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Abstract: This paper introduces a trapezoidal orthogonal stiffener steel plate shear wall (TSW). The
finite element model of the TSW was developed following the validation of low-cycle repeated tests
conducted on a single-span double-layer steel plate shear wall. The paper studies the effects of
the flat steel plate thickness, stiffener thickness, stiffener height, and stiffener bottom width on the
seismic performance of TSW. Building upon these findings, a theoretical formula for the ultimate
shear capacity of TSW was developed. The results prove the following: (1) By changing the flat steel
plate thickness, the stiffener thickness, and the stiffener height, the seismic behavior of TSW can
be enhanced. It is suggested that the flat steel plate thickness is 4~6 mm, the stiffener thickness is
4~6 mm, and the stiffener height is not more than 60 mm, while the effect of the stiffener bottom
width on the seismic behavior of TSW can be neglected. (2) The maximum error is 22.16%, compared
to the theoretical value of TSW ultimate shear capacity with the finite element simulation value.
However, as the finite element results surpass the test results, it indicates that the formula-derived
results are unsafe, necessitating a recommendation for correction.

Keywords: orthogonal stiffening; finite element model; seismic performance; ultimate shear capacity

1. Introduction

An edge column, edge beam, fishtail plate, and embedded steel plate compose a steel
plate shear wall (SPSW). Compared with other structural systems, it has some merits [1]:
(1) compared with the pure bending frame, under the same amount of steel, they have
higher lateral stiffness, which can save the amount of steel; (2) compared with the buckling
restrained brace, the structure, manufacture, and construction are relatively simple, with
higher economy; and (3) compared with reinforced concrete walls, its thickness is very
small, making it lightweight and has limited available space, and the production and
installation time can be completed in advance in the factory.

SPSW can be divided into three types according to their height–thickness ratio λ: thick
plate (λ < 100), moderate thick plate (100 ≤ λ ≤ 300), and thin plate (λ < 300) [2]. The
height–thickness ratio of the shear wall plate has a significant influence on the hysteretic
performance of the SPSW. As the height–thickness ratio of the shear wall plate increases, the
wall plate easily buckles, the hysteresis loop inclines to pinch, and the energy dissipation
capacity decreases [3]. The lateral stiffness of the thick SPSW is large. Although it has a good
energy dissipation effect, there is a serious waste of steel during use. Therefore, most of the
projects use thin steel plates. Under the serviceability limit state, the thin unstiffened SPSW
may experience overall elastic buckling. The plate has a certain out-of-plane deformation
and is accompanied by a huge noise of bang, which has a great impact on the normal use of
the building [4]. However, setting stiffeners can solve the problem that the hysteretic loop
of a thin wall is not fuller than that of a thick plate, enhancing the hysteretic performance
of the structure. After setting stiffeners on the steel plate wall, the plate is broken up into
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multiple panels, the initial lateral stiffness of the structure is improved, the critical elastic
buckling load is increased, and the seismic performance is better.

In engineering practice, the height of SPSW is too high. There will be great difficulties
in the transportation process, and it is limited in the arrangement. The usual practice is to
cut the steel plate wall into two parts and transport it to the construction site. To solve the
problem of insufficient strength at the splicing, multichannel transverse slab stiffeners are
generally placed at the splicing of two steel plates. In particular, contrasting to SPSW with
only vertical stiffeners, the arrangement of transverse stiffeners can also restrict the outside
surface deformation of vertical stiffeners.

SPSW has become a hot research topic in recent years due to the attention of researchers
at home and abroad. Alinia and Dastfan [5,6] studied the mechanical properties of SPSW
with stiffeners and proposed that it can conspicuously enhance energy dissipation capacity
and ultimate bearing capacity. Chen et al. [7] and Chen and Guo [8] conducted experimen-
tal research on three forms of SPSW and proposed the greater the thickness of the plate, the
stronger the constraint effect of the stiffener, which can not only increase the hysteresis loop
area but also make the hysteresis curve fuller. Guo et al. [9] studied a semirigid connection
frame cross-stiffened SPSW and proposed the structure not only has good plastic deforma-
tion ability but also has good ultimate bearing capacity. Haddad et al. [10] analyzed three
stiffened and two unstiffened specimens and concluded that stiffened SPSW markedly
enhanced shear stiffness and energy dissipation capacity. Mu and Yang [11] analyzed the
seismic behavior of two single-span SPSW with obliquely stiffening and proposed that
obliquely stiffening improved bearing capacity and stiffness. Alinia and Shirazi [12] ana-
lyzed the seismic behavior of a stiffened SPSW by changing the number and arrangement
of stiffeners. It is concluded that the greater the number of stiffeners, the stronger the lateral
resistance, but it will decrease the ductility of the structure. Compared with a unilateral
arrangement, a bilateral arrangement of stiffeners is more effective. Nie [13] proposed
that the buckling critical load of asymmetric cross diagonal stiffened SPSW is the largest
and the least prone to instability through the characteristic buckling method of ANSYS
for six kinds of stiffeners. Alavi [14] analyzed the mechanical properties of SPSW with
diagonal stiffeners on both sides through experiments. It is concluded that the hysteretic
curve of the SPSW with a diagonal stiffener is fuller, and other seismic performance is also
improved. Sigariyazd [15] studied the hysteretic performance of SPSW with diagonal stiff-
eners and the proposed bearing capacity, energy dissipation, and ductility of the structure
were significantly improved. Combined with the outcomes of the test and finite element
analysis, the calculation formula of steel plate strength was proposed. Guo [16] studied the
critical elastic buckling load and buckling mode of fully stiffened SPSW with slits on both
sides and proposed its elastic buckling design formula. Jahanpour [17] introduces the semi-
supported steel shear wall (SSSW) system and proposes new means to estimate the ultimate
shear capacity of a given SSSW. Nie and Zhu [18] analyzed the seismic performance of two
stiffened SPSW with openings and one stiffened SPSW without openings and proposed a
simple formula for the shear strength reduction factor and a simplified devise means for
computing the lateral bearing capacity of stiffened SPSW. Wang [19] analyzed the mechanic
performances of vertical stiffened SPSW, studied the influence of stiffeners on the lateral
stiffness of SPSW, and developed a computing formula for the lateral bearing capacity of
SPSW. Refs. [20–22] proposed a lightweight design and structural optimization method
for node dampers and sliders and an innovative MSB fully prefabricated lifted connection
(FPLC), which can significantly reduce energy consumption and is of great significance for
achieving green production. The interaction for rib-to-deck welded joints of orthotropic
steel deck (OSD) is analyzed using the finite element method in Ref. [23]. The results
show that the numerical results indicate that fatigue crack growth in welds is unstable due
to inclusions. In Ref. [24], partially encased composite columns (PECCs) with different
positions of shear studs are studied and analyzed. Test results illustrate that the position
of studs is a considerable parameter for the shear performance. In Ref. [25], the flexural
performance of composite beams with different materials was studied, and the SFRC layer
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thickness and steel rebar diameter had a great influence on the bearing capacity of the
beam. The seismic performance of concrete-filled steel tubular (CFST) composite columns
was studied and analyzed in Ref. [26]. The results show that the composite columns have
good seismic performance.

Based on the above SPSW development background, this paper proposes a new type of
SPSW—trapezoidal orthogonal stiffened steel plate shear wall (TSW). The structural form
is revealed in Figure 1. The arrangement of TSW is different. One side is vertically arranged
and the other side is horizontally arranged. The advantage of this construction method
is that there is no cross connection when the stiffeners are arranged, and the structural
measures at the joints are simplified, which is convenient for actual construction. The
transverse stiffener will constrain the out-of-plane deformation of the vertical stiffener. The
vertical stiffener near the column edge can limit the out-of-plane deformation of the steel
plate edge under horizontal –, avoid premature buckling, and improve the ductility and
energy dissipation capacity of the steel plate wall. The steel plate is divided into several
high-thickness comparison grids under the combined action of stiffeners on both sides. The
elastic initial stiffness of the steel plate is improved and the seismic performance is better.
Variable parameters analysis of the TSW using ABAQUS 2016 and a formula for the shear
capacity of TSW is developed. The formula error is within the acceptable range and the
accuracy is good.
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2. Numerical Modelling
2.1. Specimen Design

The TSW is composed of steel frame beams, flat steel plates, and vertical and transverse
trapezoidal stiffeners. According to the American codes AISC360-16 [27], the section of the
frame column is H350 × 350 × 12 × 19, the section of the upper and lower top beams is
H350 × 250 × 10 × 16, and the mid-beam section is H300 × 200 × 9 × 14. The dimensions
and materials of H-shaped steel are shown in Table 1, and the size of the trapezoidal stiffener
is seen in Table 2. According to the Steel Plate Shear Wall Technical Specification5.4.1
provisions of the grid width–height ratio and the ratio of width to thickness, the design
of the TSW division of the steel plate grid width–height ratio is close to 1, and the ratio of
width to thickness is in line with regulatory requirements; the specific sizes of the TSW are
seen in Figure 2 [28].
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Table 1. H-beam section size and material.
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2.2. Finite Element Model (FEM) 
This paper selects ABAQUS 2016 to model and analyze TSW. The material constitu-

tive relationship adopts the three broken-line model. The frame beam and column adopt 
Q355 steel, the flat steel plate adopts Q235 steel, and the trapezoidal stiffener adopts Q235 
steel. The mechanical properties of Q235 and Q355 steel are based on the standard design 
values of Q235 and Q355 steel in GB50017-2003 [29]. The specific indicators of the material 
mechanical properties are shown in Table 3.  

Items H (mm) B (mm) tw (mm) tf (mm) Steel Type

Frame column 350 350 12 19

Q355BTop and bottom beam 350 250 10 16

Section of H shape steel Middle beam 300 200 9 14

Table 2. Section size and material of trapezoidal stiffener.
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2.2. Finite Element Model (FEM)

This paper selects ABAQUS 2016 to model and analyze TSW. The material constitutive
relationship adopts the three broken-line model. The frame beam and column adopt
Q355 steel, the flat steel plate adopts Q235 steel, and the trapezoidal stiffener adopts Q235
steel. The mechanical properties of Q235 and Q355 steel are based on the standard design
values of Q235 and Q355 steel in GB50017-2003 [29]. The specific indicators of the material
mechanical properties are shown in Table 3.
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Table 3. Mechanical performances of materials.

Steel Type Modulus of Elasticity E (MPa) Yield Strength f y (MPa) Poisson Ratio υ εy εst εu

Q235 2.06 × 105 235 0.3 0.0011 0.025 0.20
Q355 2.06 × 105 355 0.3 0.0017 0.017 0.16

The finite element model adopts the S4R shell element. The framework beams and
columns are connected via bolted–welded joints using the Merge command in ABAQUS 2016.
The embedded steel plates and stiffeners are welded together using the Tie command for
connection, as seen in Figure 3. The iterative calculation step is 1 × 10−6. At the same
time, all degrees of freedom at the bottom part of the column are limited to simulate the
high-intensity bolt friction links at the bottom of the test, coupling the upper part of frame
columns on both sides to the center of the top beam, as seen in Figure 4. In order to prevent
local stress concentration at the loading position, the top of the frame columns on both sides
is coupled to a positive reference point in the z-axis of the top beam center, and two analysis
steps are set during the loading process: (1) apply vertical load to the model; (2) apply
horizontal load to the model using displacement loading, because the embedded wallboard
will produce obvious out-of-plane deformation during the loading process, and in order
to ensure the convergence of the model calculation process, both analysis steps open the
geometric nonlinearity. After adjusting the grid size according to the calculation results,
the grid division of each component is finally determined as follows: the grid size of the
embedded steel plate is 40 mm, and the grid size of the outer frame is 60 mm.
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2.3. Validation of the FEM

In this paper, the steel frame-ribbed stiffened low yield point SPSW test in reference is
selected for finite element verification [30]. The GLRBS specimen is selected. The specimen
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size and material attributes are seen in Table 4. The experiment structure is seen in Figure 5,
and the loading system used in the experiment is seen in Figure 6.

Table 4. Specimen dimensions and material properties.

Item Sectional Size (mm) Length (mm) Steel Type

Frame column □ 180 × 180 × 10 × 10 3600 Q235
Upper and lower top beam HN300 × 150 × 6.5 × 9 1200 Q235

Mid-beam HN200 × 100 × 5.5 × 8 1200 Q235
Flat steel plate 1200 × 3 1200 BLY160

Ribbed slab 60 × 6 1000 Q235
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Table 5. Comparison of key indexes between test and finite element. 

 Yield Load Peak Load Yield Displacement Peak Displacement Initial Stiffness 
(kN) (kN) (mm) (mm) (kN/mm) 

Experimental 502.00 687.83 20.21 81.47 42.63 
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The comparison between the specimen and the final failure mode of the FEM is seen 
in Figure 8. The comparison shows that the outer wall of the column bottom is seriously 
buckled, the weld at the beam–column connection joint is damaged and the plasticity 
hinge is shaped at the column bottom. The experiment and the FEM obtained failure pat-
terns that are in good agreement. Therefore, the modeling method is acceptable and can 
be used for subsequent parameter analysis. 

Figure 6. Experiment loading system.

This test was carried out according to the relevant provisions of the JGJ101-96 [31]. The
loading process includes two stages: pre-loading and formal loading. In the pre-loading
stage, a vertical load of 310 kN was applied synchronously on the top of the columns
on both sides, and a horizontal load of 50 kN (about 10% of the yield load) was applied
after the axial compression of the side frame column was ensured. The push–pull cycle
ensures that the two actuators work synchronously. The specimen was ensured to be in
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good contact with the measuring device. After the test device worked normally, it was
completely unloaded and entered the formal loading stage. The specimen GLRBS was
verified with ABAQUS 2016. The shell element components were established according to
the size of each part in Table 4. The material attributes of each part of the component were
measured by the standard specimen using the standard method of the “metal material room
temperature tensile test method” and averaged [32]. The steel three broken-line model was
used as the constitutive relationship of the model material, and the FEM established by the
above modeling method was used.

The load–displacement curves of the experiment and FEM are contrasted as seen in
Figure 7. The hysteresis loops of the two have a similar change trend. The hysteresis curve
of FEM is fuller than the pinch effect of the test, which indicates that FEM has a higher
energy dissipation capacity. For the skeleton curve, the slope of FEE is larger than that
of the test at the initial stage of loading, which indicates that the initial stiffness of FEM
is larger than that of the test. Continue to load, the curve of the test specimen appears
inflection point, and the specimen enters the buckling stage earlier; however, in the later
stage of loading, the downward trend of the two is relatively close, and both show good
ductility. The specific results are shown in Table 5. The maximum error is 17.90%. This is
mainly because the finite element is too idealistic, resulting in errors in FEM and test.
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Table 5. Comparison of key indexes between test and finite element.

Yield Load Peak Load Yield Displacement Peak Displacement Initial Stiffness
(kN) (kN) (mm) (mm) (kN/mm)

Experimental 502.00 687.83 20.21 81.47 42.63
Finite element 567.32 715.49 19.08 72.16 50.27

Error 13.02% 4.02% 4.47% 11.43% 17.90%

The comparison between the specimen and the final failure mode of the FEM is seen
in Figure 8. The comparison shows that the outer wall of the column bottom is seriously
buckled, the weld at the beam–column connection joint is damaged and the plasticity hinge
is shaped at the column bottom. The experiment and the FEM obtained failure patterns
that are in good agreement. Therefore, the modeling method is acceptable and can be used
for subsequent parameter analysis.
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3. Parametric Analyses of TSW

To study the effects of the flat steel plate thickness tb, stiffener thickness tt, stiffener
height h, and stiffener bottom width l on the hysteretic performance of TSW, this paper uses
ABAQUS 2016 to establish four groups of finite element models for the TSW. The number
of specimens in each group is four. The geometric parameters are shown in Figure 9. The
parameter design of the specimen is shown in Table 6. The bottom width l of the trapezoidal
stiffener is changed by changing the size of b. Then, by comparing the hysteresis curve,
skeleton curve, and strength stiffness degradation curve, the reasonable value range of
each design parameter is given.
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Table 6. Parameter design of four groups of specimens.

Serial Number tb (mm) tt (mm) H (mm) L (mm)

TSW-BT tb 6 50 220
TSW-TT 6 tt 50 220
TSW-TH 6 6 h 220
TSW-L 6 6 50 l

The most important parameter to measure the influence of stiffeners on the out-
of-plane restraint of wall panels is the rib stiffness ratio, that is, the ratio of the out-of-
plane bending stiffness of the stiffener to the out-of-plane flexural stiffness of the steel
plate. The rib stiffness ratio is expressed as η, and the calculation formula is shown in
Equation (1) [28]. 

η =
Es Is

Dc

D =
Et3

12(1 − υ2)

Is =
2
3

tth3 +
1

12
btt

3 + btth2

c = (cx + cy)/2

(1)

In the formula, Es—the elastic modulus of the stiffener is 2.06 × 105 N/mm2; Is—the
inertial moment of the stiffener section parallel to the center of gravity axis of the stiffened
plate section; D—cylindrical rigidity of stiffened plate; c—average spacing of stiffeners on
both sides; E—the elastic modulus of flat steel plate s 2.06× 105 N/mm2; υ—Poisson’s ratio
of flat steel plate is 0.3.

3.1. Effects of Plate Thickness tb

In this section, four models are established. The FEM is named the TSW-BT series, and
the specific size is shown in Table 7.

Table 7. Parameters of TSW-BT specimens.

Serial Number tb (mm) Rib Stiffness Ratio

TSW-BT1 2 5155.58
TSW-BT2 4 644.45
TSW-BT3 6 190.95
TSW-BT4 8 80.56

The load–displacement curves are given in Figure 10. The comparison shows that from
TSW-BT2, the hysteresis curves of the subsequent specimens are by degrees transformed
into an anti- “S” shape. The hysteresis loop area of TSW-BT3 and subsequent specimens
gradually increases, and the shape is fuller. The hysteresis loop area gradually enlarges
following the thickness of the flat steel plate. Comparing the skeleton curves, it can be
seen that when entering the plasticity, the thicker the flat steel plate, the more the inflection
point of the envelope curve occurs first, and the specimens enter the buckling stage earlier;
at the later stage of loading, the envelope curves decreased gently, showing good ductility
performance. The specific values are shown in Table 8. Compared with TSW-BT1, the yield
load of TSW-BT2~TSW-BT4 increased by 24.57%, 21.91%, and 6.44%, respectively. The
growth rates of the peak load are 18.29%, 16.87%, and 6.02%; the lateral stiffness increases
by 34.11%, 17.97%, and 9.32%. The peak displacement decreased by 1.35%, 1.05%, and
31.7%. The greater the flat steel plate thickness is, the stronger its bearing capability and
lateral stiffness.
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Figure 10. Comparison of the load–displacement curves of various specimens.

Table 8. Comparison of key indicators of TSW-BT specimens.

Serial Number Yield Load Peak Load Yield Displacement Peak Displacement Lateral Stiffness
(kN) (kN) (mm) (mm) (kN/mm)

TSW-BT1 1872.84 2395.96 45.47 113.63 74.52
TSW-BT2 2332.98 2834.13 38.04 112.10 99.94
TSW-BT3 2844.06 3312.24 36.23 110.92 117.90
TSW-BT4 3027.31 3511.79 35.56 75.76 128.89

The relative energy dissipation index is the equivalent viscous damping coefficient
he, which reflects the fullness of the hysteresis loop (see Figure 11) and is calculated by
Equation (2).

he =
S(ABC+CDA)

2π × S(OBE+ODF)
(2)
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In the formula, S(ABC+CDA)—the area of hysteresis loop ABCD; S(OBE+ODF)—the sum
of the area of triangles obe and odf.

The energy dissipation capacity is seen in Figure 12. With the increase in thickness,
the absolute energy dissipation value is larger. The energy dissipation values of specimens
TSW-BT1, TSW-BT2, and TSW-BT3 at each loading stage are greatly different, while the
energy dissipation values of TSW-BT3 and TSW-BT4 at each loading stage are almost close.
The equivalent viscous damping coefficient enlargements as increasing thickness of the
steel plate before 5.0δy, and the equivalent viscous damping coefficient of the thinner steel
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plate is higher than rather thick after 5.0δy. A comprehensive comparison of various energy
consumption performance indicators shows that the absolute index and relative index of
TSW-BT3 (flat steel plate thickness of 6 mm) are better.
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According to the given indicators, the thickness of TSW has a greater impact on its
hysteretic capacity. This can effectively enhance the full degree of hysteretic curves and
improve its energy dissipation ability. Additionally, the initial stiffness, yield load, and
peak load of the specimen are improved to a certain extent. The steel plate thickness for the
TSW is suggested to be in the range of 4 to 6 mm.

3.2. Effects of the Stiffener Thickness tt

In this section, four models are established. The FEM is named the TSW-TT series, and
the specific variable parameter size is shown in Table 9.

Table 9. Parameters of TSW-TT specimens.

Serial Number tt (mm) Rib Stiffness Ratio

TSW-TT1 2 63.60
TSW-TT2 4 127.23
TSW-TT3 6 190.95
TSW-TT4 8 254.77

The load–displacement curves are given in Figure 13. The comparison shows that
the hysteresis curves of specimens TSW-TT1 and TSW-TT2 have an obvious “pinching”
phenomenon. Starting from TSW-TT3, the hysteresis curves gradually become an anti-
“S” shape, and the shape is fuller. The comparison of the envelope curves shows that
the initial lateral stiffness and peak load increase gradually. In the middle of loading, the
greater the thickness of the stiffener is, the greater the peak load. At the end of loading, the
skeleton curves decreased gently and showed good ductility. The specific values are shown
in Table 10. Compared with TSW-TT1, the yield load of TSW-TT2~TSW-TT4 increased
by 13.13%, 15.71%, and 0.33%, respectively. The increase in peak load is 9.93%, 14.72%,
and 0.98%. The increments of lateral stiffness are 6.01%, 9.18%, and 0.55%. The peak
displacement decreased by 5.89%, 36.97%, and 2.66%. The larger the stiffener thickness is,
the stronger its bearing capability and lateral stiffness.
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stiffener increases, the absolute energy dissipation value is larger. The energy dissipation 
values TSW-TT1 and TSW-TT2 at each loading stage are larger, while the energy dissipa-
tion values TSW-TT3 and TSW-TT4 at each loading stage are smaller. The equivalent vis-
cous damping coefficient between the 2.0δy and 5.0δy specimens is obviously different, 
and the numerical difference between the loading stages of TSW-TT3 and TSW-TT4 is not 
significant. At 6.0δy~7.0δy, the equivalent viscous damping coefficients are similar to each 
other, and the changing trend is basically the same. Increasing the thickness of the stiffener 

Figure 13. Comparison of the load–displacement curves of various specimens.

Table 10. Comparison of key indicators of TSW-TT specimens.

Serial Number Yield Load Peak Load Yield Displacement Peak Displacement Lateral Stiffness
(kN) (kN) (mm) (mm) (kN/mm)

TSW-BT1 1872.84 2395.96 45.47 113.63 74.52
TSW-BT2 2332.98 2834.13 38.04 112.10 99.94
TSW-BT3 2844.06 3312.24 36.23 110.92 117.90
TSW-BT4 3027.31 3511.79 35.56 75.76 128.89

Figure 14 shows the energy dissipation capacity. As the thickness of the trapezoidal
stiffener increases, the absolute energy dissipation value is larger. The energy dissipation
values TSW-TT1 and TSW-TT2 at each loading stage are larger, while the energy dissipation
values TSW-TT3 and TSW-TT4 at each loading stage are smaller. The equivalent viscous
damping coefficient between the 2.0δy and 5.0δy specimens is obviously different, and
the numerical difference between the loading stages of TSW-TT3 and TSW-TT4 is not
significant. At 6.0δy~7.0δy, the equivalent viscous damping coefficients are similar to each
other, and the changing trend is basically the same. Increasing the thickness of the stiffener
can significantly improve the energy dissipation performance of the specimens, and the
effect is most obvious in the middle of loading, but the thickness of the stiffener is too large,
and it will also increase the amount of steel used.
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Based on the above indexes, trapezoidal stiffener thickness has an obvious effect on the
hysteretic capacity of TSW. The increase in the thickness of the stiffener solves “pinching”
phenomenon of the hysteresis curves and improves the energy dissipation ability. The
initial stiffness, yield load, and peak load of the specimens are improved to a certain extent,
and the stiffness and strength degeneration rate are slowed down. Therefore, this paper
suggests a TSW trapezoidal stiffener thickness of 4~6 mm.

3.3. Effects of the Stiffener Height h

In this section, the variable parameter analysis is carried out for the height of the
trapezoidal stiffener. This series also includes four specimens. The finite element model is
named the TSW-TH series, and the specific variable parameter size is shown in Table 11.

Table 11. Parameters of the TSW-TH specimens.

Serial Number h (mm) Rib Stiffness Ratio

TSW-TH1 30 61.98
TSW-TH2 40 116.16
TSW-TH3 50 190.95
TSW-TH4 60 288.62

The load–displacement comparison is given in Figure 15. Compared with the hys-
teresis curves, it shows that after entering the elastic–plastic stage, the hysteresis curves of
TSW-TH1 and TSW-TH2 have an obvious “pinch” phenomenon. With the height of the
trapezoidal stiffener increase, the shape of the hysteresis curve of the subsequent specimens
gradually changes to the anti-“S” shape, and the shape is fuller. Comparing the skeleton
curves, it can be seen that with the increases of the trapezoidal stiffener height when com-
paring the specimens TSW-TH1~TSW-TH4, the initial lateral stiffness gradually decreases,
and the maximum stiffness of the wallboard also decreases. The concrete numerical values
are shown in Table 12, and the yield load growth rates of TSW-TH1~TSW-TH4 are 6.99%,
5.00%, and 3.53%, respectively. The growth rates of the peak load are 7.19%, 4.96%, and
4.18%, and the peak displacement decreased by 7.61%, 17.86%, and 0.59%, respectively.
The lateral stiffness changes little. Therefore, it is recommended that the height of the
trapezoidal stiffener is 50 mm.
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The energy dissipation capacity is seen in Figure 16. When the wallboard enters the
yield stage, the opening degree of hysteretic curves is low and the energy dissipation is
limited. Continuing to loading, as the height of the trapezoidal stiffener increases, the trend
of the energy dissipation value of the specimen increases first and then decreases. The
equivalent viscous damping coefficient between the 2.0δy and 5.0δy specimens is obviously
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different. At 6.0δy~7.0δy, the equivalent viscous damping coefficients are close to each
other, and the variation trend is basically the same.

Table 12. Comparison of key indicators of TSW-TH specimens.

Serial Number Yield Load Peak Load Yield Displacement Peak Displacement Lateral Stiffness
(kN) (kN) (mm) (mm) (kN/mm)

TSW-TH1 2531.58 2944.15 32.38 146.17 118.37
TSW-TH2 2708.54 3155.73 34.46 135.04 118.13
TSW-TH3 2844.06 3312.24 36.23 110.92 117.90
TSW-TH4 2944.36 3450.65 38.38 110.27 117.65
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In summary, trapezoidal stiffener height has an obvious influence on the hysteretic
capacity of TSW. Increasing the height of the stiffener can obviously solve the “pinching”
phenomenon of the hysteretic curve. The trapezoidal stiffener plays an active role in
enhancing the hysteretic properties of the specimen in the proper height range, but after
exceeding a certain size, the height of the stiffener continues to increase, which will have a
reverse effect on the hysteretic performance of the specimen. Therefore, it is suggested that
the height of the stiffener should not exceed 60 mm.

3.4. Effects of the Stiffener Bottom Width l

In this section, four specimens are designed. The FEM is named the TSW-L series. The
specific variable parameter size is shown in Table 13.

Table 13. Parameters of the TSW-L specimens.

Serial Number L (mm) Rib Stiffness Ratio

TSW-L1 180 177.55
TSW-L2 200 184.00
TSW-L3 220 190.95
TSW-L4 240 198.44

The load–displacement comparison is given in Figure 17. Compared with the hysteresis
curves, it shows that the hysteresis curves of the series are close, and the hysteresis loop area
is not much different. The influence of changing the bottom width of the trapezoidal stiffener
on the hysteresis curves is not obvious. Compared with the previous three parameters, the
bottom width of the stiffener has little impact on the hysteretic performance. The comparison
of the skeleton curves shows that the envelope curves of this series are very similar during
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the whole loading process. In the middle stage of loading, the curves of all specimens were
basically in a state of coincidence. The descending section of the skeleton curve is different
at the end of loading. The larger the trapezoidal stiffener bottom width is, the gentler the
downward trend is. This is because the wider the width of the bottom edge of the stiffener is,
the better the effect of restraining the inelastic buckling of the flat steel plate is. Comparing the
data in Table 14, it shows that with trapezoidal stiffener bottom width increases, the increase
and decrease in each key indicator are not obvious, indicating that the bottom width of the
trapezoidal stiffener does not affect the bearing capability and initial stiffness.
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Table 14. Comparison of key indicators of TSW-L specimens. 

Serial Number Yield Load Peak Load Yield Displacement Peak Displacement Lateral Stiffness 
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Table 14. Comparison of key indicators of TSW-L specimens.

Serial Number Yield Load Peak Load Yield Displacement Peak Displacement Lateral Stiffness
(kN) (kN) (mm) (mm) (kN/mm)

TSW-L1 2801.79 3261.76 35.52 109.17 118.96
TSW-L2 2781.37 3263.19 36.14 110.83 116.96
TSW-L3 2844.06 3312.24 36.23 110.92 117.90
TSW-L4 2763.53 3245.19 35.63 112.13 118.11

The energy dissipation capacity is given in Figure 18. The displacement loading is
less than 3.0δy, and the energy dissipation values of this series are scarcely equal. After
3.0δy, the difference gradually appears. As the bottom width of the trapezoidal stiffener
increases, the energy dissipation value of the specimen increases first and then decreases.
The equivalent viscous damping coefficients of this series are almost the same before 3.0δy,
and the difference appears after 3.0δy.
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In summary, the TSW-L series specimens have preferable bearing capability stability,
but the influence of the bottom width of the trapezoidal stiffener on the initial lateral
stiffness, skeleton curve, and energy dissipation capacity is not obvious. Therefore, the
influence of the trapezoidal stiffener bottom width on the key indicators of the specimens
can be ignored.

4. Theoretical Calculation of the Ultimate Shear Capacity

The outer frame and the flat steel plate form the TSW. They, together, resist the action
of lateral forces. When the shear yield member reaches the maximum horizontal bearing
capacity, the upper and lower of the outer frame column and the beam end basically form
plastic hinges, and the flat steel plate yields, but no out-of-plane buckling occurs, forming a
plastic hinge mechanism [33–35].

According to the energy method in Ref. [33], TSW is composed of an embedded steel
plate and outer frame, which resist the lateral force together. When the bearing capacity
reaches the maximum, the plastic hinge is basically formed at the top and bottom of the
outer frame column and the beam end of the frame beam. The embedded steel plate is
uniformly yielded but no out-of-plane buckling occurs, forming a plastic hinge mechanism,
as shown in Figure 19. The shear-bearing capacity of each layer of the TSW under the
plastic hinge mechanism can be deduced. The calculation formula is shown in Equation (2).
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Figure 19. Plastic hinge mechanism of TSW.

In the formula, Fi is the shear bearing capacity of the ith-layer structure, Hi is the
distance from the ith-layer structure to the ground, Vi

w is the shear bearing capacity of TSW
in the i-layer structure, and M f

P refers to the flexural bearing capacity of the outer frame. It
requires a certain reduction. The reduction factor is 0.8.

M f
P = 0.8 × 4WP fy = 3.2WP fy (4)

In the formula, WP is the resistance moment of the column plastic section and fy is the
yield strength. In Equation (4), there is only one unknown quantity Vi

w, and the embedded
steel plate shear capacity is solved below.

When TSW yields, the steel plate and the stiffeners offer shear-bearing capacity. The
calculation formula is shown in Equation (5):

Vw = VC + VS (5)

In the formula, VC refers to the shear capacity provided passes through steel plates,
and VS refers to the shear capacity provided through stiffeners.
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When calculating the maximum shear capacity of SPSW, according to the tension field
model proposed, further analysis was carried out on the basis of Refs. [36–38]. Compared
with the rectangular section beam, the SPSW on two-side connections has a wider shear
section. When the wallboard is sheared and yielded, the shear stress distribution of the
section can be boiled down to trapezoid, and the shear stress on both sides is 0, which is
evenly distributed after reaching it. The stress distribution diagram is proposed, as given in
Figure 20. The shear stress at different positions can be calculated according to Equation (6):

τ(x) =


x

B1
τy 0 ≤ x ≤ B1

τy B1 ≤ x ≤ B − B1
B − x

B1
τy B − B1 ≤ x ≤ B

(6)
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τy refers to shear yield stress, B1 is the width of shear stress not reaching τy, and steel
plate width is B.

The integral is the shear capacity, as shown in Equation (7):

VC = t
∫ B

0
τ(x)dx = t(B − B1)τy (7)

Steel plate thickness is t. Except for B1, the rest are known parameters. The following
uses the method in reference to calculate B1 [39].

The distribution of stress is seen in Figure 21:
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According to the von Mises yield equation, the relationship between the normal stress
on the σy(x) steel plate element and the shear stress can be obtained. Equation (8) is shown.
In the main shear zone τ(x) = τy, σy(x) = 0 can be obtained by substituting Equation (8),
so positive stress is primarily distributed within the secondary shear zone.

σy(x) =
√

f 2
y − 3τ2(x) (8)

The secondary shear zone is isolated, and the equilibrium equation is established, as
shown in Equation (9).

τytH = 2
∫ B1

0
σy(x)tedx (9)

In the formula, the plate net height is H.
When the section area of the plate edge restraint member satisfies Equation (10), the

“low-efficiency shear zone” will be completely transformed into the “high-efficiency shear
zone”, that is, B1 = 0.

As ≥
τytH
5 fy,s

= As,min (10)

As denotes the stiffener section area at the plate edge; As,min represents the minimum
cross-sectional area threshold that the edge restraint member can make the whole wallboard
fully exert the shear efficiency; fy,s denotes the material yield stress of the plate-edge
restraint member.

When 0 < As < As,min, only part of the “low-efficiency shear zone” is transformed
into “high-efficiency shear zone”. The ratio of the section area of the edge restraint member
to the minimum section area threshold of the edge constraint component is defined as ξ.

ζ =
As

As,min
(11)

Then, Equation (9) is changed to Equation (12):

(1 − ζ)τytH = 2
∫ B1

0
δ = σy(x)tedx (12)

By substituting Equations (6), (8), (11) and fy =
√

3τy into Equation (12), the B1
expression can be obtained, as shown in Equation (13):

B1 =
2
√

3H(1 − ζ)

3π
(13)

Substituting Equation (13) into Equation (6), embedded steel plate shear-carrying
capacity is attained, as shown in Equation (14).

VC =

t(B − 2
√

3H(1 − ζ)

3π
)τy 0 < ζ < 1

tBτy ζ ≥ 1
(14)

Under the action of lateral load, the stiffeners on both sides of the plate are subjected to
tension and compression, respectively. Because the compression stiffeners experience easily
inflectional instability, the influence of compression stiffeners is neglected when calculating
VS. Since the tensile stiffener does not reach full yield when the component reaches the
peak load, tensile strength is boiled down to 0.8 fy, and VS is calculated according to
Equation (15):

VS = 5As × 0.8 fy cos θs = 4As fy cos θs (15)

In the formula, the angle among the horizontal orientation and stiffeners is θs.
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In summary, substituting Equations (14) and (15) into Equation (5) can attain the shear
bearing capacity of the TSW at shear yield. The expression is shown in Equation (16):

Vw =

t(B − 2
√

3H(1 − ζ)

3π
)τy + 4As fy cos θs 0 < ζ < 1

tBτy + 4As fy cos θs ζ ≥ 1
(16)

Due to the FEM proposed in this paper being a double-layer structure, the parameters
in Equation (3) are n = 2, F1 = 0. Therefore, the ultimate shear capacity of TSW is computed
by Equation (17):

V = F2 =


3.2Wp

fy

H2
+ t(B − 2

√
3H(1 − ζ)

3π
)τy + 4As fy cos θs 0 < ζ < 1

3.2Wp
fy

H2
+ tBτy + 4As fy cos θs ζ ≥ 1

(17)

To verify the accuracy of the above formula, ABAQUS 2016 was used to calculate the
finite element of TSW with different sizes under cyclic loading, and the bearing capacity of
each component was extracted. The theoretical and FEM bearing capacity comparison is
shown in Table 15.

Table 15. Comparison of theoretical bearing capacity and FEM bearing capacity.

Parameters tb (mm) tt (mm) h (mm) L (mm) Theoretical
Results/kN

FEM
Results/kN Error

Thickness of the flat
steel plate

2

6 50 220

2710 2396 13.10%
4 3315 2834 16.96%
6 3895 3312 17.59%
8 4154 3512 18.28%

Thickness of
the stiffener

6

2

50 220

2489 2626 −5.23%
4 3191 2887 10.53%
6 3895 3312 17.60%
8 3981 3345 19.03%

Height of the stiffener 6 6

30

220

3597 2944 22.16%
40 3796 3156 20.29%
50 3895 3312 17.60%
60 4006 3451 16.10%

Bottom width of
the stiffener

6 6 50

180 3664 3262 12.32%
200 3773 3263 15.64%
220 3895 3312 17.60%
240 3871 3245 19.30%

It can be seen from Table 15 that under different size parameters, the error between
the theoretical bearing capacity calculated by Equation (17) and the experimental value is
between 5.23% and 22.16%; both of them increase with increasing flat steel plate thickness,
stiffener thickness, and stiffener height, and increase first and then decrease with increasing
stiffener bottom width. This is because with the increase of the thickness of the flat steel
plate and the stiffener, the utilization rate of the steel in the FEM gradually decreases and
does not reach the maximum, resulting in the error of the ultimate bearing capacity of the
theory and FEM gradually increases. With the increase of the stiffener height, the steel
utilization of the FEM gradually increases, so that the error of the ultimate bearing capacity
of the theory and FEM gradually decreases. However, because the finite element results are
greater than the test results, this shows that the results obtained by the formula are not safe,
and it is recommended to be appropriately modified for future applications.
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5. Conclusions

In this paper, a trapezoidal orthogonal steel plate shear wall (TSW) is put forward.
ABAQUS 2016 is applied to establish TSW and analyze its hysteretic performance. The
conclusions are as follows:

(1) A single-span double-layer TSW FEM was built, and the FEM was contrasted with
the test results of a steel frame-stiffened low yield point SPSW. The results show that the
maximum error of peak load and initial stiffness among FEM and experiment result is
17.9%, which is within the acceptable range.

(2) The influence of flat steel plate thickness, stiffener thickness, stiffener height, and
stiffener bottom on the hysteretic capability is analyzed. The results show that the flat
steel plate thickness, stiffener thickness, and stiffener height can improve the seismic
performance of the TSW. It is suggested that flat steel plate thickness should be 4~6 mm,
stiffener thickness should be 4~6 mm and stiffener height should not exceed 60 mm. The
influence of stiffener bottom width on the key indicators of TSW can be ignored.

(3) The ultimate shear capacity of the TSW is also analytically formulated and then
compared with the FEM results. The results indicate maximum error of the ultimate shear
capacity of TSW among theoretical calculation value and FEM calculation value is 22.16%,
and most of the errors are within 20%. However, because the finite element results are
greater than the test results, this shows that the results obtained by the formula are not safe,
and it is recommended to correct.
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