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Abstract: Structural health monitoring (SHM) ensures the safety and reliability of civil infrastructure.
Autoencoders, as unsupervised learning models, offer promise for SHM by learning data features
and reducing dimensionality. However, comprehensive studies comparing autoencoder models in
SHM are scarce. This study investigates the effectiveness of four autoencoder-based methodologies,
combined with Hotelling’s T2 statistical tool, to detect and quantify structural changes in three
civil engineering structures. The methodologies are evaluated based on computational costs and
their abilities to identify structural anomalies accurately. Signals from the structures, collected
by accelerometers, feed the autoencoders for unsupervised classification. The latent layer values
of the autoencoders are used as parameters in Hotelling’s T2, and results are compared between
classes to assess structural changes. Average execution times of each model were calculated for
computational efficiency. Despite variations, computational cost did not hinder any methodology. The
study demonstrates that the best fitting model, VAE-T2, outperforms its counterparts in identifying
and quantifying structural changes. While the AE, SAE, and CAE models showed limitations in
quantifying changes, they remain relevant for detecting anomalies. Continuous application and
development of these techniques contribute to SHM advancements, enabling the increased safety,
cost-effectiveness, and long-term durability of civil engineering structures.

Keywords: structural health monitoring; damage detection; autoencoders; sparse; variational;
convolutional; Hotelling; benchmark

1. Introduction

Among the main concerns of civil engineers throughout the construction’s life cycle,
the proper functioning of structural systems and the safety of users stand out. To minimize
structural problems caused by wear and tear, aging, climate change, or misuse, continuous
monitoring of the structure’s condition is important, especially for detecting any anomalies
at early stages. This is particularly relevant when dealing with sensitive structures such as
large buildings, bridges, viaducts, and geotechnical constructions.

Considering that human inspections conducted visually can be susceptible to inaccu-
racies and errors, structural health monitoring (SHM) has emerged as a potential approach
for the early identification of faults in structures [1]. This methodology primarily relies
on the use of accelerometers connected to structures to record vibration data over time.
With significant advancements in machine learning (ML) and Artificial Intelligence (AI),
these data have become not only more accurate, but also more accessible, enabling their
widespread application [2]. As a result, SHM systems offer a more reliable and cost-effective
approach to structural maintenance, allowing for the remote detection of deterioration
signals based on predefined thresholds, which can significantly reduce repair costs [3].

The implementation of SHM can follow supervised or unsupervised approaches,
with the latter being preferable since, in real structures, only the current state of the
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structure is usually known, without other reference structural behaviors being available.
Therefore, it is recommended to define a robust and unsupervised model for effective
structural damage assessment in actual constructions.

According to Avci et al. [4], among the levels of damage identification defined by
Rytter [5], damage detection is considered the most critical component of SHM. This process,
defined as the systematic and automatic identification of the existence of damage, includes
the subsequent localization and evaluation of its severity. This perspective is reinforced by
recent articles focused on damage detection [6–10], as the localization and quantification of
damage presuppose the correct identification of its occurrence.

In this context, Eltouny and Liang [11] proposed a density-based unsupervised learn-
ing strategy for detecting structural deteriorations. This method was the first to utilize
cumulative intensity measurements to extract damage-sensitive features from its principal
components. Additionally, the authors introduced a statistical model based on Kernel
Density Maximum Entropy (KDME) and Bayesian optimization, demonstrating that this
approach is useful for determining damage in post-seismic events and verifying the effec-
tiveness of unsupervised models, where there is no prior knowledge about the structure’s
response to damage.

There are also approaches based on analyzing images of visible surfaces of struc-
tures through computer vision using Convolutional Neural Networks (CNNs) [12,13].
Although these approaches assist in complementing human visual inspection and reducing
costs [14], they have the limitation of not allowing the detection of internal alterations,
which are externally invisible, negatively impacting operations.

Among the different methodologies for identifying structural damage, classical modal
data analysis is traditionally adopted [15–17]. The basic premise of these methodologies
is that the structure’s degradation process alters its physical properties, such as mass and
stiffness, influencing its natural frequencies, mode shapes, and damping ratios. However,
factors like temperature variations and load changes can also alter the structural dynamic
characteristics, capable of impairing damage detection by these methods, thus requiring
the development of strategies to overcome these limitations [18–22].

Alternatively, methods that directly utilize vibrational raw data are becoming more
dominant [4]. These approaches can detect structural alterations by processing acquired
signals from the structure over time, extracting relevant features and making classifica-
tions with relatively low computational costs [23,24]. An autoencoder is an unsupervised
learning model designed to reconstruct input data and reduce dimensionality. It com-
presses information into a compact latent representation and then reconstructs the original
data from this reduced form. Composed of an encoder and a decoder, it minimizes the
difference between the input and the reconstructed output. There are specific variations,
such as sparse autoencoders, which introduce regularization constraints to force the net-
work to learn more efficient representations, variational autoencoders, which incorporate
a probabilistic approach to model the data distribution, and convolutional autoencoders,
which are tailored for processing image data by capturing spatial features. Despite their
simplicity, autoencoders and their variations effectively identify patterns in unlabeled data
and are widely used in various machine learning applications. Recently, another line of
research on SHM is exploring ML-based strategies such as neural networks [25], Fuzzy
Logic [26], Support Vector Machines [27], and others. Within ML strategies, those based on
Deep Learning seem promising, such as autoencoders, for example. Autoencoders are a
type of deep neural network algorithm of an unsupervised nature, which automatically
extract features from data and incorporate probabilistic elements into their architecture [28].
Autoencoders are recognized not only for their ability to handle large volumes of data, but
also for providing robust solutions, especially in nonlinear problems, such as structural
anomaly detection.

As evidenced by the increasing number of works dedicated to autoencoders [29–33],
it is certain that the study and application of these techniques in applications related to
structural damage detection are widely open to numerous advancements. It is important
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to emphasize that the solution for SHM is not universal, as different techniques may be
effective for some structures and not for others [4]. Furthermore, it is noteworthy that most
analyses with autoencoders are directed towards machine failures, with relatively limited
application in structures [34,35]. Therefore, there is ample opportunity for studies aiming
at the development and dissemination of such techniques applied to SHM systems for civil
engineering constructions.

In the field of structural health monitoring (SHM), the integration of autoencoders
with time–frequency techniques represents a promising approach for enhancing damage
assessment methodologies. Autoencoders can effectively encode the intricate temporal and
spectral characteristics extracted from signals using methods like the Short-Time Fourier
Transform (STFT), S-Transform, or Wavelet Transform [24,36–38]. This approach leverages
the comprehensive insights provided by time–frequency analysis to capture nuanced
changes in structural behavior, thereby enabling early detection and precise localization
of damage. Recent studies by Dang et al. [38] and Alves et al. [24] have demonstrated
the efficacy of such integrated approaches in enhancing the sensitivity and reliability of
SHM systems. However, our study focuses on the frequency domain to specifically target
and quantify structural alterations. This approach allows for a detailed assessment of the
alterations across different structures, aligning with the primary objective of our research,
which investigates the effectiveness of four autoencoder-based methodologies, combined
with Hotelling’s T2 statistical tool, to detect and quantify structural changes.

After an exhaustive review of Google Scholar indexing database using the terms
‘autoencoder, damage, structural health monitoring’, the authors identified a total of 2070
relevant papers published over the past five years (2019–2024). Among these, 346 papers
pertain to the use of sparse autoencoders (SAEs), 410 to variational autoencoders (VAEs),
and 465 to convolutional autoencoders (CAEs). Google Scholar indexes a comprehensive
range of academic and scientific documents, including journal articles, conference papers,
theses, dissertations, technical reports, patents, and gray literature. However, none of
these cataloged studies have addressed a comparative analysis among different autoen-
coder models for SHM applications. Thus, to fill this gap and given that SAEs, VAEs,
and CAEs are among the most prevalent types of autoencoder models in the literature,
the authors have decided to use these models in this paper. Furthermore, conventional
autoencoders (AEs) were included to assess whether their basic architectures are suffi-
cient or if more complex and specialized models are necessary for accurately quantifying
structural changes.

Moreover, to the best of the authors’ knowledge, there have not been any compar-
ative analyses in the literature concerning the use of these models in civil engineering
structures, nor have there been any studies regarding the computational processing costs
required for each of these models and their effectiveness. In this context, this paper compar-
atively evaluates the performance of four different autoencoders (conventional autoencoder,
sparse autoencoder, variational autoencoder, and convolutional autoencoder) for identifying
structural alterations by considering their effectiveness and processing times. To assess the
methodology, three different benchmarkable structures are considered: (i) a 2D frame tested at
the Image and Signals Laboratory of the Federal University of Juiz de Fora (UFJF), subjected
to five different damage scenarios [33]; (ii) a four-story steel frame located at the Earthquake
Engineering Research Laboratory at the University of British Columbia (UBC) that underwent
two types of alteration—removal of bracings and loosening of bolts [39–41]; (iii) the known
Z24 Bridge, which connected the towns of Koppigen and Utzenstorf in Switzerland; that
bridge underwent various progressive damage tests simulating real degradation situations
under different temperature conditions for scientific purposes [42,43].

For all applications, a damage index was built over the Shewhart T Control Chart
(T2 statistic) [44], which was calculated using the latent layer data of the autoencoders,
allowing the identification of damage in all analyzed structures.
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2. Theoretical Background

The strategy used to identify structural novelties is based on a two-step methodology:

1. The autoencoder models. In this paper, these models are used to extract features
capable of characterizing the monitored dynamic signals, working as a parameter
reducer.

2. The Shewhart Control Chart (T2). This graphic viewer tool of the statistical metric T2,
calculated from the reduced parameters obtained by the SAE, is used in this paper to
objectively indicate the occurrence of structural changes.

A brief discussion of these two steps and the autoencoder methods are presented in
the following sections. For more details, the following reference is advised [45].

2.1. Conventional Autoencoder (AE)

The conventional autoencoder (AE) is a basic model for unsupervised learning aimed
at reconstructing input data and reducing dimensionality. It operates over two main
aspects: compression and reconstruction. During the compression phase, information is
reduced and transformed into a compact representation, called the latent layer. Then, in the
reconstruction phase, the AE attempts to reconstruct the original data from these compact
representations. Although less sophisticated than its variations, the AE is still widely used
in various applications due to its simplicity and effectiveness in identifying patterns in
unlabeled data.

An AE is a basic neural network architecture consisting of two main parts: an encoding
function h = f (x) and a decoder that produces a reconstruction r = g(h). During training,
the input is passed through the encoder, which maps the data to a lower dimensional latent
representation, capturing the most important features of the input data. Then, the latent
representation is passed through the decoder, which attempts to reconstruct the original
input from this reduced representation. The AE is trained to minimize the difference
between the original input and the reconstructed output, using a loss function such as the
mean squared error, for instance [45]. The learning process involves minimizing a loss
function, as described by Equation (1),

L(x, g( f (x))), (1)

where L is a loss function that penalizes g( f (x)) for being different from x [45].
The main objective of an autoencoder is to learn how to reconstruct its original input

as accurately as possible to its output, using the most important features of the input data
(latent representation), which can be utilized in various machine learning applications.

The autoencoder training process utilized Mean-Squared Error (MSE) as the loss
function. MSE is preferred for its ability to assess reconstruction accuracy by averaging the
squared differences between predicted values yi generated by the autoencoder and actual
input values xi, as defined in Equation (2). This metric is chosen for its sensitivity to larger
errors, which are magnified due to squaring, thus imposing a penalty proportional to the
error magnitude. Minimizing the MSE during training enhances the model’s capability to
effectively reduce the discrepancy between the input and reconstructed output, thereby
improving its ability to capture essential and meaningful data features.

MSE =
1
N

N

∑
i=1

(yi − xi)
2 (2)

2.2. Sparse Autoencoder (SAE)

The SAE is a variation of the conventional autoencoder, which stands out for its ability
to learn sparse representations of data, highlighting distinctive features. During training,
the SAE imposes a sparsity penalty, encouraging the model to efficiently encode the most
relevant features of the data. By promoting the sparsity of representations, the SAE helps
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to highlight fundamental aspects of the data, improving the model’s ability to discriminate
between significant patterns and noise.

During training, the SAE imposes a sparsity penalty Ω(h) on the code layer h in
addition to the reconstruction error, as described in Equation (3):

L(x, g( f (x))) + Ω(h), (3)

where g(h) is the output of the decoder, h = f (x) is the output of the encoder, and Ω(h) is
the sparsity penalty applied to the code layer. This sparsity penalty encourages the model
to learn sparse representations of the data, focusing only on the most relevant features
during the encoding process [45].

This is useful for highlighting important aspects of the data, allowing for a more
efficient and discriminative representation. By promoting the sparsity of representations,
the SAE simplifies the analyzed signals, making them more suitable for structural change
detection. Its ability to identify distinctive features within high-dimensional data makes it a
valuable tool in various applications, including pattern recognition and anomaly detection.

The SAE also utilizes the Mean-Squared Error (MSE) as the loss function during
training. The MSE is chosen for its effective ability to minimize the squared differences
between predicted and actual values, thereby enhancing reconstruction accuracy and
facilitating the extraction of meaningful data features.

2.3. Variational Autoencoder (VAE)

The VAE is an advanced technique that stands out for its ability to extract meaningful
features from analyzed signals, acting as a parameter reducer. By probabilistically modeling
the distribution of input data, the VAE offers a robust representation of features, enabling
more effective encoding. These models have been widely adopted in various applications,
ranging from image generation to structural damage detection, through the learning of
latent representations. Its ability to learn complex latent representations makes it a valu-
able choice in various applications, including structural damage detection. The VAE uses
the normal distribution to model the distribution of latent data, introducing stochastic
variability in data encoding. This feature is essential for dealing with the inherent un-
certainty in data and improving the model’s ability to capture the complexity of input
data. During training, the VAE is optimized to minimize the difference, or divergence,
between the original input data (x) and the reconstructed data (x’), while also keeping
the distribution of latent data close to a normal distribution. To generate a sample from
the input data, the VAE first extracts a sample z from the data distribution p(z). Then,
the sample passes through a differentiable generator network g(z). Finally, x is drawn from
a distribution p(x; g(z)) = p(x|z). During training, the encoder network q(x|z) is used to
obtain z, and p(z) is then a decoding network [45].

Similar to the AE and SAE, the VAE also uses the Mean-Squared Error (MSE) as its
loss function. The MSE plays a critical role in minimizing squared differences between
predicted and actual values, thereby improving reconstruction accuracy and facilitating the
extraction of significant data features.

2.4. Convolutional Autoencoder (CAE)

The convolutional autoencoder (CAE) is an effective approach in the field of machine
learning, especially for tasks related to image processing. They are capable of learning
efficient representations of images through convolutional layers, capturing local and hi-
erarchical patterns present in the input data. These models have been widely used in a
variety of applications, including object recognition, structural change detection, and image
segmentation and compression, providing an effective way to encode and reconstruct
images with high fidelity. They can also handle one-dimensional sequential data, such
as time series, using convolutional layers, with high feature extraction capability from
these convolutional layers. During encoding, convolutions are employed to capture local
patterns, while in decoding, transposed convolutions are used to reconstruct the original
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sequence. This architecture is effective for extracting and representing relevant sequential
features, being useful in tasks such as time series prediction, allowing possible detection of
structural changes.

A convolutional autoencoder (CAE) consists of an encoder that compresses the original
data into low-dimensional features and a decoder that reconstructs the compressed features
into a data similar to the original. The encoder has an input layer and four consecutive
convolutional 1D and MaxPooling layers (Conv + Max), which are connected to flattening
and dense layers (flat + dense). This process filters and compresses the information that
the CAE needs to recognize in the image. In the decoder, symmetric to the encoder,
the flattening and dense layers are connected to consecutive upsampling and convolution
layers (Up + Conv) and an output layer with the same dimension as the input layer.

In a simplified manner, the 1D convolutional layer applies 1D convolution windows
separately to each channel and mixes the channels through pointwise multiplication, while
the MaxPooling layer is used to subsample the feature map, retaining only the most relevant
information extracted by the convolutional layer. This is necessary because convolutional
layers significantly increase the number of parameters in the output tensors compared to
the input ones, exponentially increasing the magnitude of the tensors [46].

The convolutional autoencoder training process is executed using the Mean Absolute
Error (MAE) as the loss function. The MAE is chosen due to its robustness as a statistical
measure, quantifying the average magnitude of absolute discrepancies between the pre-
dicted values yi generated by the autoencoder and the actual input values xi, as delineated
in Equation (4).

MAE =
1
N

N

∑
i=1

|yi − xi| (4)

This choice was motivated by the MAE’s capability to directly assess reconstruction
accuracy by averaging absolute differences across all N samples in the dataset [47]. In the
context of structural damage detection, the MAE proves effective within the CAE for
capturing local and hierarchical patterns in the data, essential for identifying significant
structural changes.

Table 1 summarizes some of the key differences among these four autoencoder models.

Table 1. Comparison of features for the four different autoencoder models evaluated.

Feature AE SAE VAE CAE

Latent Distribution Fixed Sparse Variable Pooling
Regularization None Sparsity penalty KL regularization Dropout

Flexibility Low Moderate High Moderate

Advantages Simple and fast
convergence

Highlights distinctive
data features Probability distribution Captures local patterns

Disadvantages Limited in capturing
complex data patterns

Requires careful tuning
of hyperparameters

May require high
computational cost Difficult interpretability

Even though the use of autoencoder models for SHM applications has flourished over
the last years, it is important to remark about some of their limitations. In fact, as with any
other data-driven-based damage-detection method, these models are highly dependent
on the quality of the input data. If the input data quality is poor, the models will not
yield good results. In addition to this, these techniques are often referred to as ‘black-box
models’ [48], meaning that little knowledge can be extracted from them and most of the
physical meaning of the problem is lost in the way. Hence, this type of technique should
not be blindly used by those who do not fully understand the structure’s complexity or its
underlying dynamic behavior.

Thus, according to Table 1, AEs exhibit simplicity and rapid convergence, making
them a practical choice for initial experiments and quick tests. In practice, AEs are easy to
implement and train, allowing for a swift assessment of model viability. However, their
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simplicity also limits their ability to capture complex and subtle patterns in more intricate
datasets, resulting in less precise reconstructions for such data.

On the other hand, SAEs effectively highlight the most important data features, which
is beneficial for tasks like anomaly detection and feature selection. Practically, their capa-
bility to focus on distinctive features is highly valuable. Nonetheless, this effectiveness
necessitates careful tuning of the sparsity hyperparameters, which can be a time-consuming
process requiring expertise to avoid underfitting or overfitting.

Additionally, VAEs provide a probabilistic framework that captures the data distribu-
tion, facilitating generative tasks such as data synthesis and anomaly detection. They are
frequently employed when a robust and probabilistic approach to data modeling is required.
However, this added complexity can lead to higher computational costs, longer training times,
and increased resource consumption, posing challenges in resource-constrained environments.

Finally, CAEs are predominantly used for image data, effectively capturing spatial
hierarchies and local features, which is advantageous for handling visual data. Neverthe-
less, the interpretability of these networks can be challenging. The convolutional layers
and their filters are intricate, making it difficult to comprehend how specific features are
captured and represented, thereby complicating model analysis and fine-tuning.

2.5. Shewhart T2 Control Charts

Shewhart T2 Control Charts are statistical graphical tools used to assess the influence
of various parameters of a problem over time. They display multiple data points, composed
of a specific statistical characteristic, with horizontal lines separating different classes of
structural scenarios. Points outside the expected intervals indicate changes, suggesting
an out-of-control situation [44]. In addition to its early-problem-detection capability, T2

offers the advantage of being a well-established statistical tool accepted by the scientific
and industrial community. Its interpretation is straightforward and intuitive, facilitating
result interpretation and decision-making by users. Therefore, given its relevance and
applicability in various contexts, T2 represents a powerful tool for identifying and quantify-
ing structural changes in analyzed signals, contributing to the improvement of the quality,
efficiency, and reliability of SHM [44].

In this study, T2 was calculated based on the parameters extracted by different autoen-
coder models, and its application allowed the identification and quantification of changes
or damage in the analyzed signals by comparing the observed values with statistically
established limits. The T2 statistic represents the distance between a new data observation
and the sample mean vector corresponding to it: the higher the value of T2, the greater the
distance of the new data from the mean is. This metric is based on the relationship between
variables and the dispersion of the data (covariance matrix).

In addition to T2, other metrics such as the Mean-Squared Error (MSE) and the
Original-to-Reconstructed-Signal Ratio (ORSR) were also evaluated, but they did not
present satisfactory results in classifications and were, therefore, not included in this paper.

Given a matrix HN×M representing a dataset over a certain time (which in this paper,
are the features extracted from the latent layers of the autoencoders), the T2 statistic can be
calculated according to Equation (5):

T2 = R(h − h)TS−1(h − h) (5)

where h is the mean vector of the sample of M available characteristics, obtained from a
submatrix of H with R observations (HR×M, R < N); h and S are the reference mean vector
and the mean of the reference covariance matrices, respectively. In all conducted studies,
the Upper Control Limit (UCL) was defined as immediately above 95% of the T2 values
from the training data (values greater than the UCL should be observed only 5% of the
time for the structure in its original state). The Lower Control Limit (LCL) was not used
and, thus, defined as 0. Hotelling’s T2 values greater than the UCL indicate changes in the
data, which may suggest the presence of structural damage or other anomalies. By this
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definition, 5% of the T2 values from the training data will be above the UCL, which is not a
concern if they are close to it.

3. Methodology

The proposed methodology aims to evaluate the ability of the autoencoders to separate,
in an unsupervised manner, vibration signals belonging to different structural dynamic
behaviors. This is achieved by training the model with only a portion of the intact structural
data and subsequently testing it with the remaining data. During this process, the model
compares each signal with the reference class (i.e., damage state), deriving a specific
difference, or reconstruction error, that gradually increases between classes, but remains
relatively constant within each of them.

Thus, all data are divided into three sets: training, validation, and monitoring,
as follows:

• Training phase: In this stage, a dataset extracted from the structure’s undamaged state
is used to train the autoencoder model. This dataset is referred to as the training set.

• Validation phase: During this phase, another dataset (validation data), also extracted
from the same structural state as the training phase, is applied to the model trained
in the previous stage. The goal is to verify the model’s ability to classify new data. It
is expected that the model will lead to statistically similar T2 values for training and
validation datasets since they belong to the same structural state.

• Monitoring phase: In this phase, datasets (monitoring data) extracted from other
structural cases—different from those used in the training and validation phases—are
presented to the model. It is expected that the model will yield T2 values higher than
those obtained in the previous phases because they belong to a different structural
state from the one used for training.

All simulations in this study were conducted using Google Colab, a cloud-based plat-
form that provides access to powerful computational resources. The choice of Google Colab
was driven by its accessibility, ease of use, and the ability to leverage high-performance
hardware without the need for local infrastructure. The machine specifications were as fol-
lows: the CPU is an Intel(R) Xeon(R) CPU @ 2.30 GHz, manufactured by Intel Corporation,
located in Santa Clara, CA, USA, equipped with 13,290,464 kB (approximately 13 GB) of
RAM. Python version 3.10.12 was utilized. The GPU used was a Tesla T4, manufactured
by NVIDIA Corporation, located in Santa Clara, CA, USA, with driver version 535.104.05
and CUDA version 12.2, offering 15,360 MiB of memory. The available disk space on the
root partition was 2.0 GB. Utilizing Google Colab facilitated efficient computation and
ensured the reproducibility of the results, making it an optimal choice for the computational
requirements of this study.

For all structures analyzed, the Fourier Transform (FFT) of the structural dynamic
signals was used as the inputs to the autoencoder models. This choice was motivated by the
fact that the compressions and reconstructions performed by the autoencoders were more
accurate in this domain compared to the time domain. One advantage of processing data
in the frequency domain is that the transformation using the FFT algorithm can already be
understood as a parameter extractor, which facilitates the encoding step by autoencoders,
as seen in studies by Resende et al. [49].

For reproducibility, a 10-fold cross-validation scheme was used for each structure to
avoid variations and obtain more homogeneous and precise evaluations. The order of the
data within the classes was also randomly modified at the beginning of each repetition,
thereby changing the portion and sequence of intact structure data used for training and
that used for validation.

After performing the FFT over the acceleration measurements, all data were standard-
ized using z-score standardization, according to Equation (6):

z =
x − µ

σ
, (6)
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where z is the standardized signal vector, x is the original signal vector, and µ and σ are the
mean value and the standard deviation of the signal, respectively.

Table 2 summarizes some of the key differences among these four autoencoder models.

Table 2. Signals per class in each analysis of each structure.

Analysis 1
2D Laboratory Frame

Analysis 2
3D Yellow Frame

(Removal of Braces)

Analysis 3
3D Yellow Frame

(Loosening of Bolts)

Analysis 4
Z24 Bridge

Class 1—training 200 24 60 350
Class 1—validation 100 6 30 235

Class 2 300 30 90 585
Class 3 300 30 90 585
Class 4 300 30 - 585
Class 5 300 30 - -
Class 6 - 22 - -

All autoencoder models depend on the following parameters and hyperparameters:
learning rate, number of epochs, batch size, original dimension, latent dimension, and the
optimizer algorithm. However, for SAE, the sparsity parameter ‘lambda’ must also be
defined; for the VAE, the intermediate dimension is used; for the CAE, since the latent
layer is not one-dimensional, the number of filters and their sizes for that layer must also
be defined.

The hyperparameters of the autoencoders were selected using the Optuna parameter
optimizer. This is an automated and efficient hyperparameter optimization tool that
employs intelligent search techniques to find the best combinations of hyperparameters for
a given machine learning model through a search and selection approach based on efficient
sampling [50].

In Optuna, the search space for the hyperparameters to be optimized needs to be
initially defined. This includes setting the possible value ranges for each hyperparameter,
such as the batch size, learning rate, number of epochs, latent dimension, intermediate
dimension, and lambda sparse. These ranges were chosen based on established practices in
the literature and preliminary experiments that indicated the bounds within which optimal
performance is likely to be found [51,52].

Hence, a sensitive study was conducted, consisting of multiple trials to find the best
combination of hyperparameters. To this end, Optuna uses sampling algorithms, such
as the Tree-structured Parzen Estimator (TPE) to select sets of hyperparameters to be
evaluated [50,53]. The TPE algorithm was chosen because it has been shown to perform
well in high-dimensional optimization problems and to handle complex search spaces
efficiently [54]. A total of 100 trials was defined for each analysis performed. In each trial,
the selected set of hyperparameters was used to train and evaluate the model.

An objective function was then defined to assess the model’s performance with the
given set of hyperparameters. In the analyses conducted, this was performed by minimizing
the difference in the T2 values between the training Class 1 and the validation Class 1.
Based on the results of previous trials, Optuna adjusts its sampling to focus on areas of the
search space that are more likely to contain the best hyperparameters.

After conducting 100 trials for each analysis, Optuna identifies the top 5 hyperpa-
rameter combinations along with their respective T2 plots that achieved the best results.
From these combinations, the set of hyperparameters that resulted in the largest difference
in the T2 values between signals of different classes for each analysis, while maintaining
closer values for signals of the same class, was selected. Optuna optimized parameters
such as the learning rate, number of epochs, batch size, intermediate dimension, latent
dimension, optimizer, and lambda sparsity according to the specific autoencoder used.
These optimized hyperparameters were subsequently used for training the autoencoders.



Buildings 2024, 14, 2014 10 of 32

Figure 1 provides a schematic overview of the proposed methodology. This diagram
illustrates the sequential steps involved, from the initial processing of vibration signals to
the final quantification of structural changes.

Figure 1. Flowchart of the proposed method.

4. Applications
4.1. Two-Dimensional Laboratory Frame

The first structure used for structural change detection (Analysis 1) is a 2D frame
shown in Figure 2, tested at the Image and Signals Laboratory of UFJF [33]. It consists of
six aluminum bars with an elastic modulus E = 70 GPa, each measuring 300 mm in length,
15.875 mm in width, and 1.587 mm in height.

In Figure 3, an illustration of the experimental test is shown. Four unidirectional piezo-
electric accelerometers (100 mV/g) were placed on this structure at the marked positions,
measuring horizontal accelerations. An impact load was applied using a pendulum with a
mass of 14 g, as shown in Figure 3. To obtain the data, the pendulum was released from
rest from the position also indicated in Figure 3, being subjected to the action of gravity
until its collision with the structure at the indicated point.
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(b)(a)

Figure 2. The 2D frame tested at the Image and Signals Laboratory of UFJF. (a) Front view of the
structure in scenario 1; (b) Frontal view of the structure in scenario 4. Adapted from [33].

70
0m

m

15.875mm
1.587mm

20.92º
12.38º

Figure 3. Illustration of the experiment conducted on the portal. Adapted from [33].

Five structural scenarios were tested, as indicated in Table 3.
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Table 3. Structural scenarios evaluated in Analysis 1. Adapted from [33].

Scenario Configuration

1 No additional mass added to the structure. m1 = m2 = 0.
2 An additional mass of 7.81 g added to the structure. m1 = 7.81 g and m2 = 0.
3 Two additional masses of 7.81 g added to the structure. m1 = 15.62 g and m2 = 0.
4 Three additional masses of 7.81 g added to the structure. m1 = 15.62 g and m2 = 7.81 g.
5 Four additional masses of 7.81 g added to the structure. m1 = 15.62 g and m2 = 15.62 g.

Each test had a duration of 8.192 s with a sampling frequency of 500 Hz, resulting in
4096 sampled points per accelerometer. Frequencies up to 40 Hz were analyzed as they are
the most relevant for this structure.

The hyperparameter set for the different autoencoders for this analysis is shown in
Table 4:

Table 4. Hyperparameters used in the autoencoder models for Analysis 1.

AE SAE VAE CAE

learning_rate 0.019 0.018 0.0195 0.0175
epochs 5 5 5 5

batch_size 3 3 3 3
original_dim 160 160 160 160

intermediate_dim - - 60 -
latent_dim 40 45 40 40 × 32
optimizer Adam Adam Adam Adam

lambda_sparse - 0.001 - -

The original and reconstructed FFTs by the AE, SAE, VAE, and CAE for each class are
presented in Figures 4, 5, 6 and 7, respectively.

Figure 4. Original and reconstructed signals by AE from Analysis 1 (accelerometer 1). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5.
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Figure 5. Original and reconstructed signals by SAE from Analysis 1 (accelerometer 1). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5.

Figure 6. Original and reconstructed signals by VAE from Analysis 1 (accelerometer 1). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5.

Figure 7. Original and reconstructed signals by CAE from Analysis 1 (accelerometer 1). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5.

The analysis of the signals visually reveals that the reconstructions were more similar
to the original signals in Class 1 compared to the others. This is because the autoencoders
were trained exclusively with the data from this class. By applying the compression and
reconstruction process to the other classes using the training from Class 1, the differences
between the reconstructions and the original signals increased as they diverged from the
patterns of Class 1, which was expected.
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The results for Analysis 1 are depicted in Figure 8, which combines the four plots
generated by the Hotelling T2 from the latent layers of the autoencoders. Each color
indicates the results for each scenario, as outlined in Table 3.

Figure 8. Shewhart T2 Control Charts for the 2D laboratory frame (accelerometer 1). (a) AE; (b) SAE;
(c) VAE; (d) CAE.

All analyzed methodologies produced similar T2 values between the validation and
training classes, demonstrating the models’ ability to classify new data from this structure,
as validation and training data belong to the same structural state and should, therefore,
have similar T2 values. Additionally, all methodologies were able to correctly identify the
presence of structural changes, as all monitoring classes exceeded the UCL.

However, only the VAE was able to accurately quantify the structural changes, with T2

values increasing as additional mass was added to the frame, without, in any case, points
from different scenarios having values within the same range. Although the CAE results
(Figure 8d) also showed an increase in the T2 values with the addition of mass, there are
still cases of different scenarios with T2 values within the same range. Thus, the AE, SAE,
and CAE methodologies (Figure 8a,b,d) presented similar T2 values between signals from
different classes, being unable to accurately quantify the levels of structural changes.

Finotti et al. [33] conducted a similar study using the same structure, employing
the SAE and Principal Component Analysis (PCA) for feature extraction from structural
signals in the time domain rather than the frequency domain. While their SAE approach
successfully detected structural alterations, unlike our study, which focused on frequency
domain analysis, they did not provide a quantitative assessment of these alterations. This
underscores the advantage of using VAE models in conjunction with frequency domain
data for both detection and quantification of structural changes.

4.2. Three-Dimensional Yellow Frame

Following the tests conducted in Analysis 1, similar evaluations were carried out on
the well-known ‘Yellow Frame’ tested at the Earthquake Engineering Research Laboratory
at UBC [39,40]. As depicted in Figure 9, this frame consists of four stories and was installed
on a concrete slab outside the laboratory to simulate environmental conditions.
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(a) (b)

Figure 9. Yellow Frame: (a) with bracings and (b) without bracings. Source: [40].

The structure has a height of 3.6 m and a plan of 2.5 m × 2.5 m, and its members are
made of hot-rolled steel, with a nominal yield stress of 300 MPa. The columns are B100 × 9
sections, and the floor beams are S75 × 11 sections. Figure 10 shows the beam–column
connection of the portal components, as well as the bracing connections and an additional
floor slab. Figure 11 presents the plan view and the east view of the structure.

In each span, the bracing system consists of two ½-inch-diameter steel rods, placed in
parallel along the diagonal. To make the mass distribution more realistic, a floor slab was
placed in each span per floor: four slabs of 1000 kg on each of the first three floors and four
slabs of 750 kg on the fourth floor, as shown in Figure 12. Additionally, a floor grating was
present on the second floor to be used as a work platform, adding 35 kg per span to the
mass of the second floor.

(a)(a) (b)

Figure 10. Zoom on (a) connections and (b) added masses. Source: [40].

Several experiments were conducted on the structure, including ambient vibration
tests, impact tests, and shaker tests. To evaluate the proposed approach, only the ambi-
ent vibration tests were utilized. Hence, the excitations were due to wind, pedestrians,
and nearby traffic around the structure. Further details on the experiment can be found
in [39,40].



Buildings 2024, 14, 2014 16 of 32

(b)(a)

Figure 11. Tested structure: (a) plan view and (b) east view. Adapted from [40].

(a) (b)

Figure 12. Added slabs in the structure: (a) floors 1–3 and (b) floor 4. Source: [40].

Fifteen accelerometers (5 V/g range) were placed throughout the structure, three on
each floor, including the ground level. These transducers were positioned to measure move-
ments in all directions and torsional modes (Figure 11a). FBA sensors were placed along
the east and west frames of the structure to monitor north–south directional movement,
aligning with the structure’s strong axis. EPI sensors were positioned near the central
column, oriented to measure the structure’s east–west movement along the weak axis.
Additionally, in tests involving loosened portal beams, sensors initially coupled to the
loosened beam were relocated to the subsequent portal frame.

The different loading scenarios analyzed, with and without braces (Figure 9), are
described in Table 5. Damage scenarios (1–6) were imposed on the braced structure by
removing or gradually placing braces, as shown in Figure 13. In the acquisition order,
scenarios 1, 5, 4, 3, and 2 simulate gradual damage to the bracing system. Finally, scenario
6 corresponds to the repair of multiple braces and damage to others on another face.

The unbraced structure had gradual damage simulated by loosening the bolts at the
beam–column connections, as shown in Figure 14. Cases 7, 9, and 8, in that order, represent
increasing damage, i.e., the number of loosened bolts.

Thus, two separate analyses were conducted for this structure: the first aimed to assess
the removal of the braces (Analysis 2); the second aimed to evaluate the loosening of the
bolts (Analysis 3). For both cases, the testing configurations remained the same, i.e., fifteen
accelerometers with a sampling frequency of 200 Hz. Additionally, an anti-aliasing filter
with a cutoff set at 50 Hz was employed.



Buildings 2024, 14, 2014 17 of 32

Table 5. Structural scenarios evaluated in Analysis 2 and Analysis 3. Source: [40].

Scenario Configuration

1 Fully braced structure.
2 Removal of all braces from the east side.
3 Removal of braces on all floors of one bay in the southeast corner.
4 Removal of braces on the 1st and 4th floors of one bay in the southeast corner.
5 Removal of braces on the 1st floor of one bay in the southeast corner.
6 Removal of braces on the 2nd floor on the north face.
7 All braces removed on all faces.

8 Unbraced structure + loosened bolts on all floors at all ends of the beam on the east face,
north side.

9 Unbraced structure + loosened bolts on floors 1 and 2 at all ends of the beam on the east
face, north side.

Figure 13. Braced structure: Cases 1 to 6. Red lines represent the bracing removed. Source: [40].

4.2.1. Removal of Braces

Each test lasted 5 min with a sampling frequency of 200 Hz, resulting in a single
signal of 60,000 sampled points per accelerometer for each case. The signal, comprising
60,000 points, was segmented into 30 signals of 2000 points each before the analyses
began, to provide a larger sample set for the models. The only exception was the signal
in Case 6, which was divided into 22 segments with 2000 points because it originally had
45.568 points available.
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Figure 14. Unbraced structure: Cases 7 to 9. Red lines mark the floors where the bolts have been
loosened. Source: [40].

The segmentation was necessary to make training and testing of the autoencoder
models faster, since analyzing the entire signal would be unfeasible. To avoid biasing the
results, a stratified k-fold validation was employed. Moreover, the segmentation approach
was designed to improve the model’s ability to detect subtle changes in the structure’s
health, which is crucial for accurate monitoring. In this study, a frequency range from 2 to
15 Hz was investigated. The hyperparameters used in the autoencoder models for Analysis
2 are shown in Table 6.

Table 6. Hyperparameters used in the autoencoder models for Analysis 2.

AE SAE VAE CAE

learning_rate 0.0055 0.0063 0.0071 0.0074
epochs 42 40 44 44

batch_size 16 16 12 24
original_dim 130 130 130 130

intermediate_dim - - 51 -
latent_dim 32 34 34 33 × 32
optimizer Nadam Nadam Nadam Nadam

lambda_sparse - 0.01 - -

The original and reconstructed FFTs by the AE, SAE, VAE, and CAE for each class,
derived from accelerometer 4, are presented in Figures 15, 16, 17, and 18, respectively.

Just as it occurred in Analysis 1, the reconstructions were more similar for the original
signals in Class 1 compared to the others. Again, this is because the autoencoders were
trained exclusively with data from this class. By applying the compression and reconstruc-
tion process to the other classes using the training from Class 1, the discrepancies between
the reconstructions and the original signals increased as they diverged from the patterns of
Class 1.

The results obtained by the models in Analysis 2, derived from accelerometer 4, are
presented in Figure 19, which compiles the four plots generated by T2 from the latent layers
of the autoencoders. Points of different colors represent the results of different scenarios.
In Figure 19, classes 1 to 6 (as shown in Table 5) were reordered in the sequence: 1, 5, 4, 3, 2,
and 6, due to the progression of brace removal and subsequent addition.
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Figure 15. Original and reconstructed signals by AE from Analysis 2 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5; (g) Class 6.

Figure 16. Original and reconstructed signals by SAE from Analysis 2 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5; (g) Class 6.

Figure 17. Original and reconstructed signals by VAE from Analysis 2 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5; (g) Class 6.
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Figure 18. Original and reconstructed signals by CAE from Analysis 2 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4; (f) Class 5; (g) Class 6.

Figure 19. Shewhart T2 Control Charts for bracing removal (accelerometer 4). (a) AE; (b) SAE;
(c) VAE; (d) CAE.

In general, one observes that only the variational autoencoder (VAE) exhibited con-
sistent T2 values among the training and validation classes, highlighting its superiority in
classifying new data. This consistency is crucial for a robust model, as it indicates its ability
to regroup data from the same structural state with similar T2 values and discriminate
those from different damage scenarios (with higher T2 values), thus avoiding false alarms
of structural changes. Conversely, the discrepancies in the classifications made by the
AE, SAE, and CAE (Figure 19b–d) among the training and validation sets suggest that
the signals exhibit greater heterogeneity than those in Analysis 1, causing the model to
incorrectly identify signals from the fully braced structure as belonging to another class.
This difference underscores the effectiveness of the VAE in handling structures subject to
temporal variations and behaviors that are not entirely standardized, thus providing a
more robust and adaptable approach.

Despite the limitations observed for the conventional autoencoder (AE), sparse autoen-
coder (SAE), and convolutional autoencoder (CAE), all approaches were able to detect the
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presence of structural changes, as evidenced by all monitoring classes exceeding the Upper
Control Limit (UCL). Furthermore, in all evaluated models, the tests belonging to Class 6
had T2 values predominated lower than of those of Class 5, indicating a correct identifi-
cation of the addition of braces (simulation of a structural repair). However, among the
three investigated methodologies, the variational autoencoder (VAE) stood out again as
the most effective in differentiating various levels of structural changes, demonstrated by
the increase in T2 values as braces were removed. Although there were improvements
compared to the results obtained in Analysis 1, the damage quantification task was not
as precise for the AE, SAE, and CAE models, with a considerable amount of data from
different classes exhibiting similar T2 values. The results obtained with data from the other
accelerometers were similar to this one.

4.2.2. Loosening of Bolts

Each test resulted in a signal of 180,000 sampled points per accelerometer for each
case. The signal, comprising 180,000 points, was segmented into 90 signals of 2000 points
each before the analyses began, to provide a larger sample set for the models. In this study,
a frequency range from 2 to 15 Hz was investigated as it is the most relevant to the structure.

The autoencoder hyperparameters for Analysis 3 are shown in Table 7.

Table 7. Hyperparameters used in the autoencoder models for Analysis 3.

AE SAE VAE CAE

learning_rate 0.0071 0.0071 0.0071 0.0071
epochs 44 75 75 44

batch_size 13 13 13 13
original_dim 130 130 130 130

intermediate_dim - - 51 -
latent_dim 12 12 12 16 × 32
optimizer Adam Adam Adam Adam

lambda_sparse - 0.01 - -

The original and reconstructed FFTs by the AE, SAE, VAE, and CAE for each class,
derived from accelerometer 4,are presented in Figures 20, 21, 22, and 23, respectively.
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Figure 20. Original and reconstructed signals by AE from Analysis 3 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3.
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Figure 21. Original and reconstructed signals by SAE from Analysis 3 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3.
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Figure 22. Original and reconstructed signals by VAE from Analysis 3 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3.
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Figure 23. Original and reconstructed signals by CAE from Analysis 3 (accelerometer 4). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3.

In this case, although the reconstructions looked more similar to the original sig-
nals in all autoencoders, it is worth noting the greater effectiveness of the CAE in the
reconstructions, as it successfully reconstructed the signals from all classes. Neverthe-
less, the reconstructions were still more similar to the original signals in Class 1 across all
autoencoders, indicating that the training was effective.

The results obtained by the models in the bolt loosening analyses, derived from
accelerometer 4, are depicted in Figure 24, which compiles the four plots generated by the
T2 from the latent layers of the autoencoders. In it, Classes 7 to 9 shown in Table 5 were
rearranged in the sequence 7, 9, and 8, due to the progression of bolts loosening. Class 7
was used as a reference (Class 1), and Classes 9 and 8 were used for monitoring (Class 2
and Class 3), differentiated by color.

For this test, all analyzed methodologies obtained similar T2 values between the
validation and training classes in all 15 accelerometers, confirming the models’ capability
to classify new data, as both validation and training data belong to the same structural
state. Moreover, all methodologies correctly identified the presence of structural alterations,
as all monitoring classes exceeded the UCL.

However, the SAE was not able to correctly distinguish the different levels of structural
alterations (quantification of alterations), presenting a considerable amount of data from
different classes displaying similar T2 values. On the other hand, the AE, VAE, and CAE
models (Figure 24a,c,d) were able to correctly separate signals from different classes, being
adequate approaches for the quantification of structural alterations in this analysis.

An assessment of structural alterations in this structure was also proposed by Car-
doso et al. [41], employing a methodology focused solely on anomaly detection. Unlike our
approach, which effectively localized and quantified structural changes across all classes,
Cardoso et al.’s method did not quantify these structural changes and failed to detect
damage in some classes, relying heavily on changes in vibration amplitudes for anomaly
detection. This highlights the superiority of our current study, which, akin to the first
analysis, demonstrated superior capabilities in both the detection and quantification of
structural alterations.
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Figure 24. Shewhart T2 Control Charts for loosening the bolts (accelerometer 4). (a) AE; (b) SAE;
(c) VAE; (d) CAE.

4.3. The Z24 Bridge

After the tests and the highly promising results obtained in the analyses with ambient
vibration, the models were now assessed using data from a real structure under forced
vibration, the Z24 Bridge. This structure, depicted in Figure 25, connected the villages of
Koppigen and Utzenstorf in Switzerland and was demolished at the end of 1998 due to
the construction needs of a nearby railway, which required replacement with a new bridge
with a larger lateral span.

Figure 25. Section of Z24 Bridge.

This prestressed concrete structure with 16 cables consisted of a main span of 30 m,
two side spans of 14 m each, and two cantilever beams of 2.7 m each, totaling a length of
63.4 m, as depicted in Figure 26. Due to the limited number of available accelerometers,
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vibrations were recorded separately in nine configurations, thus covering the entire span
of the bridge. Accelerometers were positioned on the bridge deck along three parallel
measurement lines: one located at the centerline and the other two situated along both
sidelines. To simulate damage, the pier on the Koppigen side was cut, and concrete was
replaced with steel filler plates and three hydraulic jacks. This installed system could lower
the pier to simulate real causes of damage, such as subsurface settling and erosion.

Figure 26. Sketch of Z24 Bridge. Adapted from [42].

Before its demolition, over the course of a month, the bridge underwent various
progressive damage tests, including continuous short- and long-term monitoring tests,
with forced and ambient vibrations, using sensors to assess variations in temperature and
air humidity, rainfall presence, and wind speed and direction [42,43].

In this paper, forced vibration tests obtained from four damage scenarios under
different temperature conditions were analyzed. The main goal is to evaluate and compare
the robustness of autoencoders in detecting structural changes under such circumstances
as well. Table 8 describes each scenario.

Table 8. Structural scenarios evaluated in Analysis 4. Source: [42].

Scenario Configuration Temperature

1 Undamaged structure 17 ◦C
2 Undamaged structure (with the addition of hydraulic jacks) 26 ◦C
3 Settlement of 40 mm in the indicated pier 29 ◦C
4 Settlement of 80 mm in the indicated pier 26 ◦C

For each damage scenario, nine tests were conducted using five accelerometers placed
at three measurement points (denoted as R1, R2, and R3 in Figure 27).The vibrational
responses from these accelerometers were sampled at 65,835 points, collected over ap-
proximately 11 min at a sampling frequency of 100 Hz. Each of the nine vibrational
response signals was segmented into 65 signals with 1000 points each, resulting in a total of
585 signals of 1000 points to provide a larger sample set for the models. This study focused
on a frequency range from 5 to 25 Hz.

Figure 27. Top view of the bridge with the damaged pier indicated. Source: [42].
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The hyperparameters used in configuring the autoencoders for Analysis 4 are detailed
in Table 9.

Table 9. Hyperparameters used in the autoencoder models for Analysis 4.

AE SAE VAE CAE

learning_rate 0.00008231 0.00006624 0.00008638 0.00008658
epochs 69 64 68 62

batch_size 16 18 18 16
original_dim 200 200 200 200

intermediate_dim - - 140 -
latent_dim 105 110 102 100 × 32
optimizer Adam Adam Adam Adam

lambda_sparse - 0.1 - -

The original and reconstructed FFTs by the AE, SAE, VAE, and CAE for each class,
derived from accelerometer 2, are presented in Figures 28, 29, 30, and 31, respectively.

Figure 28. Original and reconstructed signals by AE from Analysis 4 (accelerometer 2). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4.

Figure 29. Original and reconstructed signals by SAE from Analysis 4 (accelerometer 2). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4.
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Figure 30. Original and reconstructed signals by VAE from Analysis 4 (accelerometer 2). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4.

Figure 31. Original and reconstructed signals by CAE from Analysis 4 (accelerometer 2). (a) Class 1
train; (b) Class 1 validation; (c) Class 2; (d) Class 3; (e) Class 4.

Except for the CAE, which reconstructed signals from all classes very well, the recon-
structions made by the autoencoders were more accurate for Class 1 and degraded as the
differences between the signals of the analyzed class and Class 1 increased. This suggests
potential for correctly identifying structural changes through comparison of the features
stored in the latent layers of the autoencoders for each class.

The results obtained by the models in Analysis 4, derived from accelerometer 2, are
presented in Figure 32, which compiles the four plots generated by the T2 from the latent
layers of the autoencoders. Monitoring points of different colors represent the results of
distinct scenarios in the sequence presented in Table 8.

As Figure 32 shows, all methodologies yielded similar T2 values between the vali-
dation and training classes, indicating a good ability of the models to classify new data.
Furthermore, all methodologies correctly identified the presence of structural alterations,
as all monitoring classes exceeded the UCL. However, the VAE was the methodology that
best quantified structural changes, with T2 values increasing as changes in relation to the
original state increased.
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Figure 32. Shewhart T2 Control Charts for Analysis 4 (accelerometer 2). (a) AE; (b) SAE; (c) VAE;
(d) CAE.

Even with the VAE-T2 model, some T2 values for Class 2 were comparable to those of
Class 3. This likely occurred due to temperature variations between the analyzed classes,
as the natural frequencies of a concrete structure tend to be significantly higher at lower
temperatures [55]. It is also important to note that variations in wind intensity and loads
exerted on the structure also interfere with structural vibrations, but even with these factors,
the VAE was able to quantify the structural damages satisfactorily.

As with accelerometer 2, this quantification of structural damage was also observed in
accelerometers 1 and 5 (transverse). For accelerometers 3 and 4 (transverse and longitudi-
nal), all models maintained similar T2 values between the validation and training classes.
However, the separation between the signals of Classes 2, 3, and 4 was not as evident for
the set of hyperparameters used. This demonstrates the influence of the positioning and
direction of the accelerometers on the models, indicating the need for specific parameter
optimization for structural quantification based on the data from these accelerometers.

Finotti et al. [56] conducted a similar study on the Z24 Bridge using time domain
signals and employing only the SAE for feature extraction, comparing the intact structure
with the settlement of 40 mm in one pier (scenario 3 in this subsection of the present
study). This previous assessment successfully identified the settlement for data from
accelerometers 1 and 5, but failed to detect structural damage in data from the other
accelerometers. This limitation is likely due to the use of time domain data as the input
for the SAE, without performing damage quantification. In contrast, our current study
represents a significant advancement by utilizing frequency domain data and quantifying
structural alterations across four damage scenarios, providing a more comprehensive
assessment of the structural health.

In summary, significant differences in the latent layers of the autoencoder model can
indicate two possible scenarios: (1) the AE model did not fully understand the underlying
problem, leading to inaccurate latent representations, or (2) the AE model effectively
captured the underlying patterns, and the observed discrepancies in the latent layers
indicate anomalies or structural changes. The latter scenario is the basis for most studies
employing AEs for structural health monitoring (SHM).

When the AE model is trained and subsequently tested on the same dataset repre-
senting a healthy state of the structure, the differences in the latent layers, as visualized
through the T2 Control Charts, are typically small. This is because the model has learned
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to represent the normal conditions accurately. However, when the model is trained on
healthy data and then tested on new data representing a damaged state of the structure,
the differences in the latent layers are expected to be larger. This is due to the fact that
the model, having been trained only on healthy data, will produce latent representations
that deviate significantly from the learned healthy patterns, thereby highlighting potential
damage or anomalies.

In our study, this principle was consistently observed across the various applications
presented. Specifically, for Classes 2, 3, 4, and so on, when present and representing
damaged structural states, larger differences in the latent layers were noted, corresponding
to increasingly severe structural alterations. The progressively larger deviations in the
latent layers, as visualized through the T2 Control Charts, highlight the effectiveness of the
four different autoencoders used in the study, especially the variational autoencoder (VAE).
This trend is consistent with the principle that an AE model trained on healthy data will
exhibit greater deviations in the latent layers when faced with data from damaged states.

The ability of the model to detect and point out these deviations is crucial for effective
structural health monitoring, as it allows for timely identification and assessment of the
extent of structural alterations. This analysis reinforces the applicability of AEs in SHM,
where the primary objective is to detect and quantify structural changes through deviations
in the latent layers. The clear correlation between the severity of structural alterations and
the magnitude of deviations in the latent layers in our results demonstrates the potential of
these models, particularly the VAE, as robust methods for structural health monitoring.

4.4. Time Comparisons

The procedures were rigorously executed at all stages, from data importation to
analysis through the repetition of training, validation, and testing processes, followed
by the T2 damage index evaluation. The procedures were repeated five times for each
accelerometer in all considered structures. This time-averaged approach was adopted to
avoid any inaccurate or incorrect results, thus ensuring a robust and reliable evaluation,
as well as providing a better understanding of the execution time of each model.

Table 10 displays the average execution time of each model, calculated by averaging
the five repetitions performed for each accelerometer in each analysis.

Table 10. Average execution time of each methodology.

Analysis 1
(1500 Signals)

Analysis 2
(172 Signals)

Analysis 3
(270 Signals)

Analysis 4
(2340 Signals)

AE 40.352 s 30.156 s 26.782 s 77.789 s
SAE 45.224 s 33.845 s 29.919 s 76.792 s
VAE 52.211 s 48.142 s 35.935 s 137.205 s
CAE 42.116 s 31.922 s 31.115 s 98.433 s

In all conducted analyses, the VAE took longer to execute all steps. This time discrep-
ancy was more evident when there was a greater number of signals available, i.e., more
samples. This characteristic is due to the complexity of VAE models that involves modeling
probabilistic distributions, thus increasing the execution time compared to the AE, SAE,
and CAE models.

Furthermore, the execution times of the AE and SAE models were similar, with the
SAE model requiring more computational time in most tests. This occurs due to the
sparsity constraint applied to the hidden layer of the SAE, which increases computational
complexity compared to the AE’s. Therefore, it is expected that the execution times of
the SAE would be slightly higher than those of the AE in most cases. Additionally, the
CAE required a longer execution time than the SAE and AE, but less than the VAE, due to
the presence of convolutional layers, which require a higher computational cost than the
other autoencoders.
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However, it is important to note that, as all execution times were relatively low, com-
putational cost does not hinder the use of any of these methodologies. Thus, among these
four approaches, rather than prioritizing computational efficiency, the choice of the best
methodology should be based primarily on the quality of the results obtained. This consid-
eration ensures the excellence of the results, contributing to a more robust and effective
approach in the practical application of autoencoder models in civil engineering structures.

5. Conclusions

In this study, the effectiveness of four distinct methodologies based on the combina-
tion of autoencoders and the Hotelling T2 statistical tool for the detection and quantifi-
cation of structural alterations in various structures and configurations was investigated.
The performance of these methodologies was comparatively evaluated in terms of correctly
identifying anomalies and computational efficiency.

Among the four autoencoder models, the VAE-T2 significantly outperformed the
other models in all analyzed structural states. While the VAE-T2 demonstrated robust
capability in identifying and quantifying structural alterations, the AE, SAE, and CAE
models revealed inferior performances and generalization difficulties, including incorrectly
classifying validation signals when the structural responses of the same class were not
predominantly homogeneous. Furthermore, even though it required more time to perform
the analyses, this factor was not considered a hindrance to the use of the VAE, as current
technologies allow the entire methodology to be executed in a few minutes.

As with any data-driven method for structural damage detection, the effectiveness of
the methods discussed in this study heavily relies on data quality. The analysis of the Z24
Bridge demonstrates the impact of sensor position and orientation on the data collected by
accelerometers. Ensuring sensors are properly calibrated and maintained is essential for
continuous measurement reliability and accuracy. Therefore, it is fundamental to ensure
that sensors capturing structural dynamics (such as accelerations, strains, or displacements)
are correctly positioned, covering critical areas of interest (such as potential damage loca-
tions or areas with significant amplitude variations). To this end, preliminary finite-element
analyses can be employed to optimize sensor placement.

The AE, SAE, and CAE models consistently exhibited poorer performance compared to
the VAE model, primarily because these autoencoders were unable to model the underlying
structure’s behavior. Additionally, we draw attention to the importance of optimizing the
AE models’ hyperparameters for each application to ensure that each method delivers its
best—or even optimal—results. As seen in Section 4, the optimization algorithm yielded
consistently different results for each model and each structure.

Future research directions could focus on developing real-time SHM systems that
continuously monitor structures and provide immediate alerts upon detecting anomalies.
Integration with Internet of Things (IoT) devices and cloud computing could streamline
large-scale deployment and data analysis. Additionally, exploring advanced machine learn-
ing techniques such as reinforcement learning and generative adversarial networks (GANs)
could contribute further to the evolution of structural health monitoring methodologies.
Furthermore, incorporating time–frequency analysis techniques in future research could
allow for a more comprehensive assessment of structural health by capturing both gradual
and rapid changes in dynamic behavior. Future studies could also explore architectural
modifications, such as adding more layers or neurons, to potentially enhance the efficacy
of autoencoder models in structural health monitoring applications.

In conclusion, ongoing advancements in these methodologies not only deepen our
understanding of structural behavior mechanisms, but also offer potential applications
in locating structural alterations and assessing remaining structural life. This predictive
capability can guide strategic and proactive decisions, allowing for the more effective
implementation of preventive and corrective measures. Therefore, this research not only
contributes to the advancement of structural health monitoring (SHM), but also enables new
perspectives aiming to reduce risks and ensure its long-term safety, durability, and economy.
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