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Abstract: Using silty clay as roadbed filling can lead to roadbed diseases. In this paper, silty
clay was modified with lignin and BFS (GGBS). Then, the mechanical properties, freeze-
thaw characteristics, and microscopic mechanisms were investigated using unconfined
compression tests, California bearing ratio tests, rebound modulus tests, freeze-thaw cycling
tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed
that as the curing age increased, the unconfined compressive strength (UCS) of modified
silty clay gradually increased, and the relationship between the stress and axial strain
of the samples gradually transitioned from strain-softening to strain-hardening. As the
lignin content decreased and the BFS content increased, the UCS, California bearing ratio
(CBR), and rebound modulus of the modified silty clay first increased and then tended
to stabilize. Adding lignin and BFS can effectively resist volume increase and mass loss
during freeze-thaw cycles. When the ratio of lignin to BFS was 4%:8%, the growth rate of
the UCS, CBR, and rebound modulus was the largest, the change rate in volume and mass
and the loss rate of the UCS under the freeze-thaw cycle were the smallest, and the silty
clay improvement effect was the most significant. The microscopic experimental results
indicated that a large amount of hydrated calcium silicate products effectively increased the
strength of interunit connections, filled soil pores, and reduced pore number and size. The
research results can further improve the applicability of silty clay in roadbed engineering,
protect the environment, and reduce the waste of resources.

Keywords: lignin; BFS; mechanical properties; freeze-thaw properties; microscopic mechanisms

1. Introduction
A large amount of silty clay is widely distributed in the Lianyungang area, char-

acterized by high natural water content, high compressibility, and low strength. Using
them directly as roadbed fillers can lead to problems such as slope collapse, collapse, and
roadbed subsidence, which poses huge challenges to design and construction and even
causes certain economic losses [1–4]. Addressing the performance of poor roadbed soil
has been a research focus, and geosynthetic reinforcement and chemical improvement are
commonly used in engineering [5–7]. Traditional modifiers, such as lime and cement [8,9],
have been proven to be effective materials for improving the performance of subgrade soil,
but the dust, carbon dioxide, sewage, and residues generated during their production pose
hazards to ecosystems and human health [10,11]. Therefore, there is an urgent need to find
other more environmentally friendly alternatives. Industrial waste, as a sustainable and
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environmentally friendly alternative to cementitious materials, can reduce the high cost
and environmental problems caused by traditional modifiers [12–14].

Lignin and BFS (BFS) are considered modifiers that can improve soil performance
and add no pollution into the ecological environment, although they are not reasonably
utilized. Some scholars have carried out research regarding adding lignin and BFS into
the soil [15–21]. Lignin, composed of various hydroxyl and aromatic groups, is often used
in pavement asphalt modification [15]. A large number of mechanical experiments have
shown that the addition of lignin can significantly improve the shear strength and UCS of
soil, but excessive or insufficient lignin content is not conducive to further growth of soil
strength [22–24]. Additionally, lignin can inhibit soil disintegration and improve soil water
stability through particle aggregation. The adsorption of lignin causes soil particles to
agglomerate and restricts water entry into the soil, which explains why lignin-treated soil
after the freeze-thaw cycle shows fewer cracks and pores than undisturbed soil [25–29]. BFS
has a wider range of applications in modified soils compared to lignin. BFS, an industrial by-
product, can generate hydration products through volcanic ash reactions and is often used
as a cementitious material [30]. A large number of mechanical and microscopic tests have
shown that BFS can significantly improve the mechanical characteristics of the soil because
reaction products, such as C-(A)-S-H gels, enhance the bonding between soil particles and
fill in the microscopic pores [31–36]. The active ingredients in BFS can act synergistically
with other industrial wastes, e.g., fly ash (FA), resulting in a superior modification effect
compared to single-mixed BFS [37,38]. In addition, under dry-wet and freeze-thaw cycles,
BFS can significantly improve the mechanical properties of frozen soil [39,40]. However,
the early strength of BFS-treated soil increases slowly without alkali excitation, and the
strength effects of different alkaline chemical admixtures are also different [41–44].

In summary, lignin and BFS, as environmentally friendly industrial wastes, are widely
used in soil modification. At present, there is relatively little research on the mechanical
properties and freeze-thaw characteristics of lignin composite BFS-modified silty clay. This
paper studied the effects of lignin and BFS on the mechanical properties and freeze-thaw
characteristics of silty clay through unconfined compression tests, California bearing ratio
tests, rebound modulus tests, and freeze-thaw cycle tests. Then, correlation analysis was
used to determine the optimal dosage of lignin and BFS. Finally, combining XRD and SEM
experiments, the intrinsic mechanism of lignin-BFS-modified silty clay was revealed.

2. Test Program
2.1. Test Materials

The silty clay, lignin, and BFS (Figure 1) used in the test were all taken from Lianyun-
gang City, Jiangsu Province, China; the basic physical indicators are shown in Tables 1 and 2.
Lignin was obtained from a byproduct of a local biomass processing enterprise in Lianyun-
gang. The lignin waste generated during the production process of the enterprise was
collected and initially treated for this experimental study, aiming to explore its application
potential in improving the performance of silty clay and realize the resource utilization of
waste. Lignin is a brownish-yellow powder with a special aromatic odor. It is a polymer
anionic surfactant with strong dispersibility, adhesion, and coordination. It mainly contains
active functional groups, e.g., alcohol hydroxyl groups (-OH, 3374 cm−1), benzene ring C=C
bonds (651, 880, 1593 cm−1), alkanes (C-H(CH2), 1423, and 1593 cm−1), primary alcohols
(R1-CH2-OH, 1050 cm−1), and secondary alcohols (R1-CH(R2)-OH, 1090 cm−1) [45]. The
relative density of lignin is usually between 1.35–1.50, it is optically inactive and has a
refractive index, is soluble in water, and has most common organic solvents in its natural
form. The viscosity of lignin solutions is generally low, has thermoelectricity, and the
softening temperature is usually between 120–200 ◦C. When lignin contains water, its glass
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transition temperature (Tg) is significantly reduced. As a polymer anionic surfactant, lignin
can change the particle distribution, enhance the soil deformation resistance, and create
good conditions for the subsequent reaction. By forming covalent bonds with clay minerals
and promoting the BFS hydration reaction, the soil strength is enhanced to better withstand
external pressure. In terms of water stability, it regulates water distribution and migration,
stabilizes the aggregate structure, reduces expansion and dispersion when it meets water,
and performs well in the freeze-thaw cycle.
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Table 1. Basic physical properties of the silty clays used in the tests.

Density
/(g·cm−3)

Water
Content/%

Liquid
Limit/%

Plastic
Limit/%

Plasticity
Index

Relative
Density

Maximum Dry
Density
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1.44 43.41 41.18 19.86 21.32 2.7 1.61 20.63

Table 2. Basic physical properties of GGBS used in the test.

Specific Surface
Area (m2/kg)

Turnover
Ratio (%)

Density
(g/cm3)

Heat
Loss (%)

CaO
(%)

SiO2
(%)

Al2O3
(%)

SO3
(%)

Fe2O3
(%)

MgO
(%)

429.00 98.00 3.10 0.84 34.00 34.50 17.70 1.64 1.03 6.01

2.2. Experimental Design and Experimental Methods

Based on Zhang Jianwei’s research results and preliminary experimental results [46],
the optimum dosage of modifiers is 12%, and the mix design is shown in Table 3.

Table 3. Design of mixing proportions.

Sample No. The Proportion
of Silt Soil (%) Lignin: GGBS Optimum Moisture

Content (%)
Maximum Dry
Density (g/cm3) Curing Age

S1 100% 0 20.63 1.59 7D, 14D, 28D

S2 88% 12%:0% 21.98 1.65 7D, 14D, 28D

S3 88% 8%:4% 21.78 1.64 7D, 14D, 28D

S4 88% 4%:8% 19.73 1.62 7D, 14D, 28D

S5 88% 0%:12% 19.1 1.61 7D, 14D, 28D

Compaction preparation: The silty clay, lignin, and blaster slag (BFS) raw materials
were proportionally weighed and placed in a mixing container to form a homogeneous
mixture through mechanical agitation. The mixture was transferred to the corresponding
mold and then pressed with a press to keep the pressure stable. The pressure time was a
few minutes to tens of minutes, and then the molding sample was removed. The sample
had high density, a stable structure, a compact particle arrangement, and small porosity.
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The unconfined compressive strength test can simulate the stress state and reflect the
compressive performance. The deformation and bearing capacity can be reflected in the
CBR test. The freeze-thaw cycle test can effectively reflect the stability of engineering
applications in cold areas.

Unconfined compressive strength test (UCS test): the samples (φ50 mm × h50 mm)
were measured at 7, 14, and 28 d for compressive strength following Chinese standard JTG
3430-2020 [47]. A hydraulic universal testing machine with a displacement control loading
at 1 mm/min was employed.

CBR test and rebound modulus test: the samples (φ152 mm × h170 mm) were mea-
sured at 7, 14, and 28 d for CBR and rebound modulus following Chinese standard JTG
3430-2020 [47]. The CBR and rebound modulus were measured with a strength meter, and
the loading rate was 1 mm/min.

Freeze-thaw cycle test: the samples at a curing age of 28 d were selected for the freeze-
thaw cycle test. Each freeze-thaw cycle was 24 h, containing a 12 h freezing phase and a 12 h
melting phase. The temperature of the freeze-thaw test was based on the meteorological
data of Lianyungang City, Jiangsu Province, with a freezing temperature of −12 ◦C and a
melting temperature of 12 ◦C. The number of freeze-thaw cycles was set to 0, 1, 3, 5, and
10. The vernier caliper and electronic balance were used to measure the volume and mass
change after the freeze-thaw cycle.

SEM and XRD tests: To investigate the mineralogical composition and analyze the
microstructure, SEM and XRD tests were conducted on both improved and unprocessed
soil samples after freeze-thaw cycles of 0, 5, and 10 times. Representative fragments from
the UCS-tested samples were placed in the oven at 50 ◦C for drying. Dry samples were
tested after gold spraying using a TESCAN-VEGA3 scanning electron microscope [39]. For
XRD analysis, both improved and unprocessed soil samples were examined using an X-ray
diffractometer model Rich-Siefert equipped with a nickel filter. The scan was conducted
with a rate of 2θ ranging from 0 to 100◦/s, using increments of 0.5 degrees per second.

The sample preparation process and the test instruments are shown in Figure 2.

Buildings 2025, 15, x FOR PEER REVIEW 4 of 21 
 

Compaction preparation: The silty clay, lignin, and blaster slag (BFS) raw materials 
were proportionally weighed and placed in a mixing container to form a homogeneous 
mixture through mechanical agitation. The mixture was transferred to the corresponding 
mold and then pressed with a press to keep the pressure stable. The pressure time was a 
few minutes to tens of minutes, and then the molding sample was removed. The sample 
had high density, a stable structure, a compact particle arrangement, and small porosity. 
The unconfined compressive strength test can simulate the stress state and reflect the 
compressive performance. The deformation and bearing capacity can be reflected in the 
CBR test. The freeze-thaw cycle test can effectively reflect the stability of engineering 
applications in cold areas. 

Unconfined compressive strength test (UCS test): the samples (φ50 mm × h50 mm) 
were measured at 7, 14, and 28 d for compressive strength following Chinese standard 
JTG 3430-2020 [47]. A hydraulic universal testing machine with a displacement control 
loading at 1 mm/min was employed. 

CBR test and rebound modulus test: the samples (φ152 mm × h170 mm) were 
measured at 7, 14, and 28 d for CBR and rebound modulus following Chinese standard 
JTG 3430-2020 [47]. The CBR and rebound modulus were measured with a strength meter, 
and the loading rate was 1 mm/min. 

Freeze-thaw cycle test: the samples at a curing age of 28 d were selected for the freeze-
thaw cycle test. Each freeze-thaw cycle was 24 h, containing a 12 h freezing phase and a 
12 h melting phase. The temperature of the freeze-thaw test was based on the 
meteorological data of Lianyungang City, Jiangsu Province, with a freezing temperature 
of −12 °C and a melting temperature of 12 °C. The number of freeze-thaw cycles was set 
to 0, 1, 3, 5, and 10. The vernier caliper and electronic balance were used to measure the 
volume and mass change after the freeze-thaw cycle. 

SEM and XRD tests: To investigate the mineralogical composition and analyze the 
microstructure, SEM and XRD tests were conducted on both improved and unprocessed 
soil samples after freeze-thaw cycles of 0, 5, and 10 times. Representative fragments from 
the UCS-tested samples were placed in the oven at 50 °C for drying. Dry samples were 
tested after gold spraying using a TESCAN-VEGA3 scanning electron microscope [39]. 
For XRD analysis, both improved and unprocessed soil samples were examined using an 
X-ray diffractometer model Rich-Siefert equipped with a nickel filter. The scan was 
conducted with a rate of 2θ ranging from 0 to 100°/s, using increments of 0.5 degrees per 
second. 

The sample preparation process and the test instruments are shown in Figure 2. 

   
(a) Universal Testing Machine (b) UCS Samples (c) UCS Loading 

   
(d) CBR Samples (e) CBR Loading (f) SEM 

Figure 2. The sample preparation process and the test instruments. Figure 2. The sample preparation process and the test instruments.

3. Test Results and Analysis
3.1. Analysis of Curing Unconfined Compressive Strength

Characteristics of the Strain-Softening Curve: In the strain-softening stage, as the axial
strain increases, the stress first reaches a peak value, and then, with the further increase in
strain, the stress begins to gradually decrease. This means that after reaching the maximum
bearing capacity, the material’s ability to resist deformation gradually weakens, showing a
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gradually softening characteristic. For example, in the silty clay without or with a small
amount of additives (such as the S1 sample in the early stage), this situation may occur,
and its stress-strain curve shows a relatively rapid decrease in stress after reaching the
peak stress.

Characteristics of the Strain-Hardening Curve: Strain-hardening is different. As
the axial strain increases, the stress continues to increase, and the material shows an
increasingly stronger ability to resist deformation and becomes harder. When the lignin
content decreases and the BFS (GGBS) content increases (such as in the S2–S5 samples with
the increase in curing age and the effect of the additives), the stress-strain curve gradually
shows the characteristic of strain-hardening, that is, the peak stress continuously increases,
and after reaching the peak stress, the stress decrease trend slows down or remains relatively
stable, indicating that the improved silty clay can still maintain a relatively high bearing
capacity when subjected to larger deformation.

Figure 3 shows the UCS of the samples at different curing ages. At the same curing
age, the addition of lignin-BFS significantly improves the UCS of silty clay. With the
decrease in lignin content and the increase in BFS content, the UCS increases first and
then becomes stable. After 28 d of curing, the UCS of the S2–S5 samples increased by
1.8 times, 2.18 times, 3.31 times, and 3.36 times, respectively, compared to the S1 samples.
In the curing process, lignin locks water by attracting clay particles to form aggregates and
promotes the formation of BFS hydration products, thus filling the internal pores of the soil
and improving the strength of the soil.
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Figure 4 shows the variation of the UCS growth rate of the sample. At the same curing
age, with the decrease in lignin content and the increase in BFS content, the UCS growth
rate increases first and then decreases, indicating that there is an optimal amount of lignin
and BFS. Among the five groups of the samples, the UCS growth rate of the S4 samples is
the highest, which indicates that the content of lignin and BFS in the S4 samples is the best.
Excessive lignin content will occupy the position of soil particles, leading to incomplete
hydration reactions. Insufficient lignin will prolong the hydration reaction cycle of BFS,
resulting in insignificant growth of the UCS. Moreover, the larger the proportion of BFS,
the more the active components in BFS cannot fully hydrate, which has little effect on the
strength growth of soil. Therefore, there is a balance point between lignin and BFS content.
In addition, the reaction between the modifier and silt clay is most rapid from 14 d to 28 d.
The reason for this is that the strength of BFS increases slowly without the action of strong
alkaline activators [41]. With the increase in curing time, the internal hydration products
increase, resulting in a higher rate of soil strength growth.
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Figure 4. The growth rate of UCS.

Figure 5 shows the stress-strain curves at different curing ages. At the same curing
age, the peak stress of the S2–S5 samples is significantly higher than that of the S1 sample.
There are significant differences in the stress-strain curves of the S2–S5 samples. As the
lignin content decreases and the BFS content increases, the stress-strain curves of S2–S5
transition from strain-softening to strain-hardening. At the same curing age, the peak
stress of the unmodified S1 sample was significantly higher than that of the lignin-GGBS-
modified S2–S5 sample. At the same time, the stress-strain curves of S2–S5 samples showed
significant differences. With the decrease in lignin content and the increase in GGBS content,
the curves showed a change from strain-softening to strain-hardening. During the 7-day
curing period, each curve shape initially showed this trend (as shown in Figure 5a).
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With the increase in curing age, the peak stress of the same group of samples increases
significantly, the strain rate accelerates, and the peak strain shows a trend of moving
forward, indicating that the transition from the plasticity to brittleness of the samples is
more significant, which is similar to the properties of the most modified soils [48]. The
reason for this is that during the long-term curing process, the hydration inside the samples
continues to occur, leading to an increase in the brittleness of the samples. At the same
curing age, the stress-strain curve of the S4 sample covers a larger area, indicating that
the samples have better deformation resistance and plasticity after cracking [32], and the
residual strength is correspondingly increased. Therefore, the dosage of lignin and BFS in
S4 is the most suitable.
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3.2. Analysis of CBR and Modulus of Resilience

From Figures 6–8, it can be seen that the addition of lignin-BFS significantly improves
the CBR and rebound modulus of silty clay. As lignin content decreases and BFS content
increases, the CBR and rebound modulus first increase and then flatten, and the CBR
growth rate first increases and then decreases at the same curing age, which is roughly the
same as the law of the UCS. There is a certain correlation between CBR and UCS [49]. After
28 d of curing, the CBR of the S1~S5 samples is 6.42%, 16.64%, 34.67%, 42.95%, and 44.28%,
respectively. The CBR and rebound modulus of S2~S5 meet the requirements of subgrade
filler for expressways in the Chinese standard JTG D50-2017; S1 samples do not meet the
requirements [50]. The CBR growth rate of S4 was the highest (60.56%), indicating that
the ratio of lignin and BFS in the S4 sample was the best. During the 14- to 28-day curing
period, the rebound modulus of S4 increased the fastest, increasing by 63.94 MPa. The total
increase in the rebound modulus of S2 and S5 was close to the increase in S4, indicating that
the effect of composite improvers on improving soil is better than that of single improvers.
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3.3. Freeze-Thaw Cycles

The volume change rate and mass change rate are used to describe the volume and
mass change of the samples during the freeze-thaw process, and the formulas are as follows:

∆V =
Va − V

V
× 100% (1)

∆m =
ma − m

m
× 100% (2)

where, ∆V and ∆m are the rate of volume and mass change, respectively; Va and ma are the
volume and mass of the sample after each freezing/thawing, respectively; V and m are the
initial volume and mass of the sample, respectively.

From Figure 9, it can be seen that during a single freeze-thaw cycle, both the volume
and mass of the samples show a trend of first decreasing and then increasing, exhibiting a
phenomenon of freeze-shrinkage and thawing expansion [51]. In general, with the increase
in freeze-thaw times, the volume of the sample showed an increasing trend, while the mass
showed a decreasing trend.
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Figure 9. Mass and volume changes.

As shown in Table 4, after 10 freeze-thaw cycles, the volume change rates of the S1~S5
samples were 0.28%, 0.22%, 0.19%, 0.18%, and 0.26%, respectively, and the mass change
rates were −0.19%, −0.13%, −0.12%, −0.11%, and −0.16%, respectively. The volume and
mass changes of the S2~S5 samples were significantly lower than those of the S1 sample,
indicating that the addition of lignin and BFS can effectively resist freeze-thaw effects.
Among the five groups, the S4 sample has the smallest volume and mass changes; therefore,
the dosage ratio of S4 is optimal.

Table 4. Mass and volume change rates under freeze-thaw cycles.

Volume Change Rate (%) Mass Change Rate (%)

Number of Freeze-Thaw
Cycles (Time) S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 0.1 0.06 0.04 0.01 0.08 0.02 0.01 0.01 0.01 0.02
3 0.12 0.07 0.08 0.05 0.12 −0.09 −0.02 −0.04 −0.01 −0.02
5 0.2 0.17 0.14 0.13 0.17 −0.09 −0.03 −0.04 −0.02 −0.03

10 0.28 0.22 0.19 0.18 0.26 −0.20 −0.13 −0.12 −0.11 −0.16
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Figure 10 shows the apparent changes of the S1 sample and the S4 sample during
the freeze-thaw cycle. With the increase in freeze-thaw times, soil particles fell off, and
cracks occurred on the surface of the S1 sample first, and then surface cracks gradually
expanded. After 10 freeze-thaw cycles, the cracks inside the samples were connected, and
the soil particles on the surface significantly fell off. However, during the freeze-thaw cycle,
the surface of the S4 sample had no obvious soil particle shedding and cracks, showing
significant freeze-thaw resistance.

Buildings 2025, 15, x FOR PEER REVIEW 9 of 21 
 

indicating that the addition of lignin and BFS can effectively resist freeze-thaw effects. 
Among the five groups, the S4 sample has the smallest volume and mass changes; 
therefore, the dosage ratio of S4 is optimal. 

Table 4. Mass and volume change rates under freeze-thaw cycles. 

 Volume Change Rate (%) Mass Change Rate (%) 
Number of Freeze-Thaw 

Cycles (Time) S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

1 0.1 0.06 0.04 0.01 0.08 0.02 0.01 0.01 0.01 0.02 
3 0.12 0.07 0.08 0.05 0.12 −0.09 −0.02 −0.04 −0.01 −0.02 
5 0.2 0.17 0.14 0.13 0.17 −0.09 −0.03 −0.04 −0.02 −0.03 

10 0.28 0.22 0.19 0.18 0.26 −0.20 −0.13 −0.12 −0.11 −0.16 

Figure 10 shows the apparent changes of the S1 sample and the S4 sample during the 
freeze-thaw cycle. With the increase in freeze-thaw times, soil particles fell off, and cracks 
occurred on the surface of the S1 sample first, and then surface cracks gradually expanded. 
After 10 freeze-thaw cycles, the cracks inside the samples were connected, and the soil 
particles on the surface significantly fell off. However, during the freeze-thaw cycle, the 
surface of the S4 sample had no obvious soil particle shedding and cracks, showing 
significant freeze-thaw resistance. 

    
1st Freeze-Thaw Cycle 3rd Freeze-Thaw Cycle 5th Freeze-Thaw Cycle 10th Freeze-Thaw Cycle 

(a) S1 sample 

    
1st Freeze-Thaw Cycle 3rd Freeze-Thaw Cycle 5th Freeze-Thaw Cycle 10th Freeze-Thaw Cycle 

(b) S4 sample 

Figure 10. Surface changes of S1 sample and S4 sample under freeze-thaw conditions. 

From Figures 11 and 12, it can be seen that after 10 freeze-thaw cycles, the UCS of S2-
S5 was 1.04 MPa, 1.28 MPa, 2.01 MPa, and 1.89 MPa, respectively, significantly higher 
than that of S1 (i.e., 0.3 MPa). The UCS losses of samples S2–S5 were 23.4%, 21.8%, 19.3%, 
and 25.3%, respectively, significantly lower than that of S1 (i.e., 59.6% MPa). These 
indicate that the addition of lignin and BFS can improve the soil’s freeze-thaw resistance. 

Figure 10. Surface changes of S1 sample and S4 sample under freeze-thaw conditions.

From Figures 11 and 12, it can be seen that after 10 freeze-thaw cycles, the UCS of
S2–S5 was 1.04 MPa, 1.28 MPa, 2.01 MPa, and 1.89 MPa, respectively, significantly higher
than that of S1 (i.e., 0.3 MPa). The UCS losses of samples S2–S5 were 23.4%, 21.8%, 19.3%,
and 25.3%, respectively, significantly lower than that of S1 (i.e., 59.6% MPa). These indicate
that the addition of lignin and BFS can improve the soil’s freeze-thaw resistance.
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In addition, the samples doped with BFS (i.e., S3~S5) showed strength enhancement
after the first freeze-thaw cycle. The reason for this is that, during the freezing process,
the micro-cracks formed by frost heave in the soil accelerated the water diffusion, which
promoted the hydration reaction of BFS. The gelled material generated by hydration filled
the micro-cracks and particle pores and restored or even enhanced the strength of the soil
to a certain extent. However, with the increase in the number of freeze-thaw cycles, this
effect gradually weakened and eventually disappeared.

3.4. Correlation Analysis

To further clarify the effects of lignin and BFS content on the mechanical and freeze-
thaw properties of silty clay, the linear regression method was used to analyze the growth
rate of UCS after 28 days of curing and the loss rate of UCS after freeze-thaw cycles [52].
The interaction between the two factors is shown in Figures 13 and 14. With the increase
in lignin and BFS content, the response surface curve of UCS growth rate showed a trend
of first increasing and then decreasing, and the response surface curve of the UCS loss
rate during the freeze-thaw cycle showed a trend of first decreasing and then increasing,
indicating that there was an optimal proportion of lignin and BFS content. Through linear
regression, under the condition of an improver dosage of 12%, the UCS growth rate was the
largest when lignin: BFS = 4.17%:7.93%, and the UCS loss rate after freezing and thawing
was the smallest when lignin: BFS = 4.128%:7.972%. The above results are close to the ratio
of modifiers in the S4 sample. Therefore, when lignin: BFS ≈ 4%:8%, the soil improvement
effect is most significant and the freeze-thaw resistance is the highest.
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3.5. Microscopic Analysis
3.5.1. SEM Analysis

Using SEM, MIP, and 1H NMR, the optimization effect of the modifier (lignin and
blast furnace slag) on the microstructure of silty clay was investigated. The samples were
the unmodified sample (S1) and the best modified sample (S4), and the samples underwent
different freeze-thaw cycles (0, 5, 10). Figure 15b,d shows the morphologies of the S1
and S4 samples under 1000-magnification electron microscope scanning after curing for
28 days. The mercury intrusion volume under different pressures was recorded using a
mercury injection meter. Figure 16 shows the pore size distribution curve. Compared with
the S1 sample and the S4 sample, the pore size distribution of the modified sample (S4)
was more concentrated in the range of middle and small holes, indicating optimized pore
distribution. In the 1H NMR test, samples with a saturated water state were prepared
and put into a nuclear magnetic resonance instrument to measure the relaxation time
distribution. Figure 17 shows that, in the S4 sample, the proportion of water in small pores
increased, indicating better water retention performance and pore stability.
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Figure 17. Pore Water Distribution (1H NMR). 
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Figure 17. Pore Water Distribution (1H NMR).

Calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H) produced by
BFS hydration exist mainly in the form of flocculation, accumulating between soil particles
and on the surface to fill gaps and support bones. As can be seen from Figure 15a, the
particle surface of the S1 sample is smooth, the boundary is clear, and the skeleton unit is
mainly connected by contact. There is an obvious pore structure between the particles and
the lack of cementing material, which indicates that the microstructure of the unmodified
sample is loose and the compressive strength is low. As can be seen from Figure 15d,
after adding lignin and BFS, the structural characteristics of the S4 sample have changed
significantly; the cementing material has increased significantly, small debris particles
and amorphous substances bind to each other to cover the debris particles, and a large
number of flocculating and cementing substances are filled between the particles. The SEM
images (Figure 15) reveal typical C-S-H morphologies, appearing as gel-like and flocculent
substances that fill soil pores and form strong inter-particle bridges. These hydration
products not only enhance the bonding between particles but also significantly reduce
porosity, resulting in a denser and more cohesive soil structure. No similar structure was
observed in the unmodified sample (S1), further demonstrating the significant effect of the
modifier. The formation of hydration products was verified in terms of microstructure and
phase changes. The positively charged polymer formed by the protonation of lignin wraps
the fine detritus particles into clumps and attaches to the structural skeleton units, increases
the base-base bond and strength of the structural skeleton, and reduces the number and
size of pores.
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As seen in Figure 15b,e, after five freeze-thaw cycles, the original surface-to-surface
contact aggregate structure of the S1 sample gradually breaks down, and the clay minerals
shift from a directional structure to a disordered structure. The effect of the bonding
structure between particles in the S4 sample was weakened, the soil particles wrapped
by the gelled products were gradually eroded, and the bonding efficiency of the gelled
products was destroyed. The aggregate skeleton structure was gradually loosened, the
surface particles fell off, and small pores appeared. From Figure 15c,f, after ten freeze-thaw
cycles, cracks and large holes appeared inside the S1 sample, and the integrity of the soil
was damaged. In the S4 sample, some aggregate particles were damaged, small pores and
cracks increased, and no cracks appeared, so the sample was relatively complete. In general,
compared to the S1 sample, the S4 sample exhibits better overall integrity and tighter
agglomeration after freeze-thaw cycles. Under the action of the cementation of hydration
products and skeleton construction, the soil structure of the S4 sample remains uniform
and dense, which prevents the continuous damage of the soil microstructure caused by the
freeze-thaw cycle. Therefore, the modified soil samples show strong structural stability and
damage resistance under the action of the freeze-thaw cycle, and the integrity and density
are significantly better than the undisturbed soil.

To further analyze the pore changes under freeze-thaw cycles, image recognition
technology was used to binarize the SEM images [53]. The processing results are shown in
Figure 18, where the black part represents particles and the white part represents pores.
According to Figure 18, the pore ratio (the ratio of the pore area to the total area) of the S1
and S4 samples for different freeze-thaw cycles was calculated, as shown in Figure 19. In
order to reduce the error caused by SEM, a wider sampling strategy was adopted. In the
sample preparation process, multiple slices were cut from different positions (such as the
center, edge, top, bottom, etc.), different directions (horizontal, vertical, etc.), and different
magnifications of SEM for observation, using professional image analysis software 1.8.0 to
process SEM images.
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freeze-thaw action disrupts the arrangement and contact of soil particles, increases the 
porosity and pore area, weakens the bonding force between the particles, and results in 
the looseness of soil structure and the decrease in soil strength. In the same pore area, the 
UCS strength of the S4 sample is much higher than that of the S1 sample, indicating that 
lignin and BFS have a significant effect on improving the mechanical properties of silty 
clay. 
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From Figure 19, it can be seen that as the number of freeze-thaw cycles increases,
the porosity of the sample gradually increases, and the porosity of sample S4 is signif-
icantly reduced compared to sample S1, indicating that the addition of lignin and BFS
can effectively reduce the porosity of the sample. To analyze the correlation between
the mechanical properties of soil and the degree of pore damage, a Cartesian coordinate
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system was established between the total pore area and macroscopic mechanical strength
parameters. The mathematical relationship between the two was fitted and analyzed, and
the correlation coefficient exceeded 0.92; the results are shown in Figure 20. As the total
pore area increases, the UCS of samples S1 and S4 gradually decreases, indicating that
freeze-thaw action disrupts the arrangement and contact of soil particles, increases the
porosity and pore area, weakens the bonding force between the particles, and results in the
looseness of soil structure and the decrease in soil strength. In the same pore area, the UCS
strength of the S4 sample is much higher than that of the S1 sample, indicating that lignin
and BFS have a significant effect on improving the mechanical properties of silty clay.
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3.5.2. X-Ray Diffraction

The selection of the S1 sample after curing for 7 days and the S4 sample after curing
for 7 days and 28 days for the XRD study was mainly based on the following reasons. For
the control group without added lignin and BFS (BFS), the XRD results of sample S1 show
the mineral composition of the original soil, providing a basis for subsequent comparison.
The S4 sample has shown good performance in previous tests of unconfined compressive
strength, CBR, the resilience modulus, the freeze-thaw cycle, etc. It can be selected to
explore changes in soil mineral composition after different curing times under the action of
this specific ratio of lignin and BFS, so as to further understand the influence mechanism
of the modifier on the soil mineral structure. The comparison of the S4 samples with a
curing time of 7 days and 28 days is helpful to study the chemical reaction and mineral
transformation process of the modified system over time and to explain its influence on the
long-term soil properties from the microscopic level. This is closely related to the whole
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study of lignin-BFS-modified silty clay and can complement other test results, making the
research more comprehensive and systematic.

Sample S1, which was cured for 7 days, and sample S4, which was cured for 7 days
and 28 days, were selected for XRD analysis. The main mineral composition of each
group is shown in Figure 21. After 7 days of solidification, the main diffraction peaks
of the S1 and S4 samples are similar, and the main components are quartz and kaolinite,
followed by nano-feldspar. The diffraction peaks of the S4 samples at 26◦ and 33◦ are
significantly enhanced, representing the amorphous C-S-H characteristic signals. These
peaks indicate the hydration reaction of BFS in an alkaline environment, where silicate
(SiO4

4−) and calcium ions (Ca2+) form an amorphous gel-like structure. This reaction
is further supported by weak peaks corresponding to C-A-H (ettringite), highlighting
the presence of secondary hydration products. The peak strength of the S4 sample was
significantly enhanced at these locations compared to the S1 sample, further demonstrating
an increase in hydration products. The results showed that the hydration reaction produced
remarkable C-S-H products during the modification of BFS. The results were further verified
by SEM images. The particles of S4 are flocculent and gel-like, demonstrating a typical C-S-
H structure, filling the soil pores and forming a bridge between the particles. In contrast, no
similar structure (S1) was observed in the unmodified samples, further demonstrating the
important role of the modifier. Combined with SEM and PXRD, it can be confirmed that
C-S-H and C-A-H hydration products are significantly generated after BFS modification.
The flocculation and gelling properties of C-S-H significantly improved the strength and
stability of the soil by filling the pores and strengthening the particle connection, while the
protonation of lignin enhanced the electrostatic adsorption effect between the particles and
further optimized the microscopic skeleton structure of the soil. After curing for 28 d, the
diffraction peak of the hydrated products increased slightly, indicating that more C-S-H,
C-A-H, and other crystal structures were produced with the extension of curing time,
further indicating that the existence and content of hydrated calcium silicate changed with
the change of the curing process.
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3.6. Modification Mechanism

According to the results of the SEM test and XRD, the mechanism of lignin-BFS-
modified silty clay mainly includes a protonation reaction, a hydration reaction, and an ion
reaction. Under the action of electrostatic attraction, the positively charged lignin polymer
attracts the negatively charged clay minerals to form covalent bonds and finally forms
cementation at the contact point, which plays a role in strengthening the soil. The hydration
of dicalcium silicate (C2S), tricalcium silicate (C3S), and tricalcium aluminate (C3A) in
BFS produces C-S-H and C-A-H, which play critical roles in enhancing soil strength. The
XRD results (Figure 21) confirm the formation of C-S-H through the enhanced diffraction
peaks at 26◦ and 33◦. These products fill soil pores and create a three-dimensional network
structure that binds soil particles together. SEM images (Figure 15) further show gel-like
and flocculent structures, which are typical morphologies of C-S-H, improving the soil’s
mechanical properties.

As seen in Figure 22, FTIR technology can detect the vibration absorption of molecules
to analyze the changes of chemical bonds and functional groups, which is of great signifi-
cance to study the mechanism of lignin-BFS-modified silty clay. The absorption peak of
lignin functional groups changed before and after modification. Before modification, the
stretching vibration peak of the lignin alcohol hydroxyl group (-OH) was around 3374 cm−1.
After modification, if the functional groups involved in the reaction, such as hydroxyl, to
form hydrogen bonds, the relevant peak position, strength, benzene ring C=C bond, alkane
(C-H (CH2)), primary alcohol (R1-CH2-OH) and secondary alcohol (R1-CH(R2)-OH), and
other functional group peaks will also change accordingly. The interaction with BFS and
clay was reflected. BFS hydration products have characteristic peaks in FTIR, which can be
used to determine the degree of hydration reaction and the products and to understand its
role in strengthening soil strength. FTIR is combined with XRD and SEM. XRD provides
crystal structure information, FTIR supplements chemical bond analysis and explains the
reasons for structural changes, and SEM displays the microscopic morphology to jointly
build a complete understanding of the modification mechanism.
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(1) protonation
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The chemical reaction equation is as follows:  

(1) protonation 

 
(2) hydration reaction 
2(3CaO·SiO2) + 6H2O → 3(CaO·SiO2·3H2O) + 3Ca(OH)2 
3(CaO·SiO2) + 4 H2O → 3(CaO·2SiO2·3H2O) + Ca(OH)2 
3CaO·Al2O3 + 6 H2O → 3 CaO·Al2O3·6 H2O 
(3) ionic reaction 
Si2− + Ca2+ + 2OH− + H2O → CaO·SiO2·H2O(C-S-H) 

(2) hydration reaction
2(3CaO·SiO2) + 6H2O → 3(CaO·SiO2·3H2O) + 3Ca(OH)2

3(CaO·SiO2) + 4 H2O → 3(CaO·2SiO2·3H2O) + Ca(OH)2

3CaO·Al2O3 + 6 H2O → 3 CaO·Al2O3·6 H2O
(3) ionic reaction
Si2− + Ca2+ + 2OH− + H2O → CaO·SiO2·H2O(C-S-H)

4. Conclusions
In this paper, the mechanics, road performance, and freeze-thaw properties of lignin-

BFS-modified silty clay were studied, and the optimal dosage of lignin and BFS was
determined. The modification mechanism was analyzed using SEM and XRD tests. The
main conclusions are as follows:

(1) The mechanical properties of modified soil significantly improved. The CBR and
rebound modulus of the modified soil meet the standard requirements of the roadbed
and pavement. As the curing age increases, the UCS of modified soil gradually
increases, the failure strain gradually decreases, and the stress-strain curve transitions
from strain-softening to strain-hardening. The UCS, CBR, and rebound modulus all
show a trend of first increasing and then stabilizing with the decrease in lignin content
and the increase in BFS content.

(2) As the number of freeze-thaw cycles increases, the number of fine micro-cracks and
large pores in the soil increases, the density between soil particles decreases, and the
phenomenon of soil particle detachment appears on the surface, the mass loss rate and
volume expansion rate of soil samples gradually increases and the strength decreases.
The addition of lignin and BFS can effectively limit the generation of large pores and
the expansion of cracks, resist mass loss and volume increase caused by freeze-thaw
cycles, effectively alleviate the damage of freeze-thaw cycles to soil strength, and
improve soil strength.

(3) Based on indoor experiments and linear regression analysis, there is an optimal ratio
between lignin and BFS. When the ratio of the two is 4%: 8%, the growth rate of UCS,
the CBR value, and the rebound modulus of modified soil are the highest, and the
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volume and mass changes and compressive strength loss under freeze-thaw cycles
are the smallest. The soil improvement effect is the most significant.

(4) According to the SEM test results and XRD analysis, the addition of lignin and BFS in
the silty clay mainly produces a protonation reaction, a hydration reaction, and an
ion reaction. The generated products and structures work together to improve the
strength of the soil skeleton, reduce porosity, and enhance the bonding and cohesion
between particles.
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