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Abstract: In order to accurately extract and match carbon emission factors from the Chinese tex-
tual building materials list and construct a precise carbon emission factor database, it is crucial to
accurately classify the textual building materials. In this study, a novel classification model based
on text data enhancement and semantic feature extraction is proposed and applied for building
materials classification. Firstly, the explanatory information on the building materials is collected
and normalized to construct the original dataset. Then, the Latent Dirichlet Allocation and statistical-
language-model-based hybrid ensemble data enhancement methods are explained in detail, and the
semantic features closely related to the carbon emission factor are extracted by constructed composite
convolutional networks and the transformed word vectors. Finally, the ensemble classification model
is designed, constructed, and applied to match the carbon emission factor from the textual building
materials. The experimental results show that the proposed model improves the Flyfacro Score by
4-12% compared to traditional machine learning and deep learning models.

Keywords: building materials classification; data enhancement; feature extraction; carbon emission
factor

1. Introduction

Currently, achieving the goal of “carbon peaking and carbon neutrality” is one of
China’s most important tasks [1]. In fact, the construction industry accounts for 50.9%
of China’s total carbon emissions and has become the most significant contributor [2].
Therefore, it is critical to accurately calculate and further reduce the carbon emissions from
the construction industry to achieve China’s “carbon peaking and carbon neutrality” goal.

When calculating carbon emissions during the building material production phase
in the construction industry, the carbon emission factor (CEF) method is usually applied
to calculate indirect carbon emissions according to national standards. The CEF method,
in which the building materials are multiplied by the CEF of the corresponding material
types, is applied to quantify carbon emissions from buildings. On the other hand, as the list
of materials used in building engineering is sometimes recorded manually, the descriptions
and names of the materials are not standardized [3]. Additionally, since there is a wide
range of building materials on this list, it is difficult to classify them into appropriate
material types and match them with the correct CEF for carbon emission calculations.

In recent years, text classification based on intelligent algorithms, such as Support
Vector Machines (SVMs), K-Nearest Neighbor (KNN) algorithms, the Naive Bayes algo-
rithm, and so on, has been widely used in fault diagnosis [4], sentiment analysis [5], fact
checking [6], and other fields. However, SVMs are primarily used for handling binary
classification problems and hardly applied to multi-class problems. KNN algorithms have
a low tolerance for material types and a high dependence on sample quality. The Naive
Bayes method may overfit and have poor generalization ability when dealing with many
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building material features. Specifically, for textual building material classification, the
aforementioned machine learning-based methods often neglect the significance of lexicality
and the interplay between sentences and context.

Deep learning models, including Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM), demonstrate proficiency in extracting high-level contextual
features from text. These models can analyze the semantics in different contextual fea-
tures of building material texts, thus classifying material types more accurately. In [7],
Kim pioneered using a CNN to extract text features for text classification. Aslan et al. [8]
developed a multi-stage feature extraction model consisting of CNNs to classify online
articles. Lu et al. [9] used the attention mechanism to extract text features and label informa-
tion from different levels to complete a classification task. Zhong et al. [10] automatically
classified complaint text by optimizing a CNN. Furthermore, a topic model can extract
topic information from text by computing the probability distribution of each word in
the text with respect to the topic [11], and word-embedding techniques based on Bidirec-
tional Encoder Representation from Transformers (BERT) can map each word in the text
to a low-dimensional vector representation that captures the semantic similarity between
words [12,13]. In [14], BERT was used for word vector representation, and a CNN was used
to capture static features. Liu et al. [15] analyzed the influence of emotion and cognition on
learning by optimizing the BERT-CNN text classification model. Although deep learning
offers good performance in text classification, its need for a large number of high-quality
corpora restricts its application in building engineering with limited data. Therefore, corpus
construction is the key to deep learning text categorization in engineering applications. Li
et al. [16] drew inspiration from computer vision techniques, incorporating syntactic and
semantic disturbances for data augmentation. Marivate et al. [17] constructed a corpus
by randomly replacing words in a sentence using semantic similarity. Sahin et al. [18]
enhanced data in the low-resource domain by cropping sentences into smaller fragments to
synthesize new sentences. To the best of our knowledge, the aforementioned approaches
have not yet been applied to building materials classification.

Kuniyoshi [19] utilized NLP techniques to retrieve and match materials literature
based on the names and properties of materials. Song [20] proposed the MatSci-NLP model,
which performs various NLP tasks, including classification, on materials texts. However,
the materials texts used in these studies were derived from the scientific literature, which is
standardized and uniformly formatted, without considering non-standard data sources.
Elton [21] employed word-embedding techniques to extract the chemical relationships be-
tween materials from their textual descriptions. This method, however, relies on complete
text documents and does not account for the limitations of short texts with insufficient
contextual information. Yoshitake [22] introduced two Material BERT models that effec-
tively reflect the meanings of material names through word embeddings, but they did not
consider the development of downstream tasks based on these embeddings. Turhan [23]
proposed integrating Large Language Models with Life Cycle Assessment to evaluate the
environmental impact of construction materials, but this approach only considers specific
environmental factors without quantifying the carbon emissions based on the CEF.

In order to match the CEF and the building material types exactly, a novel building
materials classification model incorporating the Latent Dirichlet Allocation (LDA) algo-
rithm, Ngram, and BERT into a CNN method is proposed. It utilizes three levels of data
augmentation according to the classification feature, vectorized representation of text,
and feature extraction of building materials text to achieve the type matching of building
materials. The main innovations and contributions of this study are as follows:

e Inorder to extract keywords from a corpus of different building materials and enrich
the original building material text, a data augmentation method combining the LDA
algorithm and Ngram is proposed.

e  To specifically capture contextual semantic information, a novel layered feature extrac-
tion network was constructed. In this network, the full test features are obtained by
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the first convolutional layer; then, the key local features are further extracted by the
composite convolutional layers.

e  Experimental comparisons with various machine learning and deep learning mod-
els were conducted, and the results demonstrate the proposed method’s superior
performance in classifying building materials.

The remainder of this paper is structured as follows: Section 2 briefly reviews the
problem of building material classification, and then the workflow of the proposed LNBC
model is given. Section 3 presents a detailed, step-by-step explanation of the processes
pertaining to the LNBC model. Both the experiments and corresponding analysis are given
in Section 4. The conclusions and future work are presented in Section 5.

2. Problem Formulation and the Proposed Method

In this section, the problem of matching building material types with the CEF is briefly
reviewed. Then, the construction of the proposed LNBC model is described.

2.1. Problems in Matching Building Material Types

The materials in the list are classified according to their types, as defined by the carbon
emission factor (CEF) outlined in the “China Products Carbon Footprint Factors Database
(CPCFFD)” [24]. This database serves as a generalized carbon emission database for carbon
emission calculations in various fields, including industry, energy, and daily life. The
classification of material types in the CPCFFD is organized into three hierarchical levels (as
shown in Figure 1). However, this database does not provide detailed descriptions of the
building materials classified under each type or information about the CEF specific to each
material. Furthermore, the types of building materials are diverse, and the textual records
are generally not standardized. Therefore, determining how to exactly match building
materials with the corresponding CEF is becoming one of the most important problems in
assessing buildings’ carbon emissions.

Part of the building materials

Part of materials type classification in
from a construction project

the Carbon Emission Factor Database

Material names

Material types(level 1)

Material types(level 2)

Material types(level 3)

cotton yarn JC

pure cotton carded yarn

pure cotton carded yarn

pure cotton carded yarn

insulated wire

white calico 325/2

wires, cables, optical cables,
and electrical equipment

insulated wire

copper core polyethylene
insulated wire

textile and garment industry

textile products

average textile products

300*300 glazed floor tiles

non-metal

non-metallic mineral
products

architectural ceramics - porcelain

tiles - wet milling process

insulation nail 8x82

polymeric chemicals

synthetic resin

plastic - PVC

M6x55 conical expansion bolt

metal

ferrous metal smelting and
rolling products

steel products

0.8mm 60/40 solder

metal

ferrous metal smelting and

rolling products

refined tin

rebar 6.5

metal

ferrous metal smelting and
rolling products

rebar

hanging rod 2C14

metal

ferrous metal smelting and
rolling products

small-sized steel materials

flat steel 4x45

|

Figure 1. Part of the building materials list and carbon emission factor database.

2.2. The Proposed LNBC Model

As shown in Figure 2, the workflow of the proposed LNBC method consists of five
steps, i.e., data preprocessing, data augmentation, word embedding, feature extraction and
aggregation, and outputting the final classification.
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Figure 2. The workflow of the proposed method.

The workflow is as follows:

Step 1: Data Preprocessing. This initial phase involves preprocessing the original data,
including eliminating character symbols (e.g., units), normalizing the text, and obtaining
a detailed interpretation of each building material. This process yields a comprehensive
explanation of each type of building material, facilitating their classification according
to the relevant material type. Finally, an experimental dataset for the following steps is
constructed.

Step 2: Data Augmentation. Keywords are first identified by applying LDA for each
material type, and trigrams are generated using the Ngram algorithm. Then, the trigrams
are inserted into the experimental dataset to achieve data augmentation if the relation
coefficient between the identified keywords and the trigram exceeds the threshold.

Step 3: Word Embedding. In this step, the augmented data are transformed into word
vectors through the Chinese-base-BERT model. This can guarantee that the converted
vectors for the words retain the full contextual information and the complete semantic
meaning.

Step 4: Feature Extraction and Aggregation. The global features of the building
materials text are extracted through a single convolutional layer. Then, local features
of neighboring words are identified using a composite convolutional layer. These local
features are subsequently aggregated to represent the overall features of the text.

Step 5: Classification Output. The aggregated features are used as the input for the
fully connected layer. The final classification result is obtained according to the value of the
probability distribution from the output layer.
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2.3. Research on the Practicability of the Model

In practical applications, the LNBC model can accurately classify various building
materials in engineering project lists and ensure the correct application of the CEF, thereby
enabling more precise carbon footprint calculations for building projects. Additionally,
the LNBC model significantly enhances data-processing efficiency, reducing the time and
effort required to manually match materials with their corresponding CEF. This efficiency
is particularly beneficial for large-scale building projects that use a vast array of materials.

The LNBC model can also be integrated with carbon emission assessment systems. In
the corresponding approaches, first, the LNBC model is designed as a modular component
with developed Application Programming Interfaces (APIs) to enable communication with
existing carbon emission assessment platforms. Second, seamless integration with system
databases is ensured by connecting the LNBC model to existing building material databases,
facilitating smooth data exchange. Finally, the LNBC model processes the classification
results regarding the building materials and sends these results to the carbon emission
calculation module via inter-module communication, replacing the manual matching of
material CEF and, thereby, automating the carbon emission calculation process.

3. The Detailed Process of the Proposed LNBC Model
3.1. Data Preprocessing

In this study, the dataset was derived from a list of building materials associated with
building engineering, containing records of 1700 building materials used. These building
materials are used in various applications, including those structural and decorative, and
for specific areas of specialization. As a result, they present a remarkable diversity of sizes
and models. Moreover, the engineering list included a limited number of building materials,
informal recordings, and poorly standardized descriptions, often using abbreviations or
shorthand, and the texts are brief and contain limited semantic information. These factors
collectively hinder the classification of building materials.

Noun interpretation serves as a translation method and technical approach to data
augmentation. This technique improves a model’s classification performance by adding
extra contextual information and semantic expressions. In the data preprocessing phase, the
main goal is to normalize all nouns relating to building materials and employ web crawler
technology to obtain interpretations from the internet. The generated text includes the
nouns along with their explanations. Furthermore, by analyzing each material’s definition
and scope of application, the building materials are classified into levels according to their
types in the CPCFFD.

Table 1 displays a portion of the preprocessed data. The first column is the text per-
taining to building materials, including their names and explanatory text. The subsequent
columns are the types of materials.

Table 1. Potion of the data after preprocessing.

Building Materials Text Material Types (Level 1) Material Types (Level 2) Material Types (Level 3)

Cotton yarn is made from cotton fibers
through spinning. When processed into ply
yarn, it becomes cotton thread. There are two

types, Carded yarn: Made with a basic
spinning system. Combed yarn: Made with a

pure cotton carded yarn  pure cotton carded yarn  pure cotton carded yarn

high-quality spinning system, resulting in
smoother, stronger yarn used for premium

fabrics.

Insulated wire is wire covered with an . . copper core

. . . . wires, cables, optical . . .

insulating layer. It includes magnet wire and . insulated wire polyethylene insulated
. . cables, and electrical .

general-purpose insulated wire. wire
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Table 1. Cont.

Building Materials Text

Material Types (Level 1) Material Types (Level 2)

Material Types (Level 3)

White calico includes various materials like
cotton, linen, silk, taffeta, and satin, each with
unique characteristics and uses. Cotton:
Comfortable, perfect for everyday clothes and
bedding. Linen: Light and cool, ideal for
summer wear. Silk: Soft and luxurious, great
for fancy dresses. Taffeta: Transparent, used for
lingerie. Satin: Shiny and elegant, chosen for
wedding gowns and curtains.

textile and garment

. textil duct
industry extile products

average textile products

Floor tiles, made of porcelain or ceramic, are
used for indoor and outdoor flooring. The size
of the tiles is a key factor and depends on
personal preference, design requirements, and
room size. Larger tiles make spaces appear
more spacious and tidy, and reduce the
number of seams, making the floor smoother
and easier to clean.

non-metallic mineral

- 1
non-meta products

architectural
ceramics—porcelain
tiles—wet milling
process

Insulation nails are special engineering plastic
expansion nails used to fasten insulation
boards to walls. They are specifically designed
for external wall insulation and are widely
used in building decoration, particularly for
anchoring wall insulation. They consist of a
galvanized screw, a nylon expansion tube, and
a fixed round plate.

polymeric chemicals synthetic resin

plastic-PVC

Expansion bolts are devices used to anchor
into concrete and other materials. They include
a bolt, nut, nut sleeve, and spiral casing that
together form an expansion anchoring system.
The bolt is inserted into a pre-drilled hole and
expands inside the hole through the action of
the spiral casing and nut sleeve, providing a
strong hold. They are used to fix structures like
brackets, bridges, and pipes in construction
projects.

ferrous metal smelting

metal and rolling products

steel products

Solder is a common welding material used to
join components in electronics, appliances, and
communications equipment. It has a low
melting point and good wettability and
fluidity, enabling reliable welded connections.

ferrous metal smelting

metal and rolling products

refined tin

Rebar, used in reinforced and prestressed
concrete, usually has a round cross-section but
can sometimes be square with rounded edges.
Types include smooth, ribbed, and twisted
rebar. Rebar for concrete can be straight or
coiled, and comes in two types: smooth and
deformed. Smooth round rebar is simply
low-carbon steel in small diameters.

ferrous metal smelting

metal and rolling products

rebar

Hanging rod, shaped like an ingot and also
known as an ingot bar or Yuanbao rod, is used
to transfer concentrated forces from the bottom
to the top of concrete beam components. This
enhances the beam’s ability to resist shear
under concentrated loads.

ferrous metal smelting

metal and rolling products

rebar
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Table 1. Cont.

Building Materials Text Material Types (Level 1) Material Types (Level 2) Material Types (Level 3)

Flat steel is a metal with a large

width-to-thickness ratio and a rectangular
cross-section. Made of steel, it is thin and wide,

used for frames, supports, brake pads, and metal
mechanical parts. It is strong, rigid, and easy to

process and cut into various shapes for

customization.

ferrous metal smelting small-sized steel
and rolling products materials

3.2. Data Augmentation at Different Levels

In the classification of R levels (where R =1, 2, 3), building materials text belonging to
the same type is grouped into the same corpus. Thus, corpora XR;, XR,, XR;, ... XR,, exist
in R-level classification, where n represents the number of material types under R-level
classification. A specific corpus XRZ- can be expressed as XR=1xy, x0, .., X0, containing
u pieces of text on building materials. Each text x; (i=1, 2, 3, ..., u) is dissected into its
constituent words (w1, wy, ..., wy), with | representing the word count in the text x;.

In the corpus under R-level classification, while ensuring that the number of topic
words is still set to 1, the set of keywords KRg,l- for each corpus is extracted by the LDA
algorithm. The keywords collected from all corpora form the list [KRgrl, KRg’2, KRglg, e
KRg,n], which is called the keywords table. According to the degree of relevance to the topic
words, the elements above the constructed keywords table are then ranked, and the initial »
keywords from this ranked list are selected, forming the topic keyword set KR, ; for each
corpus. The list of topic keywords across all corpora is as follows: [KRZJ, KRZ,Z, Kszg, e
KRz,n]-

For each building materials text x; under R-level classification, a corresponding trigram
is generated using the Ngram algorithm. The generated model is expressed by a set of
trigrams, namely, x; = (trRy, Ry, L, tqu), where g is the total number of trigrams in x;.
Then, the text is expanded by incorporating the trigram if a trigram tr8; (i=1,2,3,...,9)
in a text includes at least one topic keyword from the corpus set of topic keywords KX, ;.
Thus, the original text will be expanded, and the expanded text is denoted as ARx; = (w,
wy, ..., W, Ry, 0k, L, trR]-), where wy, wy, ..., w) represent words in the original text x;,
and Ry, t1R,, ..., ter are the trigrams of that text under R-level classification. After three
levels of data augmentation, the expanded text is represented as Adx; = (wy, wy, ..., wy, trly,
trly, ..., trlj, tr2, 2, ..., trzk, tr31, tr3,, . ..., t13,), where wy, wo, .. ., w) are words in the
original x; text, and trll, trlz, e, trlj, trzl, trzz, e, trzk, tr31, tr32, e, tr3z form trigrams of
x;. Here, trly, trly, .. .., tr! j contain at least one topic keyword of the first-level corpus; 24,
tr?,, .. .., tr%; contain at least one topic keyword of the secondary corpus; and 3, tr3,, . ...,
tr3, contain at least one topic keyword of the tertiary corpus where this text x; is located.

Taking the building material text “hanging rod” as an example, Figure 3 shows the
first-level text augmentation process. In Figure 3, the text “hanging rod” is assumed to
have a serial number of 9 in the dataset, and its type under the first-level classification is
assumed to be 6.

After the first-level augmentation, the expanded text of “hanging rod” is as follows:
Alxg = (“Hanging”, “rod”, “shaped”, “ingot”, “Yuanbao”, ..., “concentrated”, “loads”,
“common, welding, material”, “electronics, appliances, communications”, “low, melting,
point”, ..., “Made, of, steel”).

Based on the first-level text augmentation shown in Figure 3, Figure 4 illustrates the
tertiary text augmentation process for building materials text. First-level (R = 1) data
augmentation was conducted using the LDA algorithm and Ngram, and the corresponding
expanded text Alx; was obtained. Based on Alx;, A2x;, which is the result of the second-
level (R = 2) data augmentation, can be further calculated through the same process until
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the third-level (R = 3) augmented text, A3x;, is obtained, constituting the final form of data

augmentation.

Keeping 1 topic
word, the set of
keywords K'ge in
corpus Xl is
extracted.

EDA.

Under the first-

level of
classification,

building materials

text belonging to

the same type as

"hanging rod" are

classified in the

same corpus X's. N~

The building
materials text of
hanging rod", xs,

Topic keywords
set KL is
extracted based
on the relevance
of the topic word
to the keywords.

The extracted
trigrams is placed
into the text xs to

obtain the first-
level augmented

The trigrams are
extracted, which
contain at least
one word in set

K.

text Alxs.
gra

v "hanging rod" text.

Figure 3. Example of first-level data augmentation.
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( Start ) —  The R-level augmented text ARx, is obtained.

%,/

Building materials text x;.

R-level text augmentation. }4—/
|
/Jﬁ
( d
A

Ax;as final data augmentation text.

En

J

Figure 4. Data augmentation flowchart.

After the third-level iterated text augmentation, the final result of the expanded text
“hanging rod” is shown in Figure 5.

Adx9=("Hanging", "rod", "shaped"”, "ingot", "Yuanbao", ...,"concentrated", "loads",
"common, welding, material", "electronics, appliances, communications”, "low,
melting, point", ..., "Made, of, steel", "anchor, into, concrete”, "bolt, nut, sleeve",

"expands, inside, hole", ..., "fix, structures, brackets", "Rebar, used, in", "reinforced,
prestressed, concrete”, "smooth, ribbed, twisted", ..., "smooth, round, rebar")

Texts of original building materials Second-Level data augmentation of

augmented text

First-Level data augmentation of Third-Level data augmentation of

augmented text augmented text

Figure 5. Example of data augmentation.

3.3. Word Embedding

In this study, a pre-trained Bert-base-Chinese model, a version of the popular dynamic
word-embedding model BERT, is utilized to transform the expanded text A3xi into word
vectors. The BERT model is pre-trained on a bidirectional language on text using the
Masked Language Model and Neighborhood Sentence Prediction techniques. This training
process enriches text semantic representations with intricate semantic information derived
from a large corpus. Moreover, the BERT model considers the contextual nuances of word
meanings within an entire text, offering the ability to generate word vectors that vary based
on the surrounding words [25].
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The augmented building materials text A3x; is processed using the pre-trained Bert-
base-Chinese model, specifically designed for Chinese language processing. Employing
the bidirectional capabilities of the transformer architecture, BERT produces an array Piken
consisting of n tokens, where each word of Ax; regarded token serves as the fundamental
input unit for the model. The process of transforming text into word vectors is illustrated
in Figure 6. Automatic padding with pad characters takes place when the text length
is insufficient. Each token possesses a dimensionality of v, signifying the existence of v
features. The resulting array Py,yen is represented according to Equation (1). The BERT-
based word vectors enhance the model’s ability to extract contextual information, which is
crucial for representing semantic nuances in building materials text.

Pioken = (T1, To, T3, . . .. ... Ty) (1)

where

,/]guilding materiails\v |
o textdx, )/ 4‘

9souIy)-osBq-Hog
e N

4 L

Proken

Figure 6. Flowchart depicting the conversion of text into a word vector array.

3.4. Feature Extraction and Aggregation for Full Text
3.4.1. Convolutional Calculations

A CNN network in which the convolutional layers are equipped with X filters with
a size of 1*Fs is constructed; with each pass over the array Pyjen, it extracts the feature
information of a vector from the array, capturing the global features of the text to varying de-
grees. Additionally, the number of channels in the convolutional kernel is configured as X.
Feature extraction is accomplished by the filters of each channel, generating weighted out-
put values. Subsequently, these output values are passed through an activation function for
nonlinear transformation, aiming to obtain a more comprehensive feature representation.

Each filter is designed to aggregate v local features from each token, consolidating
them into a global feature.

In the BERT model, the self-attention mechanism allows each token in a sequence to
express information from the entire text based on this information’s contextual meaning.
When applying the filter, each token’s feature vector is multiplied by a corresponding filter
value. This process enables the filter to aggregate the feature information from each token’s
vector, effectively capturing the token’s relevance relative to the entire text. Consequently,
the resulting array represents a comprehensive global feature representation of the text. As
demonstrated by Equations (3) and (4), when the Py, array passes through a filter, the
array of Crow rows and C., columns is exported by the filter, which contains the global
features pertinent to each token of the Py, array. After the features of the array are
extracted by all the filters, X feature arrays representing global features are obtained.

n—F?+2p+1

3)

Crow =

U—FS+2P+1

C pr—
col s

(4)
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where Fh is the filter height; Fs is the filter width, which is equal to the dimensions of Pyyyen;
p is the padding value; and s is the stride value.

3.4.2. Aggregation Features

The feature arrays output by each filter are aggregated together to augment the
semantic expression within the building materials text. The aggregation output at this
stage is an array with Cj,,, rows and C/ | columns, as expressed in Equations (5) and (6).
The aggregated array Pagg is shown in Figure 7, in which the global features of building
material texts are expressed more comprehensively by vectors.

Crow = Crow (5)
Cly = CeolX (6)
Pagg = (Tagglr Tagng TaggB/ ------ TaggCéow) @)
where
Toggi = (FLF2 By For ) )
Fi = f(w-T;+b) ©)

where f is a nonlinear activation function. w is the parameter matrix of the filter. b is the
bias.

C;ol =CuX
- T
F, F, F, F F F, F 5 F,
Tager
Tge
CNN
/ T
— | Filter \‘
( Array Pigen ) ‘ Parameters: |:>
AN / \‘ Size: 1*Fs | .
\ No.channels: X’:‘ .
Taggdnw
Page

Figure 7. Array after aggregation of features.

3.5. Feature Extraction for Pre- and Post-Semantics

In the previous section, the full-text features of building materials were extracted
and then aggregated by the convolutional computation. In this stage, the local features of
building materials text are extracted using a parallel multi-CNN network. Convolutional
kernels of different sizes are used to extract the semantic relationships of neighboring
words at different granularities, enabling the model to learn various features more compre-
hensively, reducing the dependence on a single feature extraction method and improving
the robustness of the model.

The parallel multi-CNN feature extraction process is shown in Figure 8. The first CNN,
CNN1, with a filter size of Fhy*Fw (where Fh; = 2), emphasizes the semantic relationship
between neighboring words in the building materials text. The second CNN, CNN2, with
a filter size of Fhy*Fw (where Fhy = 3), extracts expressive features from every three words,
highlighting their contextual meanings. The third CNN, CNN3, with a filter size of Fh3*Fw
(where Fh3 = 4), extracts the optimal features that reveal the contextual meanings of every
four words. All three pooling layers have a size of Fh,*Fw, with Fhp = 1.
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Figure 8. Multi-CNN feature extraction.

The array Pqgg is simultaneously handled by the convolutional layers of CNN1-CNN3
in parallel style, and the corresponding output array is Pc;, with m; rows and ¢ columns,
where i ranges from 1 to 3, as expressed in Equations (10)—(12). Subsequently, the outputs
Pc; are fed to the respective pooling layers, generating arrays Pp; with n; rows and one
column, where i ranges from 1 to 3. Now, both the semantic relationships and contextual
meanings in the building materials text can be accurately extracted through the above
process.

! _F . 2
Z.ZM+1 i=1,23 (10)
! — Fw+2P
o= % 1 (11)
PCi = [Tll T2, T3, ...... ’Tmi] i= 1/2/3 (12)
where

T;=[F,F,F...... JF]i=1,2,3 (13)

m; — Fh, 4+ 2p ..
m:%ﬂ i,j=1,23 (14)
Pp; = [T, Ty, Ts,...... ,Ty] i=1,2,3 (15)

where Fw is the width of the convolutional and pooling layers, equal to the dimensions of
the input array; p is the padding value; and s is the step value.

The output Pp; of the pooling layer is concatenated into the array Ps, as expressed in
Equation (16). Since the extraction of local features is performed based on global feature
extraction, the array Ps encompasses both the global and local features of neighboring
words. The text feature information extracted from the building materials is aggregated,
providing comprehensive integrated features for the subsequent task of building material
classification.

Ps =[T, T, Ts...... T, T, To, T, Ty T, T, T, , Tys]
=T, To,Ts,...... Tyl

where n =nl + n2 + n3.
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3.6. Classification Output

The text array Ps, which is created through data augmentation and feature extraction
for a certain building material, is used as an input for the fully connected layer, as depicted
in Figure 9.

Probability Match the type of
distribution building materials

Fully Connected
Layer

Figure 9. Classification stages of fully connected layers.

The rectified linear unit (ReLU) function is applied for nonlinear transformation in
the fully connected layer. The fully connected layer is composed of N neurons, where N
represents the number of categories for the three-level classification of all building materials.
Each neuron contributes to the output, which is then subjected to the Softmax function
for multi-classification task activation. This process yields a probability distribution for
building materials text across all three levels of classification, as denoted in Equation (17).
The classification with the highest probability within this distribution identifies the type of
material for the input building materials in the three-level classification system.

y; = Softmax(w;-Ps + b;)i € [1,N] (17)
where
N
Yui=1 (18)
i=1

where w; is the weight parameter in a neuron and b; is the bias.

4. Experiments and Discussion
4.1. Comparisons and Experimental Environment

The configuration of the experimental environment is as follows: the operating system
was Windows 10, the programming language was Python 3.6, and Tensorflow 1.14.0 was
used as the deep learning framework. The hardware used included an i5-9300H processor
clocked at 4.1 GHz, 32 GB of RAM, and an NVIDIA GeForce 1060 graphics card. The
building materials text dataset was divided into training, testing, and validation sets in a
ratio of 6:2:2.

The experiment parameters comprise a learning rate of 0.00001, a maximum text length
of 256, 768 word vector dimensions, a batch size of 16 for input sentences in each round,
ten training rounds, and convolutional window sizes of 3, 4, and 5 for the composite CNN
network. The activation function is ReLU, and the optimizer is Adam. The configuration of
the model is specified in Table 2.
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Table 2. The detailed configuration of parameters.

Parameter Value
Learning rate 0.00001
Max_len 256
Dimensions of a word vector 768
Batch_size 16
Epochs 10
Convolution window size 2,3,4
Activation function Relu
Optimizer Adam

4.2. Evaluation Indicators

In the text classification of building materials, there is an imbalance in the number
of samples for each material type. This can lead to certain material types dominating
the training process, thus affecting a model’s predictive performance for other material
types. The overall evaluation metrics tend to favor material types with higher sample
sizes and ignore the performance of material types with lower sample sizes. Therefore, the
macro average precision, the macro average recall, and the macro average F1 score were
chosen as evaluation criteria for this experiment. Macro precision measures the average
prediction accuracy across all classes, reflecting a model’s precision. Macro recall evaluates
the average detection capability across all classes, indicating a model’s coverage ability.
The macro F1 score assesses the average balance between precision and recall, providing a
comprehensive performance evaluation.

PMacro = *Z P (19)
=
12
RMmacro = *2 R; (20)
=
2x P X R
FlMacro _ Macro Macro (21)

PMacro + RMacro

where P; and R; denote precision and recall for type i building materials, and Ppfacro, RMacro,
and Flpaero denote macro average precision, the macro average recall, and the macro
average F1.

4.3. Comparative Experiments

In order to verify the efficiency of the proposed method, traditional machine learning
models, such as SVMs [26], KNN [27], and Naive Bayes [28], and deep learning models
and their variants, including CNNs [29], LSTM [30], BERT-CNN [31], LSTM-CNN [32], and
LDA-Ngram-BERT-LSTM, were used for comparison.

Moreover, the experiments were also conducted using the proposed method LNBC
and the variants with different numbers of parallel multi-CNNs, abbreviated as LNBC
(none), LNBC (2.3), LNBC (2.4), and LNBC (3.4). The experimental results for the test set
are presented in Table 3.

In order to more intuitively reflect the advantages of the proposed method, a visual-
ization of the result is depicted in Figure 10.

Furthermore, the results regarding execution time are given in Figure 11 to compare
the computational efficiency of LNBC with that of the other models.
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Table 3. Comparison of the experimental results.

Evaluation Indicators

Evaluation Indicators

Model Model
PMacro (%) RMacro (%) FlMacro (%) PMacro (%) RMacro (%) FlMacro (%)

SVM 69.13 73.72 71.35 LDA-Ngram-

KNN 65.78 72.26 68.87 BERT—LgSTM 7391 81.02 77:30
Naive Bayes 68.96 73.72 71.26 LNBC (none) * 75.54 80.29 77.84

CNN 71.97 7591 73.89 LNBC (2.3) * 77.93 83.21 80.48

LSTM 71.66 75.18 73.38 LNBC (2.4) * 73.92 82.48 77.97
BERT-CNN 73.58 77.37 75.43 LNBC (3.4) * 78.13 83.94 80.93
LSTM-CNN 70.68 78.10 74.20 LNBC * 78.89 83.94 81.33

* The proposed model is referred to as LNBC. The variant LNBC (none) denotes the model without the local
feature extraction phase. Variants LNBC (2.3), LNBC (2.4), and LNBC (3.4) indicate the models that exclusively
extract local features from sequences of two and three, two and four, and three and four words during the local
feature extraction phase.

ol

70

SVM

KNN
—=— Naive Bayes
—v—CNN

BERT-CNN
—>— LSTM-CNN
LDA-Ngrm-BERT-LSTM

40 f

LNBC(none)
—— LNBC

30 1 1 1 1 1 1 1 1 I
1 2 3 4 5 6 7 8 9 10

Epochs
Figure 10. Flpf,cro With the number of iterations.
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Figure 11. Training times of various models.

4.4. Analysis of the Experimental Results

The experimental results in Table 3 demonstrate the superior performance of the
proposed LNBC model in building materials text classification, achieving an Flyjacro Of
81.33%. Even if local feature extraction was not conducted exactly in accordance with the
proposed model, i.e., LNBC (none), the results are significantly superior to those yielded
by the traditional machine learning models and most of the deep learning models.

Overall, the classification performance of the deep learning model is superior to
that of traditional machine learning models, such as SVMs, KNN, and Naive Bayes. In
particular, compared with the proposed LNBC model, the machine learning model reduces
the Flpacro by 9.98%, 12.46%, and 10.07%, respectively. This performance gap primarily
arises because traditional machine learning models employ shallow structures, which
limit feature-learning capabilities and involve cumbersome training processes. Then,
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these models struggle to effectively extract complex semantic relationships in building
materials text. Furthermore, these models cannot effectively process contextual features in
building materials text rich in technical terms and descriptions. This deficiency prevents
them from fully exploring potential feature connections. In addition, the LNBC model is
based on LDA, N-gram, BERT, and CNN deep learning models for the specific learning
scenario of building material classification, models that can capture the features of text more
comprehensively and accurately and improve classification performance. In terms of data
sources, the LNBC model discovers the topics in the text through LDA, which enriches the
semantic information of the data and indicates the classification performance. Meanwhile,
generating more text fragments through Ngram enhances the model’s ability to capture
contextual information, improves data diversity, and realizes data enhancement. In terms
of data processing, the word vectors generated by BERT can determine the word—context
relationship. Combined with different CNNSs, the global features of the text and the local
features between neighboring words are extracted, thus improving the effect of building
materials text classification.

On the other hand, it can be clearly observed that the proposed method outperforms
the deep learning methods. For instance, the Pacro, the Ryacro, and the Flyjacro Of the
proposed LNBC increased by 7.23%, 8.76%, and 7.55% compared with those of the LSTM,
one of the most popular deep learning methods. The main reasons are, first, that the records
of building materials data in engineering are characterized by insufficient accuracy and
incomplete information. These deficiencies restrict the learning ability of deep learning
models such as LSTM. Second, LSTM models usually perform well when dealing with
sequential data with long-term dependencies, but the features of building materials text
are primarily independent or concentrated in a certain part of a sentence. Consequently,
the contextual feature information captured by LSTM is disorganized and lacks coherence.
In addition, the proposed model is normalized for unstandardized building materials text.
The LDA-Ngram model is used to expand the building materials text data to enhance
the diversity of the training data. The BERT model is used to transform word vectors
so that each word vector corresponds to the information of the whole text to a different
degree, enhancing this model’s ability to extract profound semantic information and the
local relevance of a sentence. The proposed model utilizes different convolution layers
to extract global and local features, resulting in richer feature representation. Different
sizes of convolutional kernels also impact the classification effect during the local feature
extraction stage. For a declarative sentence in building materials text, kernel sizes of 2, 3,
and 4 optimally extract local features from sequences of two, three, and four consecutive
words, respectively. This approach is well suited to the length and structure of building
materials text, resulting in optimal classification outcomes.

Figure 10 illustrates the variation trend of the Flyjacro Scores of various types of models
with respect to the test set, showing that the LNBC model stands out by achieving conver-
gence starting from the fourth epoch, maintaining stability, and consistently outperforming
the other models in subsequent epochs.

Figure 11 illustrates the time consumption for the deep learning models, and it is
shown that the LDA-Ngram-BERT-LSTM model exhibits the longest time, while the CNN
model has the shortest. This discrepancy can be attributed to the inherent complexity of
LSTM’s structure, which is less amenable to parallel processing. In contrast, the simplicity
of the CNN model enables a more efficient training process. The time consumption of the
LNBC model falls between these extremes. Although integrating composite convolution
into the traditional CNN architecture increases complexity, thereby extending training time,
the corresponding performance benefits and superior classification outcomes justify the
investment in time.

5. Conclusions and Future Work

To accurately calculate the carbon emissions of buildings, in this study, we propose a
building materials text classification model operating via data enhancement and layered
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feature extraction. Experimental datasets obtained from an engineering project list were
investigated and preprocessed. Subsequently, data enhancement was performed on the
building materials texts classified under different types using LDA and N-gram models.
Word vectors were then generated using the BERT model. Subsequently, both the global
and the local features of the building materials texts were extracted via designing different
convolutional kernels. Finally, the classification model was employed to match building
materials with their respective material types. Compared to the traditional machine learn-
ing and deep learning models, the proposed model demonstrated superior classification
performance.

In future work, a modular component will be developed using the proposed LNBC
model and embedded into a carbon emission assessment platform. Additionally, some new
techniques, e.g., transfer learning, optimization methods, and data-processing methods,
will be applied to further improve the performance of the LNBC model in order to enhance
training efficiency and extend the application scenarios.
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