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Abstract: Site selection is the key to carrying out the industrial layout of construction
and demolition waste (CDW) resourcing enterprises. The current study needs more data
on CDW industry location. The current construction waste resource utilization rate and
industrial layout need to be improved. This study uses statistical and visualization methods
to analyze key factors affecting the location of CDW recycling enterprises. Additionally, it
identifies planning strategies and policy incentives to drive industry development. The
study explicitly adopts global and weighted geographic regression (GWR) analysis meth-
ods and uses ArcGIS 10.8 to visualize point of interest (POI) data. It was found that (1) the
main factors affecting the spatial distribution of the CDW recycling economy, in order of
importance, are river network density, financial subsidies, R&D incentives, the number of
building material markets, the value added by the secondary industry, the area of industrial
land, and the density of the road network. The three main drivers of site selection decisions
are government subsidies, market size, land, and transportation resources. (2) Enterprise
industry chain and transportation costs are industrial economic decision-making consider-
ations. Enterprises are generally located on flat terrain, around industrial parks, near the
center of urban areas, and close to demand and cost reduction. (3) At the city level, there
are more resource-based enterprises in cities with high levels of economic development
and strong policy support. The spatial distribution of enterprises is consistent with the
direction of urban geographic development. There is a positive global correlation between
construction waste resourcing enterprises. Ningbo, western Qingdao, and northern Bei-
jing show high aggregation characteristics. Low–low aggregation characteristics exist in
regions other than central Chongqing. High–low aggregation characteristics are found in
the center of the main city of Chongqing, eastern Shanghai, and central Nanjing. Low–high
aggregation is distributed in northeastern Ningbo, northern Guangzhou, and southern
Shenzhen. (4) Regarding industrial agglomeration, except for Nanjing, construction waste
industrial agglomeration occurs in all 11 pilot cities. Among them, Shanghai, Xiamen,
and Hangzhou have industries that are distributed evenly. Xi’an and Chongqing have a
centralized distribution of industries. Guangzhou, Shenzhen, Beijing, Ningbo, and Qingdao
have multi-center clustering of industries. Nanning’s industry has a belt-shaped distribu-
tion. This research explores the micro elements of industry chain integration in the CDW
industry. It combines incentive policies and urban planning at the macro level. Together,
these efforts promote sustainable city construction. This research provides CDW location
data and dates for future digital twin and city model algorithms. It supports industrial
planning, transportation, spatial optimization, carbon emission analysis, city operations,
and management and aims to enhance the city’s green and low-carbon operations.
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1. Introduction
The construction industry is important in the economies of various countries. In

China’s rapid urbanization process, economic activities such as renovating old cities,
constructing new houses and infrastructure, and demolishing old buildings generate large
quantities of construction waste. China is the world’s most populous country and the
largest producer of solid waste. Approximately 10 billion tons of new solid waste are
generated annually, with historical stockpiles reaching 60–70 billion tons. The intensity of
solid waste generation is high, its utilization is inadequate, and the problem of “garbage
surrounding the city” is very prominent in some cities. This poses a significant challenge to
environmental carrying capacity and resource availability. Depending on its nature, 50% to
90% of construction waste can be recycled [1]. However, the current resource utilization
rate of construction waste in China is only 40%, which is far below the level of developed
countries. The current disposal methods must be updated, mainly relying on landfills and
piles. The management system still needs to meet the needs of sustainable development.
This is a waste of resources and puts pressure on the environment.

Research on construction waste contributes to clean production and low-carbon in-
dustries. It also enhances urban competitiveness through environmental protection. Con-
struction waste management research is divided into two primary directions: technology-
oriented and macro-management. Technology-oriented research focuses on recycled ag-
gregate technology [2], resource utilization process upgrading [3], screening and disposal
of virgin waste [4], and other specific technical means. On the other hand, the study of
macro-management focuses on analyzing the obstacles to the implementation of resource
utilization [5], waste minimization measures [6,7], production forecasts [8,9], material flow
analysis [8,10], and performance evaluation [11] among others. The methods involved
include qualitative analysis [5,12], system dynamics [13], triangular fuzzy number [3],
BIM [7,14], and Life Cycle Assessment [11].

The siting process is the center of research in the spatial planning of construction waste
treatment facilities. Currently, most studies focus on mathematical planning models [15],
multi-criteria decision-making models [16], and models based on GIS spatial analysis
techniques [17,18]. However, the limitations of a single method have gradually emerged,
and it is easy to produce significant errors in the site selection problem. In recent studies,
scholars have added weighting analysis [19] and deep learning [15] theoretical methods
to optimize and improve the site selection model. A few studies also focus on improving
established siting models [20]. By establishing the optimization objective, quantitative
influencing factors and evaluation indexes are established to find the optimal solution.

As an essential carrier of resource utilization of construction waste, the research value
of the resource regeneration industry cluster is becoming increasingly prominent. The
research on resource regeneration industrial clusters is mainly divided into two categories.
The first category focuses on the analysis of the internal network structure of the cluster [21].
This type of research focuses on the interactions and complex network of relationships
among the elements within the cluster. The aim is to reveal the development direction
and optimization goals of clusters. The methods involved are mainly quantitative analysis,
which is realized by constructing economic or structural equation models. The second
category focuses on the connection between clusters and the external environment. It
analyzes the influence of the external environment on industrial clusters [22] and the role
of cluster development in promoting the regional economy [23]. The benefits generated by
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clusters are assessed by reflecting on clusters’ formation mechanisms and processes and
establishing the importance of various elements.

This research centers on three core issues: the driving factors of the construction and
demolition waste (CDW) industry, the integration of the industrial chain, and the facilitating
role of urban planning. First, this study analyzes the spatial distribution characteristics of
CDW resourcing enterprises in depth. This study analyzes the spatial layout characteristics
of the construction waste circular economy. For the development prospects of the industry,
this paper will analyze the corresponding industry-driving factors and the corresponding
incentive policies. Through industry chain analysis, this paper identifies the construction
waste resourcing industry clusters and reveals their formation mechanism. Further, this
research explores how to promote the formation of a green, low-carbon, energy-saving, and
environmentally friendly industrial chain and constructs an indicator system of influencing
factors. It applies global regression and weighted geographic regression models to find
the key factors affecting enterprises’ spatial distribution and heterogeneity. Finally, this
paper profoundly analyzes the relationship between the construction waste industry’s
aggregation mode and urban spatial distribution characteristics. Site selection is the key to
carrying out the industrial layout of construction and demolition waste (CDW) resourcing
enterprises. The current study needs more statistics on CDW industry location data. This
research provides location data of 12 pilot cities in China. By exploring the micro level of
industry chain integration elements of the CDW industry, combined with the two macro
levels of incentive policies and urban planning, the research jointly promotes the sustainable
construction of cities.

2. Literature Review
Research on construction waste (CDW) resource utilization has progressed in several

fields. However, existing studies have focused on generated construction waste, which lacks
industrial attention and multi-city empirical analysis of solid construction waste treatment.
Wang et al. used methods such as standard deviation ellipse modeling and environmental
Kuznets curves to analyze the spatial and temporal evolutionary characteristics of the
amount of construction waste generated in 30 provinces and regions from 2007 to 2018 and
explore the relationship between economic growth and its heterogeneity [24]. Wang et al.
investigated the spatial heterogeneity of CDW generation in different provinces affected by
a variety of factors through the GWR model [25]. These studies provide valuable inspiration
for explaining the CDW generation process. Using spatial analysis, Gao et al. used Beijing as
a case study to investigate construction waste’s spatial layout agglomeration characteristics
and recycling facilities [26]. Wang et al. investigated the Yangtze River Delta region. They
used the Spatial Durbin Model (SDM) to explore the development of the construction waste
disposal industry in several cities and its spatial distribution characteristics and identified
relevant influencing factors [14].

The current study focuses on a single city and region and the application of construc-
tion waste generation. It lacks statistical analysis, comparative studies, an experience
summary of multiple pilot cities across the country, and a cross-sectional comparison of the
resource utilization of the industry. The spatial layout of the construction waste industry
and the resource utilization pattern are still unclear, hindering the industry’s theoretical
guidance. The current digital analysis and decision making of CDW have yet to be studied.
This study has promoted the application of City Information Modeling, GIS spatial analy-
sis, policy incentives, industrial planning, transportation economics, spatial optimization
decision-making, and green and low-carbon city operations.
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2.1. Construction Waste Disposal

Existing studies have analyzed the reasons for the low utilization rate of construction
waste resource utilization in China from different perspectives, including the low utilization
rate of recycled aggregate technology [27], poor economic efficiency [28], and imperfect
policies and regulations [12]. Moreover, there needs to be better recognition of the consumer
market [29], low efficiency of waste management systems [12], and single waste disposal
facilities [30]. Among them, as an essential node of waste management, the planning layout
of CDW directly affects the efficiency of urban construction waste resource management.
Unreasonable layout leads to environmental pollution and rising transportation costs [31].
Moreover, it affects the motivation of enterprises to operate. Local governments in China
have introduced a series of policies, regulations, and technical standards to promote the
classification, recycling, and resource utilization of construction waste. Despite initial
attempts in some cities, the CDW industry as a whole is still in the primary stage [32].
Resourceful disposal facilities in some cities cannot meet local demand and need careful
consideration in site selection. Therefore, the construction and spatial layout of CDW
facilities need to be further optimized.

Construction waste management is integral to the construction production process [33].
It focuses on the reduction in waste generation and the promotion of resource reuse. The
sustainable management of construction waste has become a pressing issue globally, in-
volving social, environmental, and economic aspects. Significant reductions in construction
waste generation are possible through careful management of the entire process from
project design to demolition. An efficient strategy is reducing the waste expected during
the design phase [34]. This approach is effective in alleviating the pressure of subsequent
waste management. However, most of the facilities that need to be dismantled are currently
not considered to be in the design stage, favoring the two main areas of post-operational
landfill and recycling.

Landfilling is still the primary way of disposing of construction waste in many parts
of the world. Backfilling is a method of using construction waste as fill material. Although
it can partially realize the reuse of waste, the scope of application and economic benefits
are limited. Most construction waste is transported to the suburbs without treatment and
deposited in open piles or landfills. Landfilling consumes many land resources, leading to
high land acquisition and transportation costs. Meanwhile, the dust and other pollutants
generated during landfilling seriously pollute the surrounding environment. The reality is
that illegal dumping is still a severe problem, especially in developing countries [35]. In
conclusion, landfills consume many land resources and may bring long-term environmental
pollution problems.

Another disposal method is recycling. Recycling involves sorting, crushing, screening,
and converting construction waste into building materials such as recycled aggregates and
concrete [36]. These recycled materials are widely used in constructing new buildings and
repairing and remodeling old buildings. Through systematic classification, treatment, and
reuse, construction waste management is optimized, significantly reducing dependence
on new resources and effectively reducing environmental pollution [37,38]. The contra-
diction between high production and inefficient construction waste disposal is becoming
increasingly significant globally.

2.2. Drivers of the Construction Waste Industry

Multiple factors, including technological innovation, talent education, market de-
mand, and policy support, drive the development of frontier industries. Scholars have
conducted in-depth studies of different industries. Fox and Skitmore [39] identified the
critical elements for developing the global construction industry through rooted theory,
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including industry practices, financial resources, personnel skills, government policies,
construction technology research and development, and construction culture. Based on
the PPM theory, Dou et al. combined the entropy method and clustering model to analyze
the driving factors of the manufacturing industry in the Guangdong–Hong Kong–Macao
Greater Bay Area. They found that manufacturing technology development has the spatial
distribution characteristics of radiation from the core area. Economic development depends
on existing industrial systems, while government policies significantly affect environmental
development [40].

In the current research on quantitative factors, it is common for scholars to use a variety
of methods, such as semi-structured interviews [5,41], unstructured interviews [42], and
fieldwork [5]. These methods effectively collect rich data and deepen the understanding of
industry drivers. However, a neglected perspective is the analysis of the industry’s spatial
layout. The research output must include the degree of agglomeration and distributional
characteristics of industrial activities in geospatial econometrics, limiting the understanding
of industry development drivers from a macro and holistic perspective. Focusing on the
construction and demolition waste management sector, this research takes 12 pilot cities in
the industry as case studies. It analyzes in detail the spatial distribution characteristics of
the resourcing firms in each city. The paper also explores the key factors affecting these
enterprises’ industrial agglomeration and location, intending to provide a scientific basis
for the spatial optimization of the industry and to formulate further strategies.

3. Data and Methodology
This section may be divided into subheadings. It should provide a concise and

precise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.1. Methodology

This study used GIS and two regression models as the primary analysis tools to
analyze the spatial distribution characteristics of construction waste resource enterprises
in depth.

GIS is the core analysis tool of the study, which plays a decisive role in spatial data
processing and visualization. GIS can efficiently integrate geospatial data from multiple
sources, including the enterprise location, transportation network, and environmental
factors, providing a solid foundation for studying the spatial distribution of construction
waste resource enterprises. Through the spatial analysis function of GIS, this study can
reveal the spatial patterns and agglomeration characteristics of enterprise distribution
and its relationship with environmental factors, thereby providing a scientific basis for
enterprise site selection and industrial layout.

In order to quantify the key factors affecting the spatial distribution of construction
waste resource enterprises, this study further used two regression models for analysis. The
regression model is a predictive modeling method that can study the relationship between
dependent variables (such as the number of enterprises) and independent variables (such
as policy, economics, and transportation). By constructing multiple regression models
and weighted geographic regression (GWR) models, this study can identify variables that
significantly impact the spatial distribution of enterprises and evaluate their impact. The
choice of this method helps us to deeply understand the driving mechanism of the spatial
distribution of construction waste resource enterprises. It provides data support for policy
formulation and industrial planning.
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3.1.1. Spatial Pattern of Construction Waste Resource Treatment Enterprises

Point of interest (POI) is a type of spatial geographic information that describes geo-
graphic entities and their spatial attributes. It is widely used in research in several fields,
including planning urban infrastructure, analyzing commercial spatial layout, and explor-
ing residential distribution patterns [40]. In addition, with the mathematical computing
capabilities of Geographic Information Systems (GIS), researchers can deeply analyze
the patterns and regularities latent in geospatial data. This process helps researchers un-
derstand the city’s spatial structure and make more scientific and rational planning and
decision making [41].

The standard partial ellipse (SDE) method explores the spatial patterns of CDW
enterprises, revealing distribution characteristics such as dispersion, concentration, and
development trends [42]. The SDE provides a valuable tool for analyzing the path of spatial
economic activities.

The average nearest neighbor analysis measures the proximity of CDW enterprises
and reflects spatial agglomeration. The kernel density estimation method analyzes spatial
aggregation and visualizes element concentration through continuous spatial change maps.
The kernel density estimation method reflects the aggregation characteristics of elements
and reveals the law of distance decay, an essential tool for analyzing the spatial distribution
pattern [40].

Spatial autocorrelation analysis measures the degree of interdependence in the spatial
distribution of CDW. This dependence is often also called spatial dependence. Multi-
distance spatial cluster analysis (Ripley’s K-function) was used to identify patterns of
industry clusters across cities [43]. If the observed K is greater than the expected K for a
given distance, the spatial distribution of these objects is more clustered. If the observed K
is less than the expected K, the spatial distribution of these objects is more discrete than the
random distribution at that distance. If the observed K is greater than the HiConf value, the
spatial clustering at this distance is statistically significant. If the K observation is less than
the lower confidence interval (Low Conf) value, the spatial dispersion for that distance is
statistically significant.

3.1.2. Correlation Analysis, Multiple Linear Regression Analysis

Pearson’s correlation coefficient is used to characterize the degree of linear relationship
between two variables, as seen in Formula (1) [43]:

r =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(1)

where r is the correlation coefficient; x and y are the mean values of the variables x and y,
respectively; and xi and yi are the ith observation of variables x and y, respectively. The
larger the absolute value of r, the stronger the correlation between variables x and y. The
sign r indicates the direction of the correlation.

Regression analysis is a predictive modeling method that uses available observations
to study the relationship between dependent and independent variables. The method is
commonly used to forecast and analyze time series models and find causal relationships
between two or more variables.

3.1.3. Weighted Geographic Regression Models

Weighted geographic regression (GWR) modeling is a special local linear regression
technique for constructing models based on spatially varying relationships. The GWR
methodology constructs a separate model for each geographic area under study. Each
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model describes relationships within a localized region and accurately resolves variables’
local spatial associations and heterogeneity. By incorporating the spatial structure into
the traditional linear regression framework, the GWR model effectively identifies and
characterizes the non-stationary nature of spatial relationships.

3.2. Study Area and Data

The POI data obtained in this paper includes enterprise name, category, address,
and coordinate information. Beijing, Guangzhou, Hangzhou, Nanjing, Nanning, Ningbo,
Qingdao, Xiamen, Shanghai, Shenzhen, Xi’an, Chongqing, and 12 other pilot cities of
national CDW resourcing enterprises were selected as the study area. The data for the
study were obtained from regional statistical yearbooks, regional and national economic
and social development bulletins, and corresponding policy documents on the official
websites of local governments.

3.3. Selection of Indicators for Influencing Factors on the Spatial Distribution of CDW
Resourcing Enterprises

Based on the relevant theories and the availability and quality of variable data, the
dependent variable in this study is the number of CDW resourcing enterprises in the
administrative areas of 12 cities. Table 1 lists the 12 independent variables for the study of
factors affecting spatial distribution.

Table 1. The influences on the spatial distribution of CDW resourcing enterprises.

Variant Significance of Variables and Reasons for Their Selection Quote

Policy factors
Site support X1

The land is the primary requirement for business creation. Land-use
planning and policy incentives can simplify enterprises’ entry and approval
processes and promote industrial agglomeration.

[44]

R&D incentive X2
The R&D incentive policy encourages enterprises to cooperate with scientific
research institutions and universities, promotes technology transfer, reduces
R&D costs, and accelerates industrial technology upgrading.

[45]

Financial subsidy X3
Financial subsidies are important in the early stages of industrial
development. They directly reduce enterprises’ operating costs and help
them sustain development in the initial high-investment stage.

[46]

Economic
factor

Land price X4 High land prices increase the cost of construction and operation, which is
detrimental to CDW companies with large land areas. [5]

Building
construction area X5

Expansion of the construction area has led to an increase in construction
waste. CDW companies depend on adequate waste sources, so the demand
is higher in large construction areas.

[9]

Value added by the
secondary

industry X6

The clustering of secondary industries brings about economic economies of
scale, reducing costs, increasing efficiency and resource utilization, and
attracting firms to relocate to developed regions for access to convenient
services and opportunities for cooperation.

[47,48]

Transportation
factor

Railroad density X7
Fixed and high-capacity railroad lines are suitable for rapidly transporting
large quantities of goods over long distances, facilitating the sale of
recycled products.

[49]

Road network
density X8

The dense road network area facilitates the road transportation of raw
materials and reduces the production costs of enterprises. [49]

Social factor

Industrial land
area X9

Adequate land ensures that companies can handle large quantities of
construction waste, raising the upper limit of scale and room for growth. [50]

Population
density X10

The CDW resource enterprise is a neighborhood facility based on a site to
avoid high-density areas and reduce negative impacts on the surrounding
environment.

[47,51]

Number of building
material markets X11

The building material market is both CDW resourcefulness enterprises’ sales
market and raw material supply source, and the two sides form a close
cooperation model.

[52]

Environmental
factor

River network
density X12

CDW resourcing enterprises must avoid rivers and lakes to prevent
hazardous substances from polluting the ecosystem. Long-term stockpiling
can cause environmental damage.

[53]
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3.4. Correlation Analysis of Influencing Factors

Table 2 shows the results of the correlation analysis. The correlation coefficients
between the respective variables remain below 0.7. This indicates that they have not
reached a strong correlation with each other, and it is initially judged that there is no
autocorrelation problem, which aligns with the basic premise of the regression analysis.
It was further observed that the p-values of the correlation coefficients between all the
independent variables and the dependent variable, except for the independent variable X5
(i.e., the area of residential building construction), were significantly less than 0.05. This
implies that, except for X5, all the independent variables were statistically significantly
correlated with the dependent variable. Based on the above analysis, it was decided to
exclude X5 from the subsequent multiple linear regression analysis to ensure the accuracy
and validity of the model.

Table 2. Results of correlation analysis.

Variant Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Y 1
X1 0.191 * 1
X2 0.331 ** 0.532 ** 1
X3 0.346 ** −0.011 0.257 ** 1
X4 −0.167 * −0.224 ** −0.134 0.245 ** 1
X5 0.018 −0.039 0.011 0.181 * 0.219 ** 1
X6 0.500 ** 0.039 0.172* 0.240 ** −0.078 0.234 ** 1
X7 −0.242 ** −0.011 −0.135 0.057 0.453 ** 0.125 −0.170 * 1
X8 0.392 ** 0.101 0.149 0.098 −0.102 0.163 * 0.460 ** −0.250 ** 1
X9 0.471 ** 0.073 0.140 0.209 ** −0.167 * 0.118 0.587 ** −0.198 * 0.466 ** 1
X10 −0.250 ** 0.023 −0.103 0.203 ** 0.579 ** 0.274 ** −0.068 0.712 ** −0.192 * −0.246 ** 1
X11 0.507 ** 0.087 0.124 0.317 ** −0.095 0.248 ** 0.505 ** −0.162 * 0.383 ** 0.466 ** −0.126 1
X12 −0.228 ** 0.095 0.160* 0.279 ** 0.385 ** 0.215 ** −0.056 0.555 ** 0.014 −0.008 0.629 ** −0.084 1

* p < 0.05, ** p < 0.01.

3.5. Regression Analysis of Impact Factors

The data in Table 3 shows the results of the multiple regression. The adjusted R2 value
is 0.495, showing that the model fit is good. The Durbin–Watson value is 2.030, close to the
ideal value of 2, indicating that the independent variables are independent and have no
autocorrelation problem. The result shows that the p-value is equal to 0.000, which is much
less than the significance level of 0.05, indicating a significant linear relationship between the
eleven independent variables studied and the number of CDW resourcing firms. The result
shows that the regression analysis results for further analysis are considered reasonable.
In the covariance test, the VIF values of all variables are less than 5, indicating that the
covariance problem between variables is not significant. Seven variables (X2, X3, X6, X8, X9,
X11, and X12) reached 0.05 at the specific significance level. Among them, the regression
coefficient of X12 was negative, implying that the river network density negatively affects
the number of enterprises. The regression coefficients of the other six variables (X2, X3,
X6, X8, X9, X11) are positive, indicating that they positively contribute to the number of
enterprises. Excluding X1, X4, X7, and X10, which did not pass the significance test, the
equation of this regression analysis is as follows:

Y = 0.263X2 + 0.200X3 + 0.154X6 + 0.148X8 + 0.153X9 + 0.170X11 − 0.355X12 (2)

Here, Xi is the value of the Xi, which is the normalized result.
Based on the absolute values of the regression coefficients of the variables, it is possible

to assess the degree of influence of the independent variables on the number of CDW
resourcing firms in descending order:
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River network density > R&D incentives > financial subsidies > number of building
material markets > value added by the secondary industry > industrial land area > road
network density.

Table 3. Multiple regression model results.

Mold R R² Adjustment
of R²

Standard Error of
Estimate

Durbin
Watson

1 0.727 a 0.529 0.495 2.775 2.030
a Predictor variables: (constants), X1, X2, X3, X4, X6, X7, X8, X9, X10, X11, X12; Dependent variable: Y.

3.6. Weighted Geographic Regression Analysis

The results in Table 4 show that Sigma = 0.774, indicating the model’s high prediction
accuracy. Meanwhile, the adjusted R2 value is 0.498, showing that the model’s fit is slightly
higher than that of the global regression model. Based on the above analysis, the study
confirms that the constructed GWR model is valid.

Table 4. GWR model fit metrics.

Neighbors Residual
Squares

Effective
Number Sigma AICc R2 Adjusted

R2

125.000 65.588 21.451 0.774 326.520 0.565 0.498

In comparing the results, the sign of the coefficients of X2, X3, X6, X8, and X12 is
consistent with the global regression model. This implies that financial subsidies, R&D
incentives, value added by the secondary industry, and road network density have signifi-
cant positive driving effects on the number of firms in all sample points. Conversely, river
density significantly negatively affects the number of firms at all sample points. The sign of
the coefficients of X9 (industrial land area) and X11 (number of building material markets)
is inconsistent with the global regression model at some sample points, showing a negative
sign. The results reveal that the increase in the industrial land area and the number of
building material markets reduces the number of CDW resourcing firms at some specific
sample points. Nevertheless, the absolute values of the negative coefficients of X9 and X11
are relatively small, suggesting that the extent of this adverse effect is relatively limited.

4. Spatial Distribution of Construction Waste Resource Treatment Enterprises
4.1. Spatial Distribution Analysis

The results in Table A1 show the market situation in each city where CDW resource-
fulness companies are located.

Table A1 shows that the number of CDW resourcing enterprises varies significantly by
city. Beijing has the most resourcing enterprises at the top of the list. Xiamen, in contrast,
has the fewest. On average, each city has about 45 CDW resourcing enterprises. It is
worth noting that cities with high economic development, prosperous secondary industries,
extensive housing construction areas, and strong policy support generally have more CDW
resourcing enterprises.

4.2. Average Nearest Neighbor Analysis

Table A2 lists the nearest neighbor index (ANN) for each city. Nanjing, Xiamen, and
Shanghai all have ANNs greater than 1, and the absolute value of the z-score is less than
1.96. This suggests that the spatial distributions of CDW resourcing firms do not differ
significantly from the stochastic model, and there is no significant spatial agglomeration.
Shanghai has the largest ANN among the three cities, indicating that it has the highest
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degree of discrete resource-based enterprises. Guangzhou and Hangzhou have ANNs of
less than 1. However, the absolute value of the z-scores is at most 1.96, indicating that
the probability of randomly generating this clustering pattern is high and not statistically
significant. The remaining seven cities have ANNs of less than 1, indicating significant
spatial aggregation of resourcing firms in these cities. The degree of clustering, in descend-
ing order, is Nanning, Shenzhen, Qingdao, Xi’an, Chongqing, Ningbo, and Beijing. In
particular, Chongqing’s average nearest neighbor observation distance is 17,363.0828 m,
the most significant among these cities.

4.3. Kernel Density Analysis

Figure 1 demonstrates the different characteristics and patterns of spatial distribution
of CDW resourcing enterprises in the pilot cities. Guangzhou, Chongqing, Nanning, Xi’an,
Ningbo, Beijing, Shenzhen, and Qingdao show apparent clustering phenomena.
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4.4. Standard Deviation Elliptic Analysis

The results in Table A3 illustrate the significant differences in azimuth between cities.
However, the distribution of firms in each city largely caoincides with the city’s geo-
graphical development direction. At the same time, each city’s standard deviation elliptic
oblateness also shows significant differences, reflecting the diversity of the strength of
the directionality of enterprise distribution. The standard deviation elliptic flatness of
Guangzhou, Nanning, and Shanghai is less than 0.2, which indicates that the spatial distri-
bution of enterprises in these cities is weak. The standard deviation elliptic oblateness of
the remaining nine cities is more than 0.2, showing obvious spatial distribution direction-
ality. Among these cities, Hangzhou has the most significant directionality in the spatial
distribution of enterprises.
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4.5. Spatial Autocorrelation Analysis

Global spatial autocorrelation is used to assess the overall degree of spatial correlation
and difference between regions. This property is usually measured by Moran’s I index.
According to Figure 2, the value of Moran’s I is 0.136281. Meanwhile, the z-score is 3.008854,
and the p-value is 0.002622. These values indicate that the CDW resourcing firms exhibit
an aggregated distribution at the 99% confidence level. Further, this clustered distribution
shows positive spatial autocorrelation.
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Local spatial autocorrelation helped identify spatially clustered regions of various
types and locations. The phenomena of high–high clustering and low–low clustering reveal
the presence of high spatial positive correlation (as seen in Table 5). This means that the
sample points exhibit clustering and similarity within these regions. On the other hand,
high–low clustering and low–high clustering reflect strong negative spatial correlation. In
these regions, the sample points show heterogeneity.

Table 5. Local spatial autocorrelation analysis results.

Statistic High–High
Clustering

Low–Low
Clustering

High–Low
Clustering

Low–High
Clustering Insignificant

Amount 10 17 5 4 130
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The high–high clustering phenomenon is particularly significant in Ningbo, western
Qingdao, and northern Beijing. Although Ningbo and Qingdao are not national leaders in
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the construction industry, both have implemented strong policies to promote construction
waste resourcing. These policies have effectively incentivized local firms and rapidly
prompted many resource-based companies to set up factories in each administrative district.
Beijing has a long history of developing its construction waste recycling industry, which has
entered a market-oriented stage. Given its well-developed construction industry and high
level of urbanization, the northern part of Beijing is characterized by high–high clustering.

Low–low clustering is widespread in the central metropolitan area of Chongqing,
mainly concentrated outside the central region. Chongqing is a vast area with many
districts and counties, and the development of the construction industry is relatively
balanced outside the central urban area. At the same time, the road networks in these areas
are relatively sparse, which affects the distribution of CDW resourcing enterprises. Relevant
enterprises occupy many administrative districts, but the number is limited, showing a
low–low clustering characteristic.

The high–low clustering phenomenon is particularly evident in the center of
Chongqing’s main metropolitan area, eastern Shanghai, and central Nanjing. Shanghai’s
construction waste resourcing industry still relies on government support, with the Pudong,
Minhang, and Baoshan districts becoming the main clusters of resourcing companies under
government planning. In contrast, the number of enterprises in other regions of Shanghai
is small. The central part of Nanjing stands out for its industrial agglomeration, with its
well-developed secondary industry, well-developed road network, and high-level economy
attracting many chemical resource enterprises, the number of which far exceeds that of the
surrounding regions.

The low–high clustering phenomenon is mainly distributed in northeastern Ningbo,
northern Guangzhou, and southern Shenzhen. Northeastern Ningbo is the city center
area, which is limited in size and economically prosperous, and it is not cost-effective for
resource-based enterprises to locate there. On the contrary, the low–high clustering areas
in Guangzhou and Shenzhen are located far away from the city center, in areas with high
topographic relief and less developed transportation.

4.6. Analysis of the Rootedness of Industrial Clusters

K-function plots were constructed for the 12 cities, each with 99% confidence intervals,
and the results are shown in Figure 3. Each city’s construction waste resource utilization
industry was analyzed in depth by comparing the observed K values with the expected
K values. On this basis, the spatial scales of the 12 cities under the clustering model were
determined. The summary results of all relevant data have been organized in Table A4.
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The results in Table A4 show that, except for Nanjing, the remaining 11 cities exhibit
the phenomenon of clustering in the construction waste resource utilization industry. In
terms of the spatial scale of agglomeration, Chongqing has the widest scope, and the data
indicate that the spatial scale of agglomeration of its construction waste resource chemical
enterprises reaches 84,803 m, showing its broad geographical radiation power. Xiamen is
the most compact, with its agglomeration scales concentrating between 1452 and 3733 m and
6114 and 7588 m, indicating that Xiamen’s resource-based enterprises are densely clustered
in a relatively small area. Due to its vast territory, Chongqing has strong radiation power for
resourcing enterprises. Supporting enterprises such as construction units and wholesalers
of recycled products are also clustered widely. Nanjing does not have significant cluster
characteristics related to the even distribution of its resourcing firms. Only a few financial
institutions are clustered there, and the number of resourcing enterprises needs to be
increased, limiting synergistic development. The size of the spatial scale of clusters reflects
the scale of industrial cluster areas, and industrial clusters are present in the whole area of
Nanning and Ningbo. The GDP share of machinery and equipment manufacturing in these
two cities is high. The two industries serve as pillars, providing a favorable development
environment for resource-based industries and promoting the rise in enterprises and
the division of specialties. Beijing, Xi’an, Hangzhou, and Qingdao have similar spatial
clustering scales, while Guangzhou and Shenzhen are slightly behind.

5. Discussion
5.1. Policy Drivers for CDW Industry Development

With the increased emphasis on low-carbon sustainable construction in China, several
cities are actively seeking innovative directions for treating the solid waste from construc-
tion. Policies have become the key driving force that promotes solid construction waste
reduction, resourcefulness, and harmless treatment. As a pioneer in solid waste treatment,
Beijing has shown foresight and in-depth practice in construction waste management. In
2020, we saw the introduction of the Beijing Construction Waste Disposal Management
Regulations. The policy was further upgraded to clarify the principles of minimization,
resource utilization, and harmlessness. The regulations have built a management system that
is government-led, socially participatory, categorized for disposal, and supervised throughout
the entire process, providing detailed guidance for construction waste management.

Guangzhou City has implemented a strategy combining policy guidance and mar-
ket incentives in solid waste disposal, especially in managing construction waste. The
government reduces the operating costs of recycling enterprises through tax incentives,
such as value-added tax and income tax exemptions. These preferential policies enhance
economic efficiency and the return on investment of recycling enterprises and motivate
them to participate in waste recycling. The results of these policies are remarkable, and the
total amount of recycling has increased significantly as a result. VAT and CIT incentives
have become significant drivers of the industry’s growth.

Shenzhen is one of the few cities in China that publicizes construction waste data.
In 2020, the Measures for the Administration of Construction Waste in Shenzhen were
comprehensively upgraded to specify the requirements for the whole management chain,
covering various aspects such as definition, classification, generation, discharge, and trans-
portation. These measures set out in detail the specific links of transit, sorting, recycling,
and elimination to ensure that there are no omissions in management. Shenzhen has
strengthened the supervision process and ensured effective policy implementation through
emission authorization, electronic joint-order management, and statistical reporting.
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5.2. Driving Factors Influencing the Development of the CDW Industry

Previous studies have focused on the government’s role in industry development,
especially in formulating policies and regulations. This study finds that R&D incentives and
financial subsidies significantly impact the CDW industry, with correlation coefficients of
0.263 and 0.200, respectively. In contrast, the land-use support policy does not significantly
affect the CDW industry. The R&D incentive policy encourages the technological innovation
of enterprises to improve the efficiency and effectiveness of waste resource utilization.
Technological progress reduces treatment costs, improves product quality, and enhances
market competitiveness. Financial subsidies alleviate the financial pressure on enterprises
and enhance their operational capacity. They are used for equipment purchase, technology
R&D, and market expansion, which enhances enterprises’ competitiveness and sustainable
development ability. Financial subsidies also serve as an incentive mechanism to attract
investors and entrepreneurs to the field of construction waste resource utilization. On the
other hand, the effectiveness of the land use support policy, despite providing favorable
land-use conditions, is constrained by market demand, economic environment, and other
factors. Therefore, the land-use support policy has not significantly impacted the growth
of enterprises.

The impact of economic factors on industrial development has received equal attention
from scholars, including GDP per capita and industrial structure. This empirical study
found that the value added by the secondary industry is a significant driver for the con-
struction waste treatment industry, with a correlation coefficient of 0.154. In contrast, land
prices and the residential building construction area do not significantly affect this industry.
The agglomeration effect of secondary industries brings about an economic scale effect, and
their added value reflects the scale and dynamism of the regional industrial economy. Re-
gions with developed industrial economies have a high demand for construction materials
and are prone to produce large amounts of construction waste. Resource-based enterprises
can utilize these wastes for treatment and reuse.

Among transportation factors, scholars often focus on the impact of transportation
infrastructure on industrial development. In this research, road network density was a
significant industry driver with a correlation coefficient of 0.148, while railroad density
had no significant effect. The findings are related to the current means of automobile
transportation in CDW. A well-developed road network reduces transportation costs
and improves logistics efficiency. Construction waste transportation relies on an efficient
and convenient logistics system, and areas with high road network density help reduce
transportation costs. High road network density ensures smooth waste transportation from
generation to treatment to the market, reducing enterprises’ operating costs.

Among the social factors, industrial development studies focus on the degree of mar-
ketization, population density, and education level. This study specifically focuses on the
mechanisms of the industrial land market, building material market, and population den-
sity. The industrial land area and the number of building material markets were significant
industry drivers, with correlation coefficients of 0.153 and 0.170, respectively. In contrast,
the effect of population density on industrial development did not show significance. The
large industrial land area provides more space for industrial activities, including the dis-
posal and recycling of construction waste. Large industrial land areas reduce the land
acquisition cost of enterprises and enhance their development space security. The rational
planning of industrial land through policies prioritizing the layout of construction waste
treatment enterprises in industrial parks can help industrial development. At the same
time, centralized construction waste treatment centers are promoted to adopt intensive
production methods and improve land-use efficiency. This approach can reduce the envi-
ronmental and resource waste caused by decentralized treatment. The number of building
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material markets directly reflects the demand size for the building material market. An
increase in the number of building material markets indicates an increase in demand for
building materials, which broadens sales channels and market space for CDW enterprises,
which can use these markets to sell recycled building materials, realize profits, and promote
business expansion.

Environmental factors have a significant impact on industrial development. In previ-
ous studies, environmental factors have either caused constraints or facilitated them. In our
study, river network density was found to have a significant constraining effect on the CDW
industry. Its correlation coefficient was −0.355, and this negative regression coefficient high-
lights the tension between environmental protection regulations and industry development.
The long-term accumulation of construction waste may pollute groundwater, threatening
river and lake ecosystems. With stricter government regulations, dense river network areas
are often regarded as environmentally and ecologically sensitive. Due to environmental
regulations and land-use restrictions, CDW industries are difficult to establish in high river
network density areas. Environmental policies should be strengthened to mitigate the
negative impact of high river network density on the CDW industry. Strict waste discharge
management and environmental monitoring must be implemented for construction projects
in riverine areas. At the same time, environmentally friendly construction waste treatment
technologies are being developed to reduce the risk of water pollution. For example, closed
treatment systems and high-efficiency wastewater treatment equipment are used to ensure
that wastewater discharges meet standards.

5.3. The Role of Urban Planning in Promoting the CDW Industry

The distribution of CDW industries at the district (county) level is characterized as
follows: there is almost no distribution in city-center administrative districts; the distri-
bution of CDW industries in remote suburban districts (counties) is small and scattered;
and the distribution of CDW industries is most concentrated in the administrative districts
adjacent to the city center. These features prevail in the major pilot cities. In urban planning,
the central city is mainly used for commercial and residential purposes, and industrial
activities, including CDW industries, are restricted. CDW industries are difficult to set
up in the city center due to exceptional land and transportation needs and low land price
affordability and are significantly inhibited by urban planning. Weak infrastructure, incon-
venient transportation, and insufficient market demand in remote suburban areas have led
to the scattered distribution of CDW enterprises. However, the attractiveness of distant sub-
urbs to CDW enterprises can be enhanced through transportation network improvement,
infrastructure development, and policy enhancement. Administrative districts adjacent to
city centers are ideal locations for CDW industries to cluster due to convenience and cost
advantages. Urban planning needs to coordinate land use and upgrade infrastructure in
these areas to facilitate the concentration of CDW industries.

Cities with high levels of economic development and developed secondary industries,
such as Beijing and Guangzhou, have thriving and widely distributed CDW industries.
These cities have intensive construction activities and generate large amounts of construc-
tion waste. Well-developed logistics networks and extensive market demand also provide
favorable conditions for the local CDW industry. The growth of the CDW industry is
further promoted through urban planning, optimization of land use, improvement of
transportation facilities, and construction of industrial parks. Demonstration cities with
a lower level of economic development, such as Nanning, have a relatively concentrated
and limited distribution of CDW industries. Despite the demonstration role, insufficient
market demand limits the expansion of CDW industries. Guiding industrial agglomeration
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through urban planning and providing necessary infrastructure and policy support can
enhance the attractiveness of CDW industries.

Cities with strong policy support have rich and evenly distributed CDW industries.
Policy support is an essential driving force for developing the CDW industry. In urban
planning, utilizing financial subsidies, tax breaks, and technical support to reduce operating
costs can attract more enterprises to the CDW industry. For example, Ningbo has realized a
balanced distribution of the CDW industry in the city through diversified incentive policies.
This balanced distribution helps to meet the needs of different regions better.

CDW industries are primarily located in flat areas and avoid nature reserves. In urban
planning, the impact of terrain on industrial layouts needs to be considered. Flat terrain
can reduce the construction and transportation costs of CDW industries and improve
operational efficiency. Nature reserves are avoided when choosing locations due to high
environmental requirements and restrictions on industrial activities. Enterprises choose
flat and convenient transportation sites to comply with environmental regulations and
reduce risks. For example, enterprises are scarce in the mountainous areas in the eastern
part of Baiyun District in Guangzhou and the central part of Huangpu District, as well as
in Huairou District and the northern part of Pinggu District in Beijing. In urban planning,
terrain conditions should be evaluated, industrial land use should be rationally arranged,
and restricted areas such as nature reserves should be avoided to balance economic and
environmental needs.

CDW industries cluster near industrial parks in most cities. Industrial parks provide
centralized and well-developed infrastructures, convenient logistics conditions, and pref-
erential policy support, which provide a suitable environment for enterprises to develop.
CDW industries clustering near industrial parks can enjoy shared infrastructures, reduce
operating costs, and gain business opportunities through neighboring industrial chains.
For example, areas such as Hangzhou Hezhuang Industrial Park and Xixucun Industrial
Park have many clustered CDW resourcing enterprises. These enterprises have improved
their overall competitiveness and market responsiveness through the agglomeration ef-
fect. In urban planning, forming an industrial agglomeration effect through constructing
and improving industrial parks can enhance the industrial chain’s synergy effect and
market responsiveness.

5.4. Integration of CDW Industry Chain in Various Cities

From the perspective of industrial clustering, except for Nanjing, the construction waste
resource utilization industry in the remaining 11 cities shows the clustering phenomenon.
Specifically, each city has four modes of construction waste industry clustering: uniform
distribution, centralized distribution, multi-center clustering, and belt-shaped distribution.

Shanghai, Xiamen, and Hangzhou are evenly distributed. Shanghai’s solid waste
treatment enterprises are scattered throughout the city, especially outside the city center.
These enterprises are mainly concentrated in the eastern areas of Pudong New Area, Min-
hang District, and Baoshan District. Under the government’s planning and coordination,
many CDW resourcing enterprises are concentrated in these areas, forming a high–low
clustering phenomenon.

Xi’an and Chongqing exhibit centralized distribution and regional agglomeration.
The CDW resource utilization enterprises in Chongqing are mainly concentrated in the
central city’s metropolitan area, but the overall distribution is somewhat decentralized.
This is because the central city metropolitan area has a well-developed transportation
network, low land costs, and well-developed infrastructure, which makes it an ideal area
for enterprises to cluster.
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Guangzhou, Shenzhen, Beijing, Ningbo, and Qingdao City exhibit multi-center Clus-
tering. Guangzhou shows prominent characteristics of industrial clusters in CDW resource
utilization, with a vast concentration of related enterprises. Regarding spatial distribution,
Guangzhou presents two high-density core areas and a belt-shaped agglomeration area.
The high-density core area is located southwest of Zengcheng District and at the junction
of Huadu District and Baiyun District. The belt-shaped agglomeration area is distributed
along the north–south direction of the Huangpu, Panyu, and Nansha districts.

Nanning exhibits belt-shaped distribution. The Xingning, Xixiangtang, and Yongning
districts have attracted many enterprises due to their transportation advantages and lower
land costs. This clustering pattern not only enhances the synergy effect among enter-
prises but also helps centralize the treatment of construction waste and improve resource
utilization efficiency.

5.5. International Comparison and Enlightenment

This study analyzes the spatial distribution characteristics of CDW resource utilization
industries in 12 pilot cities in China. It explores the industrial layout’s driving mechanism,
mutual policy promotion, and economic and environmental factors. In CDW manage-
ment, 12 Chinese cities demonstrate empirical experience in urban planning, policy, and
economy and location sample data. The research results are universal and can provide
a reference for other large cities worldwide. The following is a detailed comparison of
international experiences.

In terms of urban planning and location, a lack of data is a significant obstacle for
emerging economies in designing effective waste management systems [54]. This study
provides case-city data. The 12 Chinese city cases show that urban spaces, transportation,
resources, and the economy will support and influence CDW operations. The CDW
industries, in the case of these cities, are most concentrated in administrative districts
adjacent to the city center. The spatial network structure of Chinese cities significantly
impacts the intensity of CDW generation. The spatial network characteristics of CDW have
a center-edge structure [55]. The industrial planning of CDW needs to be comprehensively
considered based on the spatial distribution of cities, the composition of urban centers
and satellite towns, river and road resources, and the scale of upstream and downstream
industries. When formulating industrial planning and facility support, it is necessary
to focus on constraints such as the river network density, number of building material
markets, added value of the secondary industry, industrial land area, and road network
density. Studies on foreign cities have shown that urban planning and location impact
CDW management. The case study of Chennai, a city in India, showed that transportation
costs were 50% higher than the cost of recycled materials [54], which slowed the progress
of CDW. A sensitivity analysis of the Lombardy Region in Italy also confirmed that CDW
transportation plays a key role [56]. Minimizing waste transportation can improve the
performance of the management system. The recommended measures of this study are to
promote industrialization by appropriately locating recycling plants within the region and
promoting connections between recyclers and builders.

Regarding policy framework, the core driving forces of the Chinese case cities are
fiscal subsidies and R&D incentives. The case cities can promote the development of the
CDW industry by reducing enterprise costs and upgrading technology. The effectiveness
of fiscal subsidies and R&D incentives depends on the regional economic level (such as the
industrial agglomeration of Beijing and Guangzhou). However, the land support policies
of the case cities did not pass the significance test, indicating that policies need to be
more integrated with market demand and transportation resources. These experiences
are worth referring to for international cities when formulating management policies.
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International researchers also believe CDW policies and practices are key issues that must
be considered [57]. International researchers focus on education, government incentives,
laws, community environmental protection, and corporate responsibility. Several studies in
Brazil [58], Hong Kong [59], and other countries have proven that government intervention
measures such as policies, taxes, and incentives can promote waste recycling. The EU has
set a mandatory 70% CDW recycling target through the Waste Framework Directive [60].
Its legislative means are more potent than economic incentives, providing a target-oriented
supplementary model for China. The United States emphasizes the responsibility of
developers and incorporates stakeholders into the management chain through “zero CDW
emission rewards” [61]. Market-driven mechanisms can provide a reference for China to
optimize policy coordination.

Regarding economic and technological drivers, the added value of the secondary
industry and the industrial land area in the Chinese case cities significantly affect the layout
of the CDW industry, reflecting the dual role of industrialization and land resources. Inter-
national cities also use economic and technical methods. Some European countries have
achieved up to 100% recycling rates for CDW due to effective waste control frameworks
and management plans tailored to regional needs rather than relying solely on national
policies [62]. Achieving CDE objectives requires investments in local municipalities to
enhance logistical efficiency, engage stakeholders, and develop the secondary materials
market and local economies. Singapore supports technology upgrades through a special
fund to encourage the purchase of demolition equipment for recycling concrete [63]. The
South Korean government has implemented quality standards and quality certificates
for recycled aggregates to enhance consumer confidence while using an online market
system to increase transparency in CDW management to improve waste tracking and
management [63]. The Netherlands has reduced customers’ and contractors’ fear of using
recycled materials by introducing quality labels and promoting the use of recycled materials
in construction [63]. Japan emphasizes waste reduction during the design phase and re-
quires waste producers to dispose of waste responsibly within a strict legal framework [64].
Different experiences reference cities’ entire life-cycle management in various countries.

Regarding environmental constraints, the density of China’s river network signifi-
cantly restricts the location of enterprises. Cities need to reduce the risk of environmental
pollution through environmental protection technologies (such as closed-loop treatment
systems). Cities worldwide have also issued environmental constraints on river and soil
protection. Sweden has promoted an increase in resource utilization by prohibiting the
landfill of combustible waste [63]. The strictness of environmental regulations can pro-
vide policy inspiration for areas with dense river networks. Australia’s state-level landfill
tax and circular economy framework [65] show that the “economic lever + policy target”
combination strategy is universal and complementary to the fiscal subsidies of Chinese
case cities.

In terms of law, global cities attach importance to law in CDW management. Chinese
case cities have issued administrative management methods, tending to administrative
orders. Some cities provide quality standards. Shenzhen issued the “Technical Standards
for Construction Waste Emission Reduction” to unify the technical standards of design,
construction, and effect processes to promote the development of the CDW industry. The
European Union adopts a legal legislation model. South Korea and the Netherlands have
adopted a quality certification system to enhance consumer confidence through unified
standards. In addition, South Korea’s online CDW management system is worth learning
from. Combined with GIS technology, it can improve the industrial chain’s transparency
and supervision efficiency.
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6. Conclusions
Under the background of the country’s vigorous development of a circular economy,

the CDW resourcing industry has attracted much attention. Due to the differences in
metropolitan area positioning, economic, social, and cultural characteristics, and city panel
data, the layout characteristics of resource-based industries vary in different cities.

Taking 12 CDW pilot cities as examples, this paper reveals the characteristics and
differences in the spatial distribution of CDW resourcing enterprises by extracting spa-
tial hotspot information and mixing quantitative data to analyze the influencing factors
quantitatively. This paper constructs a global regression model and finds seven factors that
can significantly influence the spatial distribution of national CDW resource enterprises
and the degrees of influence of different factors. The degrees of influence of these factors,
from largest to smallest, are river network density, financial subsidies, R&D incentives, the
number of building material markets, the value added by the secondary industry, the area
of industrial land, and the density of the road network. According to the results, policy is a
key driver for low-carbon sustainable construction, promoting the reduction, resourcing,
and harmless treatment of construction solid waste (CDW). Financial subsidies and R&D
incentives should be increased to support companies in the CDW industry. Industrial site
selection should pay more attention to the density of the city’s river network, the number of
building material markets, the value added by the secondary industry, the industrial land
area, and the road network’s density. These factors will sustainably help future operations.
The model passed the F-test, covariance test, and standardized residual test to ensure that
the model is valid and has a high degree of fit. From the regional perspective, most of the
CDW resourcing enterprises are located in areas with flat terrain, close to industrial parks,
and adjacent to the central city. From the city level, cities with a high level of economic
development and strong policy support have more resourcing enterprises, and their spatial
distribution is roughly the same as the direction of the city’s geographic development. The
CDW resourcing enterprises show positive spatial autocorrelation on the global scale. They
can be subdivided into four types of local clustering patterns: high–high, low–low, high–
low, and low–height. Ningbo, western Qingdao, and northern Beijing showed high–high
aggregation characteristics. Low–low aggregation characteristics exist in regions other than
central Chongqing. High–low aggregation features are found in the center of the main
city of Chongqing, eastern Shanghai, and central Nanjing. Low–high aggregation is dis-
tributed in northeastern Ningbo, northern Guangzhou, and southern Shenzhen. Regarding
industrial agglomeration, except for Nanjing, industrial agglomeration of construction
waste occurs in all 11 pilot cities. Among them, Shanghai, Xiamen, and Hangzhou have
industries that are distributed evenly. Xi’an and Chongqing have centralized distributions
of industries. Guangzhou, Shenzhen, Beijing, Ningbo, and Qingdao exhibit multi-center
clustering of industries. Nanning’s industry has a belt-shaped distribution.

This research examines the current status of the CDW industry in 12 CDW governance
pilot cities in the Chinese region, which have geographical and temporal limitations.
However, the Chinese region is characterized by a large volume of concrete solid waste
removal, high potential for future technologies and industries, and urgent urban low-carbon
operations, which are of research significance. These fundamental studies are helpful for
City Information Modeling, industrial development, policy incentives, industrial planning,
transportation economics, and spatial optimization decision making. Future research will
be expanded to a global scale to include important international cities to increase the
robustness of the study.

This research explores the micro level of the industry chain integration elements
of the construction and demolition waste (CDW) industry, combined with two macro
levels of incentive policies and urban planning, to jointly promote sustainable urban
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construction. In the future, the following research aims to tap into the information on
human–land relationships and system engineering of big data and jointly promote the
innovative direction of new engineering in urban science. Researching natural and social
phenomena in built environments through discovery-driven and theory-led approaches
and combining mechanistic and data-driven approaches is a new way. In the future, we
will further combine the interdisciplinary disciplines of civil engineering, architecture, and
urban science to explore the critical issues of sustainable urban construction for research
with new perspectives.
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Appendix A

Table A1. Basic data for pilot cities.

Municipalities
Number of
Enterprises
Resourced

Area (of a
Floor, Piece of

Land)
(km²)

GDP
(Billions of

Dollars)

Value Added by
the Secondary

Industry
(Billion Yuan)

Building
Construction
Area (10,000

Square Meters)

Site
Support

Financial
Subsidy

R&D
Incentives

Beijing, the capital of the
People’s Republic of

China
78 16,411 40,269 5244 91,155

√

Guangzhou, a
subprovincial city and

the capital of
Guangdong

54 7434 28,232 7723 39,222
√ √

Hangzhou is a
subprovincial city and

capital of Zhejiang
province in southeast

China

40 16,850 18,109 5441 33,132
√

The capital of China at
different historical

periods
23 6587 16,355 4454 26,470

√

Zhuang: Namzningz 22 22,100 5121 1199 9625
√

Ningbo, a subprovincial
city in Zhejiang 68 9816 14,595 6975 10,779

√ √ √

Qingdao, a
subprovincial city in

Shandong
59 11,293 14,136 5109 21,906

√ √ √

Xiamen, a subprovincial
city in Fujian 18 1700 7034 2828 16,435

√

Shanghai 36 6340 43,215 11,543 54,802
√

Shenzhen,
asubprovincial city in
Guangdong, a special
economic zone close to

Hong Kong

53 1997 30,665 9122 22,531
√

Xian 34 10,108 10,688 3349 22,452
√ √

Chongqing 42 82,400 27,894 11,185 37,895
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Table A2. Average nearest neighbor analysis.

Municipalities Average Observation
Distance (m)

Expected Average
Distance (m)

Nearest Neighbor
Index (NMI) z-Score

Chongqing 17,363.0828 25,080.4427 0.692296 −3.814952
Shenzhen, a subprovincial city in

Guangdong, a special economic zone
close to Hong Kong

2298.8641 3425.3751 0.671128 −4.580323

Qingdao, a subprovincial city in
Shandong 4551.3434 6630.6153 0.686413 −4.60802

Beijing, the capital of the People’s
Republic of China 6438.5103 7489.0327 0.859725 −2.370052

Guangzhou, a subprovincial city and
the capital of Guangdong 4375.0117 5073.3291 0.862355 −1.935029

Hangzhou, a subprovincial city and the
capital of Zhejiang province in

southeast China
7597.1941 8662.4471 0.877026 −1.487898

Capital of China at different
historical periods 8919.2389 8781.4355 1.015693 0.143976

Zhuang: Namzningz 3761.8718 6303.1002 0.596829 −4.363102
Ningbo, a subprovincial city in Zhejiang 4794.4384 5773.3427 0.830444 −2.674842
Xiamen, a subprovincial city in Fujian 3522.0230 3392.8359 1.038076 0.309046

Shanghai 6841.5237 6841.5237 1.067591 0.775837
Xian 4181.4428 6062.1861 0.689758 −3.460753

Table A3. Standard deviation ellipse analysis.

Municipalities Center Coordinate Long Axle (km) Short Axle (km) Azimuth (◦) Flatness

Beijing, the capital of the People’s
Republic of China 116.41◦ E, 40.04◦ N 53.28 34.63 60.63 0.35

Guangzhou, a subprovincial city
and the capital of Guangdong 113.49◦ E, 23.18◦ N 32.17 27.53 0.38 0.14

Hangzhou, a subprovincial city and
capital of Zhejiang province in

southeast China
119.86◦ E, 30.00◦ N 70.74 20.98 51.20 0.70

Capital of China at different
historical periods 118.80◦ E, 31.98◦ N 37.37 28.40 1.67 0.24

Zhuang: Namzningz 108.41◦ E, 22.83◦ N 26.98 23.38 149.66 0.13
Ningbo, a subprovincial city

in Zhejiang 121.49◦ E, 29.84◦ N 43.60 25.35 139.55 0.42

Qingdao, a subprovincial city
in Shandong 120.17◦ E, 36.23◦ N 41.77 24.83 6.44 0.41

Xiamen, a subprovincial city
in Fujian 118.14◦ E, 24.67◦ N 17.26 8.74 52.94 0.49

Shanghai 121.47◦ E, 31.21◦ N 30.94 28.28 140.40 0.09
Shenzhen, a subprovincial city in
Guangdong, a special economic

zone close Hong Kong
114.15◦ E, 22.70◦ N 29.50 11.18 95.02 0.62

Xian 108.88◦ E, 34.24◦ N 35.69 14.79 62.92 0.59
Chongqing 107.49◦ E, 29.91◦ N 179.91 95.57 59.87 0.47
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Table A4. Results of multi-distance spatial clustering analysis.

Municipalities Spatial Scale of Clustered Distribution (m)

Beijing, the capital of the People’s Republic
of China 5417 < d < 44,616

Guangzhou, a subprovincial city and the
capital of Guangdong d < 29,432

Hangzhou, a subprovincial city and capital of
Zhejiang province in southeast China d < 52,521

Capital of China at different historical periods -
Zhuang: Namzningz Whole territory

Ningbo, a subprovincial city in Zhejiang Whole territory
Qingdao, a subprovincial city in Shandong 4461 < d < 37,823

Xiamen, a subprovincial city in Fujian 1452 < d < 3733, 6114 < d < 7588
Shanghai 3276 < d < 11,553

Shenzhen, a subprovincial city in Guangdong,
a special economic zone close Hong Kong 0 < d < 12,912

Xian d < 48,245
Chongqing d < 84,803
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