8 4.78 × 107 82.4%
3 6.40 × 10−5 3.27 × 10−8 3.06 × 107 52.8%

5
1 9.60 × 10−5 4.90 × 10−8 2.04 × 107 35.2%

35.8%2 9.40 × 10−5 4.80 × 10−8 2.09 × 107 36.0%
3 9.30 × 10−5 4.74 × 10−8 2.11 × 107 36.3%

6
1 6.60 × 10−5 3.37 × 10−8 2.97 × 107 51.2%

56.3%2 5.70 × 10−5 2.91 × 10−8 3.44 × 107 59.3%
3 5.80 × 10−5 2.96 × 10−8 3.38 × 107 58.3%

7
1 9.60 × 10−5 4.90 × 10−8 2.04 × 107 35.2%

49.3%2 5.30 × 10−5 2.70 × 10−8 3.70 × 107 63.8%
3 6.90 × 10−5 3.52 × 10−8 2.84 × 107 49.0%

8
1 8.20 × 10−5 4.18 × 10−8 2.39 × 107 41.2%

55.5%2 5.60 × 10−5 2.86 × 10−8 3.50 × 107 60.3%
3 5.20 × 10−5 2.65 × 10−8 3.77 × 107 65.0%

3.3. Tensile Testing

The SHIMADZU AGX-50kNvd machine was used for tensile testing, and the results
are shown in Table 6. The mechanical efficiency of the welds was determined by comparing
their mechanical properties to those of the base materials. The softer base material—in
this case, AA 6061—served as the baseline for the calculation, with a tensile strength of
224 MPa. Although three samples per weld were planned initially, some of the specimens
proved unsuitable for mechanical testing. Consequently, sound tensile specimens could not
be obtained from welds 5, 7, and 8. The highest result was achieved for weld 4, with 75.1%.

Table 6. Tensile testing results obtained from SHIMADZU AGX-50kNvd machine.

Weld Number Specimen UTS (MPa) Efficiency (%)

1 p1 125 55.8

2
p2 72.4 32.3
p3 100.5 44.9

3 p1 57.7 25.8

4
p1 136.7 61.0
p2 168.3 75.1
p3 131.6 58.8

6
p1 65 29.0
p2 96.7 43.2
p3 110.3 49.2
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Figure 8 includes a comparison of the process parameters (offset and rotational speed)
with the resulting joint efficiency. The transverse speed was kept constant at 40 mm/min
during the welding process.
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The data from Figure 8 suggests that the highest efficiencies were attained with a
1 mm offset. Conversely, joints with no offset, equivalent to 0 mm, yielded efficiencies
below 55% and as low as 25.8%.

Statistical Analysis

A statistical analysis was conducted to evaluate the obtained results, which included
both ANOVA and T-Student. It focused on welding groups 2, 4, and 6, as these were the
only groups with more than one viable produced sample.

• Student’s t-test

A T-Student test was conducted due to the study comprising fewer than 30 samples
per group, which facilitated the computation of 95% confidence intervals for the sample
efficiencies. As detailed in Table 7, the maximum standard deviation observed was 0.0847,
which was deemed acceptable. The analysis revealed significant variance among the groups,
with group 4 exhibiting both a higher mean and a wider confidence interval, indicating
greater efficacy but also increased variability.

Table 7. The 95% confidence interval for weld groups 2, 4, and 6.

Weld
Number Quantity Degrees of

Freedom
Standard
Deviation Alpha Value

Width of
Confidence

Interval

2 3 2 0.0627 0.05 0.1558

4 3 2 0.0725 0.05 0.1801

6 3 2 0.0847 0.05 0.2104

• ANOVA

Table 8 displays the Analysis of Variance (ANOVA) results for welding groups 2,
4, and 6. The obtained F-value of 65.535 significantly surpassed the critical F-value of
5.1433, indicating a statistically significant difference in the efficiencies. This result could be
improved by including additional tests to ensure the robustness of the study.
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Table 8. ANOVA for weld groups 2, 4, and 6.

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares F-Value Probability Critical

F-Value

Between
Groups 0.1106 2 0.0553 65,535 ∞ 5.1433

Within
Groups 0 6 0

Total 0.1106 8

3.4. Joint Efficiency and Electrical Conductivity

The previously obtained results were compared, recognizing that mechanical and
electrical properties serve distinct purposes and can be influenced by various factors during
the welding process. Figure 9 illustrates the average joint efficiency and % IACS for five
parameter combinations. A higher % IACS, indicating superior electrical conductivity,
typically correlates with higher efficiency, consistent with a continuous material capable of
conducting electricity and withstanding mechanical forces more effectively.

Metals 2024, 14, 631 11 of 15 
 

 

Table 7. The 95% confidence interval for weld groups 2, 4, and 6. 

Weld Number Quantity Degrees of Freedom 
Standard  
Deviation Alpha Value Width of Confidence Interval 

2 3 2 0.0627 0.05 0.1558 
4 3 2 0.0725 0.05 0.1801 
6 3 2 0.0847 0.05 0.2104 

• ANOVA 
Table 8 displays the Analysis of Variance (ANOVA) results for welding groups 2, 4, 

and 6. The obtained F-value of 65.535 significantly surpassed the critical F-value of 5.1433, 
indicating a statistically significant difference in the efficiencies. This result could be im-
proved by including additional tests to ensure the robustness of the study. 

Table 8. ANOVA for weld groups 2, 4, and 6. 

Source of Variation Sum of Squares Degrees of 
Freedom 

Mean Squares F-Value Probability Critical F-
Value 

Between Groups 0.1106 2 0.0553 65535 ∞ 5.1433 
Within Groups 0 6 0    

Total 0.1106 8     

3.4. Joint Efficiency and Electrical Conductivity 
The previously obtained results were compared, recognizing that mechanical and 

electrical properties serve distinct purposes and can be influenced by various factors dur-
ing the welding process. Figure 9 illustrates the average joint efficiency and % IACS for 
five parameter combinations. A higher % IACS, indicating superior electrical conductiv-
ity, typically correlates with higher efficiency, consistent with a continuous material capa-
ble of conducting electricity and withstanding mechanical forces more effectively. 

 
Figure 9. Efficiency compared with electrical properties. 

3.5. Material Flow General Overview 
Figure 10 includes a stereoscopic image from a weld executed at 1000 RPM and 40 

mm/min (weld 1). In this figure, it is possible to observe a higher level of mixing with the 
use of offset, with an increase in material flow from the softest material—aluminum, in 
this case—to the most rigid. This observation is further confirmed in Figure 11 by the 
presence of lines indicating significant and heterogeneous plastic deformation on the alu-
minum side. 

Figure 9. Efficiency compared with electrical properties.

3.5. Material Flow General Overview

Figure 10 includes a stereoscopic image from a weld executed at 1000 RPM and
40 mm/min (weld 1). In this figure, it is possible to observe a higher level of mixing with
the use of offset, with an increase in material flow from the softest material—aluminum,
in this case—to the most rigid. This observation is further confirmed in Figure 11 by
the presence of lines indicating significant and heterogeneous plastic deformation on the
aluminum side.
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4. Conclusions

The dissimilar joints executed with Friction Stir Welding (FSW) between aluminum
AA6061-T6 and pure copper C11000 were investigated. Following a literature review
focused on various techniques of aluminum–copper welding through FSW, a trend was
observed: conditions leading to the highest efficiencies typically involve high rotation
speeds and low traverse speeds. In order to select optimal parameters, experiments were
conducted with rotation speeds ranging from 1000 RPM to 1400 RPM, and traverse speed
of 40 mm/min. Additionally, the influence of offset was explored, varying between 0 mm
and 1 mm towards the aluminum.

PAU inspection was utilized, enabling the detection of density variations in the welded
regions, i.e., volumetric flaws. This information was used to accurately locate the specimens
for tensile testing and compared them with electrical conductivity testing. The combined
techniques provided an evaluation of joint soundness, facilitating a deeper understanding
of welding parameter combinations and their effects on the mechanical and electrical
properties of the weld. Considering the PAU inspection, welds 4 and 6 showed the best
outcomes, including a lack of material areas of approximately 2 mm to 5 mm in length. In
contrast, welds 3 and 5 show a continuous tunnel presented along the joint.

Analysis of the results from tensile tests revealed a trend towards higher mechanical
strengths at higher rotation speeds, in line with the literature review findings. It was
observed that combinations of 1400 RPM, 40 mm/min, and offset of 1 mm, achieved the
highest joint efficiency, reaching approximately 75% (weld 4), underscoring the impor-
tance of the right parameter combinations in weld quality. Considering the evaluation of
conductivity along the welds, the provided % IACS values aligned with the mechanical
characterization findings. Notably, the best result (82.42%) was also obtained for weld 4. It
should be noted that these results have coherence with the PAU testing result, in which
weld 4 presented smaller indications compared with the other welds.

As a final conclusion, this article offers a literature review on dissimilar FSW of the
selected pairs and the results of an experimental exercise that align closely with theoretical
findings. It is worth highlighting the advantageous use of the weld–flip–weld technique for
safeguarding the adapted welding equipment utilized in this project. However, it is crucial
to acknowledge the notable variability observed in the results due to this technique and,
as aforementioned, more data are necessary to support the observations which were not
available in this study. It is also recommended to conduct a new series of tests employing
full penetration welds from a single side. This approach will facilitate a focused analysis of
this single variable and also validate the reported observations.
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