Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iron Foam Specimens
2.2. Mechanical Testing
2.2.1. Compression Test Parameters and Conditions
2.2.2. Compression Properties
2.3. Statistical Analysis
3. Results
3.1. Iron Foam Structure
3.2. Dry Compression Behavior of the Iron Foams
3.3. Compression Behavior of Iron Foams in Hanks’ Solution and after Degradation
3.4. Statistical Analysis
3.5. Deformation of the Iron Foams after Compression
3.6. Morphology of the Iron Foams after Immersion Tests
4. Discussion
4.1. Effect of Structural Properties on Elastic and Plastic Compression Behavior of Iron Foams
- -
- The compression strength has a direct linear relationship with relative density and strut thickness, and it has an inverse relationship with the pore sizes and the number of the pores.
- -
- All the considered properties have an equal weight to affect the compression strength of the foams.
4.2. Effect of Environmental Conditions on Compression Behavior of Iron Foams
4.3. Deformation and Failure Mechanism
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Note
- Pippan, R.; Motz, C.; Kriszt, B.; Zettl, B.; Mayer, H.; Stanzl-Tschegg, S.; Simancik, F.; Kovacik, J. Material Properties. In Handbook of Cellular Metals: Production, Processing, Applications; Degischer, H.P., Kriszt, B., Eds.; Wiley-VCH: New York, NY, USA, 2002. [Google Scholar]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Properties of Metal Foams in Metal Foams: A Design Guide; Butterworth-Heinemann: Oxford, UK, 2000; pp. 40–54. [Google Scholar]
- Wu, S.; Liu, X.; Yeung, K.W.K.; Liu, C.; Yang, X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 2014, 80, 1–36. [Google Scholar] [CrossRef]
- He, J.; He, F.L.; Li, D.W.; Liu, Y.L.; Yin, D.C. A novel porous Fe/Fe–W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility. Colloids Surf. B Biointerfaces 2016, 142, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, K.; Nakajima, H. Metallic scaffolds for bone regeneration. Materials 2009, 2, 790–832. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Chen, C.; Liu, Y.; Wu, C.; Dai, C. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater. Sci. Eng. C 2013, 33, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Čapek, J.; Vojtěch, D.; Oborná, A. Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Mater. Des. 2015, 83, 468–482. [Google Scholar] [CrossRef]
- Eliaz, N. Biodegradable Metals. In Degradation of Implant Materials; Springer Science and Business Media: New York, NY, USA, 2012; p. 94. [Google Scholar]
- Peuster, M.; Wohlsein, P.; Brügmann, M.; Ehlerding, M.; Seidler, K.; Fink, C.; Brauer, H.; Fischer, A.; Hausdorf, G. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 2001, 86, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Oriňáková, R.; Oriňák, A.; Bučková, L.M.; Giretová, M.; Medvecký, L.; Labbanczová, E.; Kupková, M.; Hrubovčáková, M.; Kova, M. Iron based degradable foam structures for potential orthopedic applications. Int. J. Electrochem. Sci. 2013, 8, 12451–12465. [Google Scholar]
- Zberg, B.; Uggowitzer, P.J.; Löffler, J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Vojtěch, D.; Kubásek, J.; Šerák, J.; Novák, P. Mechanical and corrosion properties of newly developed biodegradable Zn–based alloys for bone fixation. Acta Biomater. 2011, 7, 3515–3522. [Google Scholar] [CrossRef] [PubMed]
- Vojtěch, D.; Kubásek, J.; Čapek, J.; Pospíšilová, I. Comparative mechanical and corrosion studies on magnesium, zinc and iron alloys as biodegradable metals. Mater. Technol. 2015, 49, 877–882. [Google Scholar] [CrossRef]
- Kraus, T.; Moszner, F.; Fischerauer, S.; Fiedler, M.; Martinelli, E.; Eichler, J.; Witte, F.; Willbold, E.; Schinhammer, M.; Meischel, M. Biodegradable Fe–based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomater. 2014, 10, 3346–3353. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H.; Alamdari, H.; Mantovani, D.; Dubé, D. Iron–manganese: New class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall. 2008, 51, 38–45. [Google Scholar] [CrossRef]
- Yusop, A.H.M.; Daud, N.M.; Nur, H.; Kadir, M.R.A.; Hermawan, H. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci. Rep. 2015, 5, 11194. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H.; Dubé, D.; Mantovani, D. Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. J. Biomed. Mater. Res. Part A 2010, 93, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Lee, E.; Bae, J.S.; Jang, M.J.; Poss, R.; Kieback, B.; Walther, G.; Kloeden, B. Large scale production and applications of alloy metal foam. Metfoam 2011 Proc. 2011, S, 601–606. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. The structure of cellular solids. In Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- International Organization for Standardization. ISO13314: 2011(E), Mechanical testing of metals_Ductility testing_Compression test for porous and cellular metals, Switzerland, 2011-12-15.
- Banhart, J.; Baumeister, J. Deformation characteristics of metal foams. J. Mater. Sci. 1998, 33, 1431–1440. [Google Scholar] [CrossRef]
- Paul, A.; Ramamurty, U. Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng. A 2000, 281, 1–7. [Google Scholar] [CrossRef]
- Beer, F.P.; Johnston, E.R.; Dewolf, J.T.; Mazurek, D.F. Mechanics of Materials, 6th ed.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Montanini, R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 2005, 47, 26–42. [Google Scholar] [CrossRef]
- OriginLab. Nonparametric Tests. Available online: http://www.originlab.com/index.aspx?go=Products/Origin/Statistics#Nonparametric_Tests_PRO (accessed on 31 March 2017).
- Schüler, P.; Fischer, S.F.; Bührig-Polaczek, A.; Fleck, C. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Mater. Sci. Eng. A 2013, 587, 250–261. [Google Scholar]
- Kaya, A.C.; Fleck, C. Deformation behavior of open-cell stainless steel foams. Mater. Sci. Eng. A 2014, 615, 447–456. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. The mechanics of foams: Basic results. In Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Gibson, L.J. Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227. [Google Scholar] [CrossRef]
- Amsterdam, E.; Vries, J.H.B.; Hosson, J.T.M.; Onck, P.R. The influence of strain-induced damage on the mechanical response of open-cell aluminum foam. Acta Mater. 2008, 56, 609–618. [Google Scholar] [CrossRef]
- Nieh, T.G.; Higashi, K.; Wadsworth, J. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng. A 2000, 283, 105–110. [Google Scholar] [CrossRef]
- Stephani, G.; Andersen, O.; Göhler, H.; Kostmann, G.; Kümmel, K.; Quadbeck, P.; Reinfried, M.; Studnitzky, T.; Waag, U. Iron Based Cellular Structures—Status and Prospects. Adv. Eng. Mater. 2006, 8, 847–852. [Google Scholar] [CrossRef]
- Xiao, L.; Song, W.; Wang, C.; Liu, H.; Tang, H.; Wang, J. Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure. Mater. Sci. Eng. A 2015, 640, 375–384. [Google Scholar] [CrossRef]
- Jian, Y.T.; Yang, Y.; Tian, T.; Stanford, C.; Zhang, X.P.; Zhao, K. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys. PLoS ONE 2015, 10, e0128138. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, Z.; Zhao, N. Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 2007, 56, 169–172. [Google Scholar] [CrossRef]
- Xu, J.L.; Bao, L.Z.; Liu, A.H.; Jin, X.F.; Luo, J.M.; Zhong, Z.C.; Zheng, Y.F. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J. Alloys Compd. 2015, 645, 137–142. [Google Scholar] [CrossRef]
- Krishna, B.V.; Bose, S.; Bandyopadhyay, A. Strength of open-cell 6101 aluminum foams under free and constrained compression. Mater. Sci. Eng. A 2007, 452–453, 178–188. [Google Scholar] [CrossRef]
- Maheo, L.; Viot, P.; Bernard, D.; Chirazi, A.; Ceglia, G.; Schmitt, V.; Mondain-Monval, O. Elastic behavior of multi-scale, open-cell foams. Compos. Part B Eng. 2013, 44, 172–183. [Google Scholar] [CrossRef]
- Mariot, P.; Leeflang, M.A.; Schaeffer, L.; Zhou, J. An investigation on the properties of injection-molded pure iron potentially for biodegradable stent application. Powder Technol. 2016, 294, 226–235. [Google Scholar] [CrossRef]
- Moravej, M.; Purnama, A.; Fiset, M.; Couet, J.; Mantovani, D. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomater. 2010, 6, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Daxner, T. Deformation Mechanisms and Yielding in Cellular Metals. In Plasticity of Pressure-Sensitive Materials; Altenbach, H., Öchsner, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 165–166. [Google Scholar]
Specimen | Relative Density | Cell Size (µm) | Pore Size (µm) * | End-Strut (µm) | Branch-Strut (µm) |
---|---|---|---|---|---|
IF45 | 0.038 ± 0.001 | 461.77 ± 72.26 | 155.59± 27.94 | 74.73 ± 10.30 | 55.52 ± 6.18 |
IF58 | 0.027 ± 0.001 | 617.73 ± 76.08 | 150.8 ± 29.43 | 63.62 ± 9.95 | 59.88 ± 7.55 |
IF80 | 0.025 ± 0.001 | 828.11 ± 79.87 | 157.33 ± 28.50 | 97.79 ± 17.54 | 80.91 ± 12.27 |
Specimen | E (MPa) | σy (MPa) | σc (MPa) | εD (mm/mm) | W (MJ/m3) |
---|---|---|---|---|---|
IF45 | 11.60 ± 1.39 | 0.48 ± 0.07 | 0.53 ± 0.05 | 15.03 ± 0.91 | 0.054 ± 0.009 |
IF58 | 8.24 ± 0.67 | 0.23 ± 0.03 | 0.26 ± 0.02 | 9.94 ± 0.54 | 0.016 ± 0.003 |
IF80 | 17.11 ± 2.3 | 0.36 ± 0.03 | 0.41 ± 0.04 | 12.52 ± 0.48 | 0.033 ± 0.004 |
Specimen | E (MPa) | σy (MPa) | σc (MPa) | εD (%) | W (MJ/m3) |
---|---|---|---|---|---|
Wet condition | 14.14 ± 1.39 | 0.33 ± 0.44 | 0.37 ± 0.04 | 12.49 ± 0.27 | 0.030 ± 0.003 |
No immersion | 14.78 ± 2.28 | 0.39 ± 0.04 | 0.43 ± 0.04 | 13.21 ± 0.96 | 0.039 ± 0.004 |
3-day immersion | 10.48 ± 1.39 | 0.25 ± 0.03 | 0.31 ± 0.04 | 13.17 ± 0.50 | 0.027 ± 0.005 |
7-day immersion | 10.06 ± 1.49 | 0.25 ± 0.03 | 0.30 ± 0.03 | 13.09 ± 0.73 | 0.025 ± 0.004 |
Specimen | Cell Size | Pore Size | Number of Pores | Strut Thickness | Average Total Point | |
---|---|---|---|---|---|---|
IF45 | 100 | 100 | 98.46 | 61.9 | 72.52 | 86.43 |
IF58 | 71.05 | 74.75 | 87.27 | 68.42 | 69.54 | 74.21 |
IF80 | 65.79 | 55.76 | 83.66 | 100 | 100 | 81.04 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alavi, R.; Trenggono, A.; Champagne, S.; Hermawan, H. Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions. Metals 2017, 7, 202. https://doi.org/10.3390/met7060202
Alavi R, Trenggono A, Champagne S, Hermawan H. Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions. Metals. 2017; 7(6):202. https://doi.org/10.3390/met7060202
Chicago/Turabian StyleAlavi, Reza, Adhitya Trenggono, Sébastien Champagne, and Hendra Hermawan. 2017. "Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions" Metals 7, no. 6: 202. https://doi.org/10.3390/met7060202