A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models
Abstract
:1. Introduction
2. Methodology
2.1. Detection of Keywords
2.2. Detection of Relevant Documents
2.3. The Selection of a Science Mapping Tool
2.4. Bibliometric and Scientometric Techniques
3. Findings
3.1. Density of Publications Concerning Studies on Concrete Compressive Strength Prediction
3.2. Main Research Interests Predicting Compressive Strength
3.3. Best Journals on Estimating Concrete Compressive Strength
3.4. Key Researchers
3.5. Leading Organizations
3.6. Key Countries
4. Discussion
5. Conclusions
5.1. Contributions of the Study
5.2. Recommendations for Academy and Practice
- ML models will establish the foundation for developing more accurate concrete compressive strength prediction models.
- These models will encourage ongoing improvements to their accuracy and reliability.
- The study will contribute to enhancing non-destructive testing methods for field applications.
- By enabling digital simulations of construction projects, it will aid in the effective planning and execution of construction processes.
- The study will support the prediction of compressive strength for concrete made from environmentally friendly and sustainable materials, such as recycled aggregates, olivine, and wastewater treatment sludge ash, contributing to sustainable construction practices.
- The development of ML-based quality control and safety methodologies will be a key future application.
- Datasets used in predicting concrete compressive strength will facilitate further studies on structural strength loss over time and the prediction of reinforcement needs.
- Future efforts should focus on enriching and diversifying datasets, particularly in cases where data are limited.
- The prediction models for concrete compressive strength are expected to evolve with time-based modeling techniques.
- Methods that reduce the carbon footprint in concrete production will likely become central in the near future.
- Additionally, the incorporation of 3D technology and nanomaterials may create new research avenues, leading to novel algorithms and hybrid models in concrete compressive strength prediction.
- It is anticipated that ML models will not only provide accurate predictions but will also offer insights into the underlying reasons behind those predictions, enhancing their interpretability.
5.3. Limitations of This Study
Funding
Data Availability Statement
Conflicts of Interest
References
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- Ulucan, M.; Alyamac, K.E. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Manag. 2022, 146, 53–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Wang, J.; Wang, Y.; Xu, Y.; Xiao, J. A review of life cycle assessment of recycled aggregate concrete. Constr. Build. Mater. 2019, 209, 115–125. [Google Scholar] [CrossRef]
- Marinković, S.; Radonjanin, V.; Malešev, M.; Ignjatović, I. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 2010, 30, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Tipu, R.K.; Panchal, V.R.; Pandya, K.S. An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete. Structures 2022, 45, 500–508. [Google Scholar] [CrossRef]
- Ali-Benyahia, K.; Kenai, S.; Ghrici, M.; Sbartaï, Z.M.; Elachachi, S.M. Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods. Constr. Build. Mater. 2023, 366, 130161. [Google Scholar] [CrossRef]
- Wu, X.; Han, J.; Cui, H.; Li, T.; Bai, X.; He, Y.; Liu, N. A Comparative Review of Recent Research Progress in Prefabricated Buildings in China and Other Countries. Buildings 2024, 14, 1062. [Google Scholar] [CrossRef]
- Aslam, F.; Shahab, M.Z. Supplementary cementitious materials in blended cement concrete: Advancements in predicting compressive strength through machine learning. Mater. Today Commun. 2024, 38, 107725. [Google Scholar] [CrossRef]
- Lan, W. Accurate compressive strength prediction using machine learning algorithms and optimization techniques. J. Eng. Appl. Sci. 2024, 71, 1. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Ghahremani, B.; Azarhomayun, F.; Ahmadi, M.; Trung, N.T.; Shariati, A. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 2022, 38, 757–779. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M. Multiple linear regression; artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 11, 90–99. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, F.; Zhu, F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr. Build. Mater. 2016, 125, 417–426. [Google Scholar] [CrossRef]
- Al-Mughanam, T.; Aldhyani, T.H.H.; Alsubari, B.; Al-Yaari, M. Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network. Sustainability 2020, 12, 9322. [Google Scholar] [CrossRef]
- Hoang, N.D.; Pham, A.D.; Nguyen, Q.L.; Pham, Q.N. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model. Adv. Civ. Eng. 2016, 2016, 2861380. [Google Scholar] [CrossRef]
- Farooq, F.; Czarnecki, S.; Niewiadomski, P.; Aslam, F.; Alabduljabbar, H.; Ostrowski, K.A.; Śliwa-Wieczorek, K.; Nowobilski, T.; Malazdrewicz, S. A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials 2021, 14, 4934. [Google Scholar] [CrossRef] [PubMed]
- Shishegaran, A.; Varaee, H.; Rabczuk, T.; Shishegaran, G. High correlated variables creator machine: Prediction of the compressive strength of concrete. Comput. Struct. 2021, 247, 106479. [Google Scholar] [CrossRef]
- Ashrafian, A.; Amiri, M.J.T.; Rezaie-Balf, M.; Ozbakkaloglu, T.; Lotfi-Omran, O. Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Constr. Build. Mater. 2018, 190, 479–494. [Google Scholar] [CrossRef]
- Ahmad, M.; Hu, J.L.; Ahmad, F.; Tang, X.W.; Amjad, M.; Iqbal, M.J.; Asim, M.; Farooq, A. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials 2021, 14, 1983. [Google Scholar] [CrossRef]
- Behnood, A.; Verian, K.P.; Gharehveran, M.M. Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Constr. Build. Mater. 2015, 98, 519–529. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. [Google Scholar] [CrossRef]
- Vakharia, V.; Gujar, R. Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques. Constr. Build. Mater. 2019, 225, 292–301. [Google Scholar] [CrossRef]
- Nguyen-Sy, T.; Wakim, J.; To, Q.D.; Vu, M.N.; Nguyen, T.D.; Nguyen, T.T. Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method. Constr. Build. Mater. 2020, 260, 119757. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. [Google Scholar] [CrossRef]
- Güçlüer, K.; Özbeyaz, A.; Göymen, S.; Günaydın, O. A comparative investigation using machine learning methods for concrete compressive strength estimation. Mater. Today Commun. 2021, 27, 102278. [Google Scholar] [CrossRef]
- Ghanizadeh, A.R.; Abbaslou, H.; Amlashi, A.T.; Alidoust, P. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front. Struct. Civ. Eng. 2019, 13, 215–239. [Google Scholar] [CrossRef]
- Tran, V.Q.; Dang, V.Q.; Ho, L.S. Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Constr. Build. Mater. 2022, 323, 126578. [Google Scholar] [CrossRef]
- Van Dao, D.; Adeli, H.; Ly, H.B.; Le, L.M.; Le, V.M.; Le, T.T.; Pham, B.T. A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a monte carlo simulation. Sustainability 2020, 12, 830. [Google Scholar] [CrossRef]
- Feng, D.C.; Liu, Z.T.; Wang, X.D.; Chen, Y.; Chang, J.Q.; Wei, D.F.; Jiang, Z.M. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020, 230, 117000. [Google Scholar] [CrossRef]
- Ly, H.B.; Nguyen, M.H.; Pham, B.T. Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Comput. Appl. 2021, 33, 17331–17351. [Google Scholar] [CrossRef]
- Van Dao, D.; Ly, H.B.; Trinh, S.H.; Le, T.T.; Pham, B.T. Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 2019, 12, 983. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Butera, A.; Le, K.N.; Silva, L.C.F.D.; Evangelista, A.C.J. A prediction model for compressive strength of CO2 concrete using regression analysis and artificial neural networks. Constr. Build. Mater. 2022, 324, 126689. [Google Scholar] [CrossRef]
- Xu, Y.; Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Dudek, M.; Aslam, F.; Joyklad, P. Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques. Materials 2021, 14, 7034. [Google Scholar] [CrossRef]
- Ashrafian, A.; Shokri, F.; Amiri, M.J.T.; Yaseen, Z.M.; Rezaie-Balf, M. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Constr. Build. Mater. 2020, 230, 117048. [Google Scholar] [CrossRef]
- Nikoo, M.; Moghadam, F.T.; Sadowski, Ł. Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv. Mater. Sci. Eng. 2015, 2015, 849126. [Google Scholar] [CrossRef]
- Shafighfard, T.; Bagherzadeh, F.; Rizi, R.A.; Yoo, D.Y. Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms. J. Mater. Res. Technol. 2022, 21, 3777–3794. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Deo, R.C.; Hilal, A.; Abd, A.M.; Bueno, L.C.; Salcedo-Sanz, S.; Nehdi, M.L. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 2018, 115, 112–125. [Google Scholar] [CrossRef]
- Al-Shamiri, A.K.; Kim, J.H.; Yuan, T.F.; Yoon, Y.S. Modeling the compressive strength of high-strength concrete: An extreme learning approach. Constr. Build. Mater. 2019, 208, 204–219. [Google Scholar] [CrossRef]
- Kang, M.C.; Yoo, D.Y.; Gupta, R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Bui, D.K.; Nguyen, T.; Chou, J.S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Dutta, S.; Samui, P.; Kim, D. Comparison of machine learning techniques to predict compressive strength of concrete. Comput. Concr. 2018, 21, 463–470. [Google Scholar] [CrossRef]
- Aslam, F.; Farooq, F.; Amin, M.N.; Khan, K.; Waheed, A.; Akbar, A.; Javed, M.F.; Alyousef, R.; Alabdulijabbar, H. Applications of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete. Adv. Civ. Eng. 2020, 2020, 8850535. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Khan, M.A.; Zafar, A.; Farooq, F.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H.; Khan, M.I. Geopolymer Concrete Compressive Strength via Artificial Neural Network, Adaptive Neuro Fuzzy Interface System, and Gene Expression Programming With K-Fold Cross Validation. Front. Mater. 2021, 8, 621163. [Google Scholar] [CrossRef]
- Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.; Tran, K.T.; Nguyen, K.T. A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 2020, 10, 7726. [Google Scholar] [CrossRef]
- Farooq, F.; Amin, M.N.; Khan, K.; Sadiq, M.R.; Javed, M.F.; Aslam, F.; Alyousef, R. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr. Build. Mater. 2020, 264, 120198. [Google Scholar] [CrossRef]
- Ling, H.; Qian, C.; Kang, W.; Liang, C.; Chen, H. Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment. Constr. Build. Mater. 2019, 206, 355–363. [Google Scholar] [CrossRef]
- Chithra, S.; Kumar, S.R.R.S.; Chinnaraju, K.; Ashmita, F.A. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr. Build. Mater. 2016, 114, 528–535. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model. J. Build. Eng. 2020, 30, 101282. [Google Scholar] [CrossRef]
- Zhang, L.V.; Marani, A.; Nehdi, M.L. Chemistry-informed machine learning prediction of compressive strength for alkali-activated materials. Constr. Build. Mater. 2022, 316, 126103. [Google Scholar] [CrossRef]
- Elemam, W.E.; Abdelraheem, A.H.; Mahdy, M.G.; Tahwia, A.M. Optimizing fresh properties and compressive strength of self-consolidating concrete. Constr. Build. Mater. 2020, 249, 118781. [Google Scholar] [CrossRef]
- Van Dao, D.; Trinh, S.H.; Ly, H.B.; Pham, B.T. Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Appl. Sci. 2019, 9, 1113. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr. Build. Mater. 2022, 330, 127298. [Google Scholar] [CrossRef]
- Chen, H.; Qian, C.; Liang, C.; Kang, W. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. PLoS ONE 2018, 13, e0191370. [Google Scholar] [CrossRef]
- Shamsabadi, E.A.; Roshan, N.; Hadigheh, S.A.; Nehdi, M.L.; Khodabakhshian, A.; Ghalehnovi, M. Machine learning-based compressive strength modelling of concrete incorporating waste marble powder. Constr. Build. Mater. 2022, 324, 126592. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Cihan, M.T. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv. Civ. Eng. 2019, 2019, 3069046. [Google Scholar] [CrossRef]
- Ahmadi, M.; Naderpour, H.; Kheyroddin, A. ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete. Int. J. Civ. Eng. 2017, 15, 213–221. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2020, 32, 11807–11826. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Yazdani, M.; Hosseini, M.; Bengar, H.A.; Ghatte, H.F. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Constr. Build. Mater. 2022, 317, 125876. [Google Scholar] [CrossRef]
- Nayak, S.C.; Das, S.; Misra, B.B.; Cho, S.B. Estimation of compressive strength of concrete cement using random vector functional link networks: A case study. Soft Comput. 2024, 28, 8641–8656. [Google Scholar] [CrossRef]
- Nayak, S.C.; Dehuri, S.; Cho, S.B. An evolutionary functional link artificial neural network for assessment of compressive strength of concrete structures. Ain Shams Eng. J. 2024, 15, 102462. [Google Scholar] [CrossRef]
- Dash, C.S.K.; Nayak, S.C.; Behera, A.K.; Dehuri, S. An artificial electric field algorithm-based neuro-fuzzy predictor for estimation of compressive strength of concrete structures: A machine learning approach. Informatica 2023, 47, 41–48. [Google Scholar] [CrossRef]
- Nayak, S.C.; Nayak, S.K.; Panda, S.K. Assessing compressive strength of concrete with extreme learning machine. J. Soft Comput. Civ. Eng. 2021, 5, 68–85. [Google Scholar] [CrossRef]
- Çevikbaş, M.; Işık, Z. An overarching review on delay analyses in construction projects. Buildings 2021, 11, 109. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Chan, A.H.S.; Seo, J.O.; Anwer, S.; Mi, H.Y.; Wu, Z.; Wong, A.Y.L. A science mapping-based review of work-related musculoskeletal disorders among construction workers. J. Saf. Res. 2023, 85, 114–128. [Google Scholar] [CrossRef]
- Migallón, V.; Penadés, H.; Penadés, J.; Tenza-Abril, A.J. A Machine Learning Approach to Prediction of the Compressive Strength of Segregated Lightweight Aggregate Concretes Using Ultrasonic Pulse Velocity. Appl. Sci. 2023, 13, 1953. [Google Scholar] [CrossRef]
- Ankur, N.; Singh, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review, Renew. Sustain. Energy Rev. 2021, 149, 111361. [Google Scholar] [CrossRef]
- Mejdi, M.; Saillio, M.; Chaussadent, T.; Divet, L.; Tagnit-Hamou, A. Hydration mechanisms of sewage sludge ashes used as cement replacement. Cem. Concr. Res. 2020, 135, 106115. [Google Scholar] [CrossRef]
- Aytekin, B.; Mardani, A.; Yazıcı, Ş. State-of-art review of bacteria-based self-healing concrete: Biomineralization process, crack healing, and mechanical properties. Constr. Build. Mater. 2023, 378, 131198. [Google Scholar] [CrossRef]
- Hamada, H.M.; Al-Attar, A.; Abed, F.; Beddu, S.; Humada, A.M.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Enhancing sustainability in concrete construction: A comprehensive review of plastic waste as an aggregate material, Sustain. Mater. Technol. 2024, 40, e00877. [Google Scholar] [CrossRef]
- Mashhadban, H.; Kutanaei, S.S.; Sayarinejad, M.A. Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 2016, 119, 277–287. [Google Scholar] [CrossRef]
- Monteiro, H.; Moura, B.; Soares, N. Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications. J. Build. Eng. 2022, 56, 104736. [Google Scholar] [CrossRef]
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 storage in cement and concrete by mineral carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Habibi, A.; Ramezanianpour, A.M.; Mahdikhani, M. RSM-based optimized mix design of recycled aggregate concrete containing supplementary cementitious materials based on waste generation and global warming potential. Resour. Conserv. Recycl. 2021, 167, 105420. [Google Scholar] [CrossRef]
- Sultana, I.; Islam, G.M.S. Potential of ladle furnace slag as supplementary cementitious material in concrete. Case Stud. Constr. Mater. 2023, 18, e02141. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Q.; Ashour, A.; Han, B. Self-healing cement concrete composites for resilient infrastructures: A review, Compos. Part B Eng. 2020, 189, 107892. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K.; Chourasia, A. Alternative fine aggregates in production of sustainable concrete—A review. J. Clean. Prod. 2020, 268, 122089. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Z.; Li, M.; Qian, C. Effects of carrier on the performance of bacteria-based self-healing concrete. Constr. Build. Mater. 2021, 305, 124771. [Google Scholar] [CrossRef]
- Siamardi, K. Optimization of fresh and hardened properties of structural light weight self-compacting concrete mix design using response surface methodology. Constr. Build. Mater. 2022, 317, 125928. [Google Scholar] [CrossRef]
- Habibi, A.; Ramezanianpour, A.M.; Mahdikhani, M.; Bamshad, O. RSM-based evaluation of mechanical and durability properties of recycled aggregate concrete containing GGBFS and silica fume. Constr. Build. Mater. 2021, 270, 121431. [Google Scholar] [CrossRef]
- Karaaslan, C.; Yener, E.; Bağatur, T.; Polat, R. Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. J. Build. Eng. 2022, 59, 105110. [Google Scholar] [CrossRef]
- Burciaga-Díaz, O.; Escalante-García, J.I. Structural transition to well-ordered phases of NaOH-activated slag-metakaolin cements aged by 6 years. Cem. Concr. Res. 2022, 156, 106791. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Hakeem, I.Y.; Amin, M.; Tayeh, B.A.; Agwa, I.S. Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. J. Build. Eng. 2022, 58, 104960. [Google Scholar] [CrossRef]
- Nasr, M.S.; Shubbar, A.A.; Abed, Z.A.A.R.; Ibrahim, M.S. Properties of eco-friendly cement mortar contained recycled materials from different sources. J. Build. Eng. 2020, 31, 101444. [Google Scholar] [CrossRef]
- McDonald, L.J.; Carballo-Meilan, M.A.; Chacartegui, R.; Afzal, W. The physicochemical properties of Portland cement blended with calcium carbonate with different morphologies as a supplementary cementitious material. J. Clean. Prod. 2022, 338, 130309. [Google Scholar] [CrossRef]
- Syaputra, A. The Implementation of Support Vector Machine Method with Genetic Algorithm in Predicting Energy Consumption for Reinforced Concrete Buildings. Sinkron 2023, 7, 1574–1586. [Google Scholar] [CrossRef]
- Yang, H.; Long, D.; Zhenyu, L.; Yuanjin, H.; Tao, Y.; Xin, H.; Jie, W.; Zhongyuan, L.; Shuzhen, L. Effects of bentonite on pore structure and permeability of cement mortar. Constr. Build. Mater. 2019, 224, 276–283. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud. Constr. Mater. 2022, 16, e00941. [Google Scholar] [CrossRef]
- Ata, A.A.; Salem, T.N.; Elkhawas, N.M. Properties of soil–bentonite–cement bypass mixture for cutoff walls. Constr. Build. Mater. 2015, 93, 950–956. [Google Scholar] [CrossRef]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Machine learning in mix design of Miscanthus lightweight concrete. Constr. Build. Mater. 2021, 302, 124191. [Google Scholar] [CrossRef]
- Ma, W.; Sun, D.; Ma, X.; Cui, S. Preparation and investigation of self-healing cementitious composite based on DMTDA—Epoxy binary microcapsules system. J. Build. Eng. 2022, 56, 104779. [Google Scholar] [CrossRef]
- Rudžionis, Ž.; Adhikary, S.K.; Manhanga, F.C.; Ashish, D.K.; Ivanauskas, R.; Stelmokaitis, G.; Navickas, A.A. Natural zeolite powder in cementitious composites and its application as heavy metal absorbents. J. Build. Eng. 2021, 43, 103085. [Google Scholar] [CrossRef]
- Oliva, M.; Vargas, F.; Lopez, M. Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. J. Clean. Prod. 2019, 223, 1029–1041. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Ho, C.M.; Doh, S.I.; Li, X.; Chin, S.C.; Ashraf, T. RSM-based modelling of cement mortar with various water to cement ratio and steel slag content. Phys. Chem. Earth Parts A/B/C 2022, 128, 103256. [Google Scholar] [CrossRef]
- Chakraborty, S.; Jo, B.W.; Jo, J.H.; Baloch, Z. Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: An alternative approach for waste management. J. Clean. Prod. 2017, 153, 253–263. [Google Scholar] [CrossRef]
- Gunning, P.J.; Hills, C.D.; Antemir, A.; Carey, P.J. Secondary aggregate from waste treated with carbon dioxide. Proc. Inst. Civ. Eng. Constr. Mater. 2011, 164, 231–239. [Google Scholar] [CrossRef]
- Forth, J.P.; Zoorob, S.E.; Thanaya, I.N.A. Development of bitumen-bound waste aggregate building blocks. Proc. Inst. Civ. Eng. Constr. Mater. 2006, 159, 23–32. [Google Scholar] [CrossRef]
- Ali, M.H.; Atiş, C.D.; Al-Kamaki, Y.S.S. Mechanical properties and efficiency of SIFCON samples at elevated temperature cured with standard and accelerated method. Case Stud. Constr. Mater. 2022, 17, e01281. [Google Scholar] [CrossRef]
- Ateş, K.T.; Şahin, C.; Kuvvetli, Y.; Küren, B.A.; Uysal, A. Sustainable production in cement via artificial intelligence based decision support system: Case study. Case Stud. Constr. Mater. 2021, 15, e00628. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Tučkutė, S. Characterization of novel lightweight self-compacting cement composites with incorporated expanded glass, aerogel, zeolite and fly ash. Case Stud. Constr. Mater. 2022, 16, e00879. [Google Scholar] [CrossRef]
- Rahman, F.; Adil, W.; Raheel, M.; Saberian, M.; Li, J.; Maqsood, T. Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study. J. Build. Eng. 2022, 49, 104037. [Google Scholar] [CrossRef]
- Galan, I.; Baldermann, A.; Kusterle, W.; Dietzel, M.; Mittermayr, F. Durability of shotcrete for underground support– Review and update. Constr. Build. Mater. 2019, 202, 465–493. [Google Scholar] [CrossRef]
- Altunci, Y.T.; Öcal, C.; Saplioglu, K.; İnce, H.H.; Cevikbas, M. Determination of Performance Characteristics of Screed Mortar with Expanded Glass Aggregate and Expanded Perlite Aggregate. El-Cezerî J. Sci. Eng. 2021, 8, 11–20. [Google Scholar] [CrossRef]
- Saafan, M.A.; Etman, Z.A.; Jaballah, A.S.; Abdelati, M.A. Strength and nuclear shielding performance of heavyweight concrete experimental and theoretical analysis using WinXCom program. Prog. Nucl. Energy 2023, 160, 104688. [Google Scholar] [CrossRef]
- Ali, S.I.A.; Lublóy, E. Effect of elevated temperature on the magnetite and quartz concrete at different W/C ratios as nuclear shielding concretes. Nucl. Mater. Energy 2022, 33, 101234. [Google Scholar] [CrossRef]
- Ababneh, A.; Alhassan, M.; Abu-Haifa, M. Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks. Case Stud. Constr. Mater. 2020, 13, e00414. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuvaraj, A.; Di, J.; Qian, S. Matrix design of light weight, high strength, high ductility ECC. Constr. Build. Mater. 2019, 210, 188–197. [Google Scholar] [CrossRef]
- Elemam, W.E.; Agwa, I.S.; Tahwia, A.M. Reusing Ceramic Waste as a Fine Aggregate and Supplemental Cementitious Material in the Manufacture of Sustainable Concrete. Buildings 2023, 13, 2726. [Google Scholar] [CrossRef]
- Chang, Z.; Shi, X.; Zheng, K.; Lu, Y.; Deng, Y.; Huang, J. Soft Computing Techniques to Model the Compressive Strength in Geo—Polymer Concrete: Approaches Based on an Adaptive Neuro—Fuzzy Inference System. Buildings 2024, 14, 3505. [Google Scholar] [CrossRef]
- Benaicha, M. AI-Driven Prediction of Compressive Strength in Self-Compacting Concrete: Enhancing Sustainability through Ultrasonic Measurements. Sustainability 2024, 16, 6644. [Google Scholar] [CrossRef]
- Hematibahar, M.; Kharun, M.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I. Analysis of Models to Predict Mechanical Properties of High-Performance and Ultra-High-Performance Concrete Using Machine Learning. J. Compos. Sci. 2024, 8, 287. [Google Scholar] [CrossRef]
- Park, S.H.; Ryu, H.S.; Park, W.J. Influence of Unit Water Content Control on Concrete Performance in the Ready-Mixed Concrete Production Process. Materials 2024, 17, 834. [Google Scholar] [CrossRef]
- Jaramillo, H.Y.; Camperos, J.A.G.; García, N.A. Development of a Non-Structural Prefabricated Panel Based on Construction and Demolition Waste for Sustainable Construction. Infrastructures 2024, 9, 135. [Google Scholar] [CrossRef]
- Stoyanov, V.; Petkova, V.; Mihaylova, K.; Shopska, M. A Study of the Influence of Thermoactivated Natural Zeolite on the Hydration of White Cement Mortars. Materials 2024, 17, 4798. [Google Scholar] [CrossRef]
- Castano, J.E.; Abdel-Mohti, A. Assessing the Impact of Recycled Concrete Aggregates on the Fresh and Hardened Properties of Self-Consolidating Concrete for Structural Precast Applications. Infrastructures 2024, 9, 177. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Z.; Liu, X.; Zhu, L.; Han, C.; Li, S.; Du, W. Comprehensive Utilization of Industry By-Products in Precast Concrete: A Critical Review from the Perspective of Physicochemical Characteristics of Solid Waste and Steam Curing Conditions. Materials 2024, 17, 4702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wu, W.; Fan, J.; Yuan, C. The Influence and Mechanism of Curing Methods and Curing Age on the Mechanical Properties of Yellow River Sand Engineered Cementitious Composites. Materials 2024, 17, 4307. [Google Scholar] [CrossRef]
- Francioso, V.; Lemos-micolta, E.D.; Elgaali, H.H.; Moro, C.; Rojas-manzano, M.A.; Velay-lizancos, M. Valorization of Sugarcane Bagasse Ash as an Alternative SCM: Effect of Particle Size, Temperature-Crossover Effect Mitigation & Cost Analysis. Sustainability 2024, 16, 9370. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Liu, X.; Lu, Y.; Lu, R. Combined Correlation Analysis and Multilinear Regression for Strength Model of Cement-Stabilized Clayey Soils. Int. J. Geomech. 2024, 24, 04024190. [Google Scholar] [CrossRef]
- Cunha, S.; Parente, M.; Tinoco, J.; Aguiar, J. Leveraging Machine Learning for Designing Sustainable Mortars with Non-Encapsulated PCMs. Sustainability 2024, 16, 6775. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, D.; Cao, K. Prediction of concrete compressive strength using support vector machine regression and non-destructive testing. Case Stud. Constr. Mater. 2024, 21, e03416. [Google Scholar] [CrossRef]
- Zhou, R.; Tang, Y.; Li, H.; Liu, Z. Predicting the compressive strength of ultra-high-performance concrete using a decision tree machine learning model enhanced by the integration of two optimization meta-heuristic algorithms. J. Eng. Appl. Sci. 2024, 71, 43. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Rai, B.; Samui, P. Development of hybrid gradient boosting models for predicting the compressive strength of high-volume fly ash self-compacting concrete with silica fume. Structures 2024, 66, 106850. [Google Scholar] [CrossRef]
- Sah, A.K.; Hong, Y.M. Performance Comparison of Machine Learning Models for Concrete Compressive Strength Prediction. Materials 2024, 17, 2075. [Google Scholar] [CrossRef]
- Paruthi, S.; Rahman, I.; Husain, A. Utilizing ANFIS for strength characteristics forecasting in variable heat-cured geopolymer composites. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Iqtidar, A.; Amin, M.N.; Nazar, S.; Hassan, A.M.; Ali, M. Predictive modelling of compressive strength of fly ash and ground granulated blast furnace slag based geopolymer concrete using machine learning techniques. Case Stud. Constr. Mater. 2024, 20, e03130. [Google Scholar] [CrossRef]
- Saridemir, M.; Topçu, I.B.; Özcan, F.; Severcan, M.H. Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Constr. Build. Mater. 2009, 23, 1279–1286. [Google Scholar] [CrossRef]
- Özcan, F.; Atiş, C.D.; Karahan, O.; Uncuoǧlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Akkurt, S.; Ozdemir, S.; Tayfur, G.; Akyol, B. The use of GA–ANNs in the modelling of compressive strength of cement mortar. Cem. Concr. Res. 2003, 33, 973–979. [Google Scholar] [CrossRef]
- Selçuk, L.; Gökçe, H.S. Estimation of the compressive strength of concrete under point load and its approach to strength criterions. KSCE J. Civ. Eng. 2015, 19, 1767–1774. [Google Scholar] [CrossRef]
- Yasmin, M. Compressive strength prediction for concrete modified with nanomaterials. Case Stud. Constr. Mater. 2021, 15, e00660. [Google Scholar] [CrossRef]
- Wang, Q.; Hussain, A.; Farooqi, M.U.; Deifalla, A.F. Artificial intelligence-based estimation of ultra-high-strength concrete’s flexural property. Case Stud. Constr. Mater. 2022, 17, e01243. [Google Scholar] [CrossRef]
- Saleh, E.; Tarawneh, A.; Naser, M.Z.; Abedi, M.; Almasabha, G. You only design once (YODO): Gaussian Process-Batch Bayesian optimization framework for mixture design of ultra high performance concrete. Constr. Build. Mater. 2022, 330, 127270. [Google Scholar] [CrossRef]
- de-Prado-Gil, J.; Palencia, C.; Silva-Monteiro, N.; Martínez-García, R. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud. Constr. Mater. 2022, 16, e01046. [Google Scholar] [CrossRef]
- Faraj, R.H.; Mohammed, A.A.; Omer, K.M.; Ahmed, H.U. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes. Clean Technol. Environ. Policy. 2022, 24, 2253–2281. [Google Scholar] [CrossRef]
- Shafighfard, T.; Kazemi, F.; Asgarkhani, N.; Yoo, D.Y. Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete. Eng. Appl. Artif. Intell. 2024, 136, 109053. [Google Scholar] [CrossRef]
- Abdellatief, M.; Hassan, Y.M.; Elnabwy, M.T.; Wong, L.S.; Chin, R.J.; Mo, K.H. Investigation of machine learning models in predicting compressive strength for ultra-high-performance geopolymer concrete: A comparative study. Constr. Build. Mater. 2024, 436, 136884. [Google Scholar] [CrossRef]
- Through, A.C. Optimized Machine Learning Model for Predicting Compressive. Materials 2024, 17, 5086. [Google Scholar] [CrossRef] [PubMed]
- AL-Bukhaiti, K.; Liu, Y.; Zhao, S.; Abas, H. An Application of BP Neural Network to the Prediction of Compressive Strength in Circular Concrete Columns Confined with CFRP. KSCE J. Civ. Eng. 2023, 27, 3006–3018. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Pang, R.; Xu, B. Seismic fragility analysis of high concrete faced rockfill dams based on plastic failure with support vector machine. Soil Dyn. Earthq. Eng. 2021, 144, 106587. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Kumar, K.; Garg, H. Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm. Expert Syst. Appl. 2023, 216, 119497. [Google Scholar] [CrossRef]
- Migallón, V.; Navarro-González, F.; Penadés, J.; Villacampa, Y. Parallel approach of a Galerkin-based methodology for predicting the compressive strength of the lightweight aggregate concrete. Constr. Build. Mater. 2019, 219, 56–68. [Google Scholar] [CrossRef]
- Bober, P.; Zgodavová, K.; Čička, M.; Mihaliková, M.; Brindza, J. Predictive Quality Analytics of Surface Roughness in Turning Operation Using Polynomial and Artificial Neural Network Models. Processes 2024, 12, 206. [Google Scholar] [CrossRef]
- Duan, J.; Asteris, P.G.; Nguyen, H.; Bui, X.N.; Moayedi, H. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng. Comput. 2021, 37, 3329–3346. [Google Scholar] [CrossRef]
- Linka, K.; Kuhl, E. A new family of Constitutive Artificial Neural Networks towards automated model discovery. Comput. Methods Appl. Mech. Eng. 2023, 403, 115731. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Li, Y.; Zhu, Z.; Zhu, J. Development of chemistry-informed interpretable model for predicting compressive strength of recycled aggregate concrete containing supplementary cementitious materials. J. Clean. Prod. 2023, 425, 138733. [Google Scholar] [CrossRef]
- Li, J.; Yan, G.; Abbud, L.H.; Alkhalifah, T.; Alturise, F.; Khadimallah, M.A.; Marzouki, R. Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Adv. Eng. Softw. 2023, 181, 103475. [Google Scholar] [CrossRef]
- Bushenkova, A.; Soares, P.M.M.; Johannsen, F.; Lima, D.C.A. Towards an improved representation of the urban heat island effect: A multi-scale application of XGBoost for madrid. Urban Clim. 2024, 55, 101982. [Google Scholar] [CrossRef]
- Salami, B.A.; Olayiwola, T.; Oyehan, T.A.; Raji, I.A. Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach. Constr. Build. Mater. 2021, 301, 124152. [Google Scholar] [CrossRef]
- Munir, M.J.; Kazmi, S.M.S.; Wu, Y.F.; Lin, X.; Ahmad, M.R. Development of a novel compressive strength design equation for natural and recycled aggregate concrete through advanced computational modeling. J. Build. Eng. 2022, 55, 104690. [Google Scholar] [CrossRef]
- Sami, B.H.Z.; Sami, B.F.Z.; Kumar, P.; Ahmed, A.N.; Amieghemen, G.E.; Sherif, M.M.; El-Shafie, A. Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms. Case Stud. Constr. Mater. 2023, 18, e01893. [Google Scholar] [CrossRef]
- Xi, B.; Li, E.; Fissha, Y.; Zhou, J.; Segarra, P. LGBM-based modeling scenarios to compressive strength of recycled aggregate concrete with SHAP analysis. Mech. Adv. Mater. Struct. 2023, 31, 5999–6014. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Guo, T.; Du, Z. Predicting the Influence of Soil–Structure Interaction on Seismic Responses of Reinforced Concrete Frame Buildings Using Convolutional Neural Network. Buildings 2023, 13, 564. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Al-Swaidani, A.M.; Khwies, W.T.; al-Baly, M.; Lala, T. Development of multiple linear regression, artificial neural networks and fuzzy logic models to predict the efficiency factor and durability indicator of nano natural pozzolana as cement additive. J. Build. Eng. 2022, 52, 104475. [Google Scholar] [CrossRef]
- Shakya, D.; Deshpande, V.; Safari, M.J.S.; Agarwal, M. Performance evaluation of machine learning algorithms for the prediction of particle Froude number (Frn) using hyper-parameter optimizations techniques. Expert Syst. Appl. 2024, 256, 124960. [Google Scholar] [CrossRef]
- Tipu, R.K.; Batra, V.; Suman; Pandya, K.S.; Panchal, V.R. Efficient compressive strength prediction of concrete incorporating recycled coarse aggregate using Newton’s boosted backpropagation neural network (NB-BPNN). Structures 2023, 58, 105559. [Google Scholar] [CrossRef]
- Shi, H.Y.; Wang, S.; Wang, P.Y. From simulation to reality: CFD-ML-driven structural optimization and experimental analysis of thermal plasma reactors. J. Environ. Chem. Eng. 2024, 12, 112998. [Google Scholar] [CrossRef]
- Afshoon, I.; Miri, M.; Mousavi, S.R. Using the Response Surface Method and Artificial Neural Network to Estimate the Compressive Strength of Environmentally Friendly Concretes Containing Fine Copper Slag Aggregates, Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 3415–3429. [Google Scholar] [CrossRef]
- Ateş, K.T. Solar Power Estimation Methods Using ANN and CA-ANN Models for Hydrogen Production Potential in Mediterranean Region. IETE J. Res. 2023, 70, 3280–3294. [Google Scholar] [CrossRef]
- Behery, G.M.; El-Harby, A.A.; El-Bakry, M.Y. Anfis and neural networks systems for multiplicity distributions in proton-proton interactions. Appl. Artif. Intell. 2013, 27, 304–322. [Google Scholar] [CrossRef]
- Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531. [Google Scholar] [CrossRef]
- Fakharian, P.; Eidgahee, D.R.; Akbari, M.; Jahangir, H.; Taeb, A.A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 2023, 47, 1790–1802. [Google Scholar] [CrossRef]
- Krikken, F.; Geertsema, G.; Nielsen, K.; Troccoli, A. The Added Value of Statistical Seasonal Forecasts. Climate 2024, 12, 83. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Berezsky, O.; Krak, I.; Kováč, M.; Fedorchuk, M. Improvement of the ANN-Based Prediction Technology for Extremely Small Biomedical Data Analysis. Technologies 2024, 12, 112. [Google Scholar] [CrossRef]
- Kovačević, M.; Lozančić, S.; Nyarko, E.K.; Hadzima-nyarko, M. Modeling of compressive strength of self-compacting rubberized concrete using machine learning. Materials 2021, 14, 4346. [Google Scholar] [CrossRef]
- Shen, Z.; Deifalla, A.F.; Paweł, K.; Dyczko, A. Compressive Strength Evaluation of Ultra-High-Strength. Materials 2022, 15, 3523. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, J.; Ostrowski, K.A.; Javed, M.F.; Ahmad, A.; Khan, M.I.; Aslam, F.; Kinasz, R. Prediction of compressive strength of fly-ash-based concrete using ensemble and non-ensemble supervised machine-learning approaches. Appl. Sci. 2022, 12, 361. [Google Scholar] [CrossRef]
- Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials 2021, 14, 4222. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials. Materials 2021, 14, 5762. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Kaya, M.C.; Danaci, E.; Oguztuzun, H. Uncertainty Calculation as a Service: Integrating Cloud-Based Microservices for Enhanced Calibration and DCC Generation †. Sensors 2024, 24, 5651. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yoon, J.; Zhang, R.; Rajabipour, F.; Srubar, W.V.; Dabo, I.; Radlińska, A. Machine learning in concrete science: Applications, challenges, and best practices. Npj Comput. Mater. 2022, 8, 127. [Google Scholar] [CrossRef]
Keywords | Number of Manuscript Containing Key Words |
---|---|
Compressive strength | 52 |
Concrete | 52 |
Predict | 52 |
Artificial | 42 |
ANN | 32 |
Machine Learning | 25 |
Adaptive Neuro Fuzzy Inference Systems | 10 |
Multiple Linear Regression | 9 |
Estimate | 8 |
Support Vector Regression | 7 |
Random Forest | 6 |
Support Vector Machine | 6 |
AI | 5 |
Artificial intelligence | 5 |
Decision Tree | 5 |
Gene Expression Programming | 5 |
Gradient Boosting Regression | 5 |
ID | Keywords | Subject Areas | Occurrences | Rate (%) | Total Link Strength | Color Code |
---|---|---|---|---|---|---|
1 | Compressive strength | Mechanical properties of concrete | 641 | 36.00 | 699 | Green |
2 | Mechanical properties | 110 | 77 | Red | ||
3 | Strength | 49 | 48 | Red | ||
4 | Flexural strength | 39 | 59 | Green | ||
5 | Concrete compressive strength | 37 | 20 | Yellow | ||
6 | Shear strength | 36 | 25 | Red | ||
7 | Bond strength | 32 | 30 | Red | ||
8 | Concrete | Concrete types | 285 | 20.82 | 355 | Red |
9 | Self-compacting concrete | 63 | 89 | Green | ||
10 | Recycled aggregate concrete | 48 | 55 | Red | ||
11 | Reinforced concrete | 41 | 28 | Red | ||
12 | Geopolymer concrete | 39 | 68 | Green | ||
13 | Lightweight concrete | 36 | 31 | Green | ||
14 | High-strength concrete | 34 | 31 | Red | ||
15 | Machine learning | Modeling and Analysis Methods | 281 | 31.92 | 368 | Blue |
16 | Artificial neural network | 156 | 186 | Red | ||
17 | Prediction | 72 | 127 | Purple | ||
18 | Artificial neural networks | 65 | 88 | Red | ||
19 | Gene expression programming | 62 | 94 | Blue | ||
20 | Modeling | 48 | 72 | Blue | ||
21 | Artificial intelligence | 46 | 80 | Yellow | ||
22 | Sensitivity analysis | 41 | 55 | Blue | ||
23 | Ann | 35 | 39 | Purple | ||
24 | Random forest | 31 | 46 | Blue | ||
25 | Fly ash | Pozzolanic additives | 100 | 5.00 | 147 | Green |
26 | Silica füme | 31 | 52 | Green | ||
27 | Durability | Durability and sustainability | 47 | 3.13 | 45 | Red |
28 | Sustainability | 35 | 50 | Yellow | ||
29 | Confinement | Other topics | 47 | 3.13 | 31 | Red |
30 | Ultrasonic pulse velocity | 35 | 45 | Yellow |
ID | Journals | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Construction and Building Materails | 370 | 20,553 | 1781 |
2 | Materials | 122 | 3565 | 851 |
3 | Case Studies in Construction Materials | 81 | 1608 | 582 |
4 | Journal of Building Engineering | 99 | 2841 | 549 |
5 | Journal of Cleaner Production | 36 | 2252 | 501 |
6 | Applied Sciences | 45 | 1296 | 343 |
7 | Buildings | 54 | 701 | 309 |
8 | Structural Concrete | 56 | 816 | 290 |
9 | Neural Computing and Applications | 26 | 1480 | 280 |
10 | Structures | 73 | 1048 | 253 |
11 | Advances in Civil Engineering | 31 | 856 | 242 |
12 | Materials Today Communications | 21 | 313 | 240 |
13 | Engineering Structures | 89 | 3565 | 232 |
14 | Sustainability | 38 | 690 | 227 |
15 | Scientific Reports | 26 | 250 | 169 |
16 | Cement and Concrete Research | 21 | 2949 | 158 |
17 | Journal of Materials in Civil Engineering | 57 | 1669 | 157 |
18 | Arabian Journal for Science and Engineering | 23 | 310 | 145 |
19 | European Journal of Environmental and Civil Engineering | 22 | 424 | 128 |
20 | Computers and Concrete, an International Journal | 52 | 822 | 113 |
21 | Cement and Concrete Composites | 26 | 1893 | 108 |
22 | Composite Structures | 23 | 1118 | 76 |
23 | Magazine of Concrete Research | 29 | 473 | 56 |
24 | Materials and Structures | 34 | 930 | 48 |
ID | Author | Documents | Citations | Average Citiations | Total Link Strength |
---|---|---|---|---|---|
1 | Amin, Muhammad Nasir | 36 | 859 | 23.86 | 96 |
2 | Javed, Muhammad Faisal | 35 | 1692 | 48.34 | 65 |
3 | Khan, Kaffayatullah | 35 | 1029 | 29.40 | 92 |
4 | Aslam, Fahid | 24 | 2019 | 84.13 | 62 |
5 | Ahmad, Ayaz | 21 | 1188 | 56.57 | 50 |
6 | Ahmad, Waqas | 21 | 919 | 43.76 | 56 |
7 | Nematzadeh, Mahdi | 20 | 640 | 32.00 | 0 |
8 | Ly, Hai-Bang | 18 | 981 | 54.50 | 0 |
9 | Behnood, Ali | 17 | 1109 | 65.24 | 9 |
10 | Kurda, Rawaz | 17 | 701 | 41.24 | 12 |
11 | Nehdi, Moncef L. | 17 | 752 | 44.24 | 2 |
12 | Alabduljabbar, Hisham | 16 | 697 | 43.56 | 32 |
13 | Farooq, Furqan | 16 | 1515 | 94.69 | 35 |
14 | Alyousef, Rayed | 15 | 1100 | 73.33 | 31 |
15 | Asteris, Panagiotis G. | 14 | 1828 | 130.57 | 8 |
16 | Mohammed, Ahmed Salih | 14 | 458 | 32.71 | 13 |
17 | Althoey, Fadi | 13 | 196 | 15.08 | 20 |
18 | Iqbal, Mudassir | 13 | 261 | 20.08 | 27 |
19 | Golafshani, Emadaldin Mohammadi | 12 | 503 | 41.92 | 9 |
20 | Deifalla, Ahmed Farouk | 11 | 222 | 20.18 | 14 |
21 | Gamil, Yaser | 11 | 81 | 7.36 | 15 |
22 | Huang, Jiandong | 11 | 185 | 16.82 | 1 |
23 | Hussain, Qudeer | 11 | 198 | 18.00 | 10 |
24 | Joyklad, Panuwat | 11 | 512 | 46.55 | 21 |
25 | Samui, Pijush | 11 | 683 | 62.09 | 3 |
26 | Yang, Keun-Hyeok | 11 | 99 | 9.00 | 0 |
27 | Ahmed, Hemn Unis | 10 | 530 | 53.00 | 12 |
28 | Ali, Mujahid | 10 | 147 | 14.70 | 18 |
29 | Bahrami, Alireza | 10 | 89 | 8.90 | 4 |
30 | Mohammed, Azad A. | 10 | 459 | 45.90 | 8 |
31 | Salami, Babatunde Abiodun | 10 | 213 | 21.30 | 16 |
32 | Sihag, Parveen | 10 | 390 | 39.00 | 5 |
ID | Organization | Documents | Citations | Total Link Strength | Citation Color Group |
---|---|---|---|---|---|
1 | Department of Civil Engineering, College of Engineering İn Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia | 34 | 2150 | 26 | Red |
2 | Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia | 27 | 456 | 25 | Yellow |
3 | Department of Civil Engineering, Comsats University Islamabad, Abbottabad, 22060, Pakistan | 25 | 790 | 26 | Orange |
4 | Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam | 24 | 1815 | 10 | Red |
5 | Department of Civil Engineering, Comsats University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan | 21 | 1164 | 13 | Red |
6 | Department of Civil Engineering, University of Mazandaran, Babolsar, Iran | 16 | 1004 | 0 | Red |
7 | Civil Engineering Department, College of Engineering, University of Sulaimani, Iraq | 15 | 566 | 17 | Orange |
8 | University of Transport Technology, Hanoi, 100000, Vietnam | 15 | 932 | 5 | Orange |
9 | Department of Civil Engineering, College of Engineering, Najran University, Najran, Saudi Arabia | 14 | 164 | 15 | Yellow |
10 | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam | 13 | 772 | 5 | Orange |
11 | Department of Highway and Bridge Engineering, Technical Engineering College, Erbil Polytechnic University, Erbil, 44001, Iraq | 12 | 523 | 25 | Orange |
12 | Cerıs, Civil Engineering, Architecture and Georresources Department, Instituto Superior Técnico, Universidade De Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal | 11 | 438 | 23 | Yellow |
13 | Department of Civil Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan | 11 | 153 | 5 | Yellow |
14 | Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russian Federation | 11 | 331 | 3 | Yellow |
15 | School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China | 11 | 441 | 0 | Yellow |
16 | Department of Civil Engineering, College of Engineering, Nawroz University, Duhok, 42001, Iraq | 10 | 453 | 20 | Yellow |
17 | School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China | 10 | 143 | 2 | Yellow |
18 | School of Civil Engineering, Southeast University, Nanjing, 211189, China | 10 | 664 | 0 | Orange |
ID | Country | Documents | Citations | Total Link Strength | Color Code |
---|---|---|---|---|---|
1 | China | 659 | 16,848 | 404 | Purple |
2 | Iran | 270 | 11,289 | 199 | Jade |
3 | United States | 243 | 9484 | 207 | Red |
4 | India | 205 | 5195 | 123 | Aqua |
5 | Australia | 179 | 7548 | 205 | Jade |
6 | Turkey | 177 | 8781 | 62 | Red |
7 | Saudi Arabia | 169 | 4860 | 356 | Pink |
8 | Pakistan | 151 | 4957 | 314 | Orange |
9 | South Korea | 138 | 4687 | 87 | Yellow |
10 | Viet Nam | 103 | 4865 | 117 | Green |
11 | Iraq | 91 | 3376 | 115 | Dark purple |
12 | Canada | 89 | 3723 | 96 | Red |
13 | Egypt | 87 | 1727 | 170 | Pink |
14 | United Kingdom | 78 | 4773 | 99 | Blue |
15 | Malaysia | 77 | 2977 | 162 | Lilac |
16 | Portugal | 57 | 2573 | 51 | Dark purple |
17 | Poland | 56 | 2113 | 114 | Ornage |
18 | Taiwan | 47 | 3303 | 15 | Green |
19 | Russian Federation | 43 | 1157 | 82 | gray |
20 | Spain | 40 | 1361 | 40 | Blue |
21 | France | 39 | 745 | 32 | Yellow |
22 | Hong Kong | 39 | 1562 | 43 | Purple |
23 | Italy | 39 | 1225 | 38 | Blue |
24 | Japan | 35 | 1289 | 37 | Green |
25 | Greece | 31 | 2265 | 50 | Aqua |
26 | Thailand | 31 | 1019 | 40 | Orange |
27 | Germany | 30 | 1006 | 43 | Blue |
28 | Jordan | 28 | 503 | 16 | Green |
29 | Sweden | 28 | 386 | 68 | Lilac |
30 | Singapore | 27 | 1038 | 21 | Purple |
31 | Nigeria | 23 | 366 | 33 | Colorless |
32 | Algeria | 22 | 712 | 25 | Colorless |
33 | Bangladesh | 22 | 492 | 26 | Red |
Method | Composite | Parameter | Reference |
---|---|---|---|
LR | Cement stabilized clayey soil | Soil particles, water, cement, and time. | [122] |
RF | Sustainable Mortar | Gypsum, cement, fly ash, sand 1, sand 2, fibers, superplasticizer, and paraffin. | [123] |
SVR | Custom concrete | Water/cement, cement, coarse gravel, fine gravel, san, ultrasonic pulse velocity, rebound hammer number. | [124] |
DT | Ultra high performance concrete | Cement, sand/cement, silica fume/cement ratio, fly ash/cement, steel fbre/cement, quartz powder/cement ratio, water/cement and admixture/cement. | [125] |
GBR | Self compacting Concrete | Cement, water, superplasticizer, maximum spread diameter, fly ash, silica fume, coarse aggregate, fine aggregate, and age. | [126] |
ANN | Custom concrete | Water, cement, coarse aggregate, blast furnace slag, age, superplasticizer, fly ash, and fine aggregate. | [127] |
ANFIS | Heat cured geopolymer | NaOH, Na2SiO3, curing temperature, superplasticizer, ground granulated blast furnace slag, and fly ash. | [128] |
GEP | Geopolymer Concrete | Fine aggregate, coarse aggregate, NaOH, Na2SiO3, temperature, superplasticizer, ground granulated blast furnace slag, and fly ash. | [129] |
Method | Advantage | Disadvantage | Summary |
---|---|---|---|
MLR | Linear relationships are estimated quickly. | It cannot model nonlinear complex relationships. | Speed and simplicity |
RF | It enhances accuracy in complex and nonlinear concrete compositions. | It requires high computational power and time. | Complex and nonlinear relationships |
SVR | It reduces overfitting in nonlinear datasets. | Low interpretability makes component impacts hard to assess. | Complex and nonlinear relationships |
DT | The impact of parameters is determined through simple rules. | Overfitting risks arise when too many branches are created. | Visualization and interpretability |
GBR | It provides high accuracy in complex datasets. | Large datasets cause high processing and computational costs. | High accuracy and optimized predictions |
ANN | It accurately determines the impact of complex parameters. | In large datasets, there is a risk of overfitting and increased costs. | Complex and nonlinear relationships |
ANFIS | The effects of complex parameters are analyzed using fuzzy logic rules. | Component effects are harder to interpret in large datasets. | Hybrid solutions and flexibility |
GEP | It enables accurate predictions by modeling complex concrete parameters. | It requires the adjustment of parameters. | High accuracy and optimized predictions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altuncı, Y.T. A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models. Buildings 2024, 14, 3851. https://doi.org/10.3390/buildings14123851
Altuncı YT. A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models. Buildings. 2024; 14(12):3851. https://doi.org/10.3390/buildings14123851
Chicago/Turabian StyleAltuncı, Yusuf Tahir. 2024. "A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models" Buildings 14, no. 12: 3851. https://doi.org/10.3390/buildings14123851
APA StyleAltuncı, Y. T. (2024). A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models. Buildings, 14(12), 3851. https://doi.org/10.3390/buildings14123851