A Stochastic Model Approach for Copper Heap Leaching through Bayesian Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning
2.2. Data-Based Modeling in Mineral Processing
2.3. Bayesian Networks
2.4. Uncertainty Analysis
3. Results and Discussion
3.1. Analysis of Uncertainty
3.2. Bayesian Network Modeling
3.3. Bayesian Network Validation
4. Conclusions and Future Works
4.1. Conclusions
- Identifying the dependency relationships between independent variables and the response variable, in addition to dependency relationships between independent variables.
- Determining the variables that contribute most to explain the variability of the response.
- Assimilating quantitative knowledge in terms of the frequency of the occurrence of a given event (or level of recovery), using the parameters obtained by the BN, which will allow the identification of recurrent scenarios.
- The generation of copper recovery estimates based on partial knowledge of the operational variables considered in the study.
4.2. Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brininstool, M. Mineral Commodity Summaries: Copper; US Geological Survey: Reston, VA, USA, 2015.
- Pérez, K.; Toro, N.; Campos, E.; González, J.; Jeldres, R.I.; Nazer, A.; Rodriguez, M.H. Extraction of Mn from black copper using iron oxides from tailings and Fe2+ as reducing agents in acid medium. Metals 2019, 9, 1112. [Google Scholar] [CrossRef]
- Sulfuros primarios: Desafíos y oportunidades. Available online: https://www.cochilco.cl/Listado%20Temtico/sulfuros%20primarios_desaf%C3%ADos%20y%20oportunidades.pdf (accessed on 21 October 2019).
- Toro, N.; Briceño, W.; Pérez, K.; Cánovas, M.; Trigueros, E.; Sepúlveda, R.; Hernández, P. Leaching of pure chalcocite in a chloride media using sea water and waste water. Metals 2019, 9, 780. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Torres, D.; Toro, N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy 2018, 181, 215–220. [Google Scholar] [CrossRef]
- Toro, N.; Saldaña, M.; Gálvez, E.; Cánovas, M.; Trigueros, E.; Castillo, J.; Hernández, P.C. Optimization of parameters for the dissolution of mn from manganese nodules with the use of tailings in an acid medium. Minerals 2019, 9, 387. [Google Scholar] [CrossRef]
- Pradhan, N.; Nathsarma, K.C.; Srinivasa Rao, K.; Sukla, L.B.; Mishra, B.K. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 2008, 21, 355–365. [Google Scholar] [CrossRef]
- Castillo, J.; Sepúlveda, R.; Araya, G.; Guzmán, D.; Toro, N.; Pérez, K.; Rodríguez, M.; Navarra, A. Leaching of white metal in a NaCl-H2SO4 system under environmental conditions. Minerals 2019, 9, 319. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Franzidis, J.-P.; Petersen, J. Heap leaching technology–current state, innovations and future directions: A review. Miner. Process. Extr. Metall. Rev. 2016, 37, 73–119. [Google Scholar] [CrossRef]
- Saldaña, M.; Toro, N.; Castillo, J.; Hernández, P.; Navarra, A. Optimization of the heap leaching process through changes in modes of operation and discrete event simulation. Minerals 2019, 9, 421. [Google Scholar] [CrossRef]
- Kappes, D.W. Precious metal heap leach design and practice. In Mineral Processing Plant Design, Practice, and Control; Society for Mining, Metallurgy, and Exploration: Vancouver, BC, Canada, 2002; p. 12. [Google Scholar]
- Schlesinger, M.; King, M.; Sole, K.; Davenport, W. Extractive Metallurgy of Copper, 5th ed.; Society for Mining, Metallurgy, and Exploration: Vancouver, BC, Canada, 2011. [Google Scholar]
- Crina, G.; Ajith, A. Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- McCoy, J.T.; Auret, L. Machine learning applications in minerals processing: A review. Miner. Eng. 2019, 132, 95–109. [Google Scholar] [CrossRef]
- Lin, B.; Recke, B.; Knudsen, J.K.H.; Jørgensen, S.B. A systematic approach for soft sensor development. Comput. Chem. Eng. 2007, 31, 419–425. [Google Scholar] [CrossRef]
- Souza, F.A.A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications. Chemom. Intell. Lab. Syst. 2016, 152, 69–79. [Google Scholar] [CrossRef]
- Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795–814. [Google Scholar] [CrossRef]
- Khoshjavan, S.; Khoshjavan, R.; Rezai, B. Evaluation of the effect of coal chemical properties on the Hardgrove Grindability Index (HGI) of coal using artificial neural networks. J. South. African Inst. Min. Metall. 2013, 113, 505–510. [Google Scholar]
- Özbayoǧlu, G.; Özbayoǧlu, A.M.; Özbayoǧlu, M.E. Estimation of Hardgrove grindability index of Turkish coals by neural networks. Int. J. Miner. Process. 2008, 85, 93–100. [Google Scholar] [CrossRef]
- Venkoba Rao, B.; Gopalakrishna, S.J. Hardgrove grindability index prediction using support vector regression. Int. J. Miner. Process. 2009, 91, 55–59. [Google Scholar] [CrossRef]
- Matin, S.S.; Hower, J.C.; Farahzadi, L.; Chelgani, S.C. Explaining relationships among various coal analyses with coal grindability index by Random Forest. Int. J. Miner. Process. 2016, 155, 140–146. [Google Scholar] [CrossRef]
- Makokha, A.B.; Moys, M.H. Multivariate approach to on-line prediction of in-mill slurry density and ball load volume based on direct ball and slurry sensor data. Miner. Eng. 2012, 26, 13–23. [Google Scholar] [CrossRef]
- Ahmadzadeh, F.; Lundberg, J. Remaining useful life prediction of grinding mill liners using an artificial neural network. Miner. Eng. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Jahedsaravani, A.; Marhaban, M.H.; Massinaei, M. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner. Eng. 2014, 69, 137–145. [Google Scholar] [CrossRef]
- Massinaeim, M.; Doostmohammadi, R. Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques. Miner. Eng. 2010, 23, 83–90. [Google Scholar] [CrossRef]
- Nakhaei, F.; Mosavi, M.R.; Sam, A.; Vaghei, Y. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. Int. J. Miner. Process. 2012, 110–111, 140–154. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Yang, P.; Yang, C.; Xie, Q. Online estimation of the pH value for froth flotation of bauxite based on adaptive multiple neural networks. IFAC-Pap. OnLine 2016, 49, 149–154. [Google Scholar]
- Darwiche, A. Modeling and Reasoning with Bayesian Networks, 1st ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Devore, J. Probability & Statistics for Engineering and the Sciences, 8th ed.; Richard Stratton: Boston, MA, USA, 2010. [Google Scholar]
- Liu, D.B. Uncertainty Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Jaynes, E.T. Probability Theory; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Mellado, M.; Cisternas, L.; Lucay, F.; Gálvez, E.; Sepúlveda, F. A posteriori analysis of analytical models for heap leaching using uncertainty and global sensitivity analyses. Minerals 2018, 8, 44. [Google Scholar] [CrossRef]
- Puncher, M.; Birchall, A.; Bull, R. A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium. Radiat. Prot. Dosim. 2013, 156, 131–140. [Google Scholar] [CrossRef]
- BayesFusion, LLC. GeNIe Modeler. User Manual. Available online: https://support.bayesfusion.com/docs/ (accessed on 21 October 2019).
- Saldana, M.; Flores, V.; Toro, N.; Leiva, C. Representation for A Prototype of Recommendation System of Operation Mode in Copper Mining. In Proceedings of the 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; pp. 1–4. [Google Scholar]
Variable/Value | Minimum | Average | Maximum |
---|---|---|---|
Leaching time (days) | 30 | - | 90 |
Pile height (cm) | 300 | 600 | 900 |
Particle size (mm) | 14 | 20 | 34 |
Surface velocity of the leaching flow through the bed () | 10 | 30 | 50 |
Effective diffusivity of the solute within the pores of the particle () | 0.05 | 0.10 | 0.15 |
Porosity of the particle (%) | 1.0 | 3.5 | 6.0 |
Model/Statistic | MAD | MSE | MAPE |
---|---|---|---|
BN |
Model/Statistic | MAD | MSE | MAPE |
---|---|---|---|
0.073 | |||
0.092 | |||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldaña, M.; González, J.; Jeldres, R.I.; Villegas, Á.; Castillo, J.; Quezada, G.; Toro, N. A Stochastic Model Approach for Copper Heap Leaching through Bayesian Networks. Metals 2019, 9, 1198. https://doi.org/10.3390/met9111198
Saldaña M, González J, Jeldres RI, Villegas Á, Castillo J, Quezada G, Toro N. A Stochastic Model Approach for Copper Heap Leaching through Bayesian Networks. Metals. 2019; 9(11):1198. https://doi.org/10.3390/met9111198
Chicago/Turabian StyleSaldaña, Manuel, Javier González, Ricardo I. Jeldres, Ángelo Villegas, Jonathan Castillo, Gonzalo Quezada, and Norman Toro. 2019. "A Stochastic Model Approach for Copper Heap Leaching through Bayesian Networks" Metals 9, no. 11: 1198. https://doi.org/10.3390/met9111198