Bone Loss and Fractures in Post-Menopausal Women Living with HIV: A Narrative Review
Abstract
:1. Introduction
2. Methods
2.1. Inclusion Criteria
- Bone Mineral Density (BMD)
- Fracture Incidence and Risk
- Bone Turnover Markers
- Vitamin D Status
- Impact of Antiretroviral Therapy (ART)
- FRAX Score and Fracture Risk Prediction
- Influence of Co-Morbidities and Lifestyle Factors
2.2. Exclusion Criteria
- 1.
- Population-specific exclusions:
- ○
- Studies not involving women. (Include both pre- and post-menopausal women, but studies focussing only on men are excluded.)
- ○
- Studies not including HIV-infected individuals.
- 2.
- Outcome-specific exclusions:
- ○
- Studies that do not address bone health (such as BMD, fractures, or osteoporosis).
- ○
- Research that focusses on unrelated health outcomes (e.g., cardiovascular disease, mental health) without mentioning bone health or fracture risk.
- 3.
- Study design exclusions:
- ○
- Non-peer-reviewed articles (e.g., conference abstracts, editorials, letters).
- ○
- Studies not based on human subjects (exclude animal or laboratory studies).
- ○
- Case reports or small case series that do not provide broad or generalisable findings.
- 4.
- Geographical or setting exclusions:
- ○
- Studies conducted in regions not relevant to the global HIV burden, such as those focused solely on populations where HIV and osteoporosis are not common comorbidities.
- 5.
- Language exclusions:
- ○
- Studies not published in English.
- 6.
- Publication date exclusions:
- ○
- Studies published before 2000, to focus on more recent data relevant to current HIV treatments and management of bone health.
3. Results
3.1. Epidemiology
3.2. Pathophysiology
3.2.1. Normal Bone Loss Due to the Ageing Process
3.2.2. Clinical and Diagnostic Assessment
3.3. Challenges and Tribulations Facing Post-Menopausal WLHIV in Low-Income Countries (LICs)
3.3.1. Management
- Education and awareness of premature menopause and associated risks of bone loss. Education can help prevent premature menopause by promoting healthier lifestyle choices, such as reducing smoking and improving nutrition, which are key risk factors for early menopause [217]. Educating women about the importance of vitamin D and calcium intake can delay menopause and improve health outcomes. Additionally, increased awareness of early medical intervention options, such as hormone replacement therapy, enables earlier care, reducing the risk of complications from premature menopause [218].
- Encouragement of regular exercise, particularly resistance and aerobic training [102].
- Tailored help to address smoking, alcohol, and drug use.
- Measurement of calcium and vitamin D levels for those at high risk of fracture due to co-morbidities, previous fracture, or family history.
- Use of DXA scans for all post-menopausal women with regular follow-up [219].
- Population-specific FRAX tools, in particular for women living in low-income countries [220].
- Clinical recognition of nutritional requirements of patients in this population–malnourished versus those with diabetes.
- Social and mental health impact of disease: specialised culturally-sensitive talking services addressed to WLHIV.
- Joint HIV, bone health, and menopause clinics and MDTs to develop tailored plans.
- Personalised cART regimes that balance bone loss at an individual level [221].
- The addition of bisphosphonates when stopping TDF-based therapy has been shown to increase BMD [222].
- HRT use has been shown to increase BMD [223].
- Abaloparatide (a synthetic peptide analogue of parathyroid hormone-related protein (PTHrP)) is used to manage and treat osteoporosis. Recently, the National Institute for Health and Care Excellence (NICE) recommended abaloparatide as an option for treating osteoporosis in women with menopause, only if they have a very high risk of fracture [153].
3.3.2. Future Directions
3.3.3. Limitations and Strengths
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, V.D.; Hogg, R.S.; Harrigan, P.R.; Moore, D.; Yip, B.; Wood, E.; Montaner, J.S.G. Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 2007, 21, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Losina, E.; Freedberg, K.A. Life expectancy in HIV. BMJ 2011, 343, 7829. [Google Scholar] [CrossRef] [PubMed]
- Sabin, C.A. Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? BMC Med. 2013, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Loutfy, M.; Andany, N.; Kennedy, V.L.; Aden, M. Perspectives on menopause and women with HIV. Int. J. Womens Health 2016, 8, 1–22. [Google Scholar] [CrossRef]
- UNAIDS. Global HIV and AIDS Statistics—Fact Sheet; UNAIDS: Geneva, Switzerland, 2024; Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 17 August 2024).
- AARP International. How Women 50-Plus Are Driving the Global Longevity Economy; AARP: Washington, DC, USA, 2020. [Google Scholar]
- Gao, T.Y.; Zhao, L.K.; Liu, X.; Li, H.Y.; Ma, Y.T.; Fang, W.; Wang, X.; Zhang, C. Disease burden of AIDS in last 30-year period and its predicted level in next 25-years based on the global burden disease 2019. BMC Public Health 2024, 24, 2384. [Google Scholar] [CrossRef]
- UNAIDS. HIV and adolescent girls and young women—Thematic Briefing Note—2024 Global AIDS update The Urgency of Now: AIDS at a Crossroads. Available online: https://www.unaids.org/en/resources/documents/2024/2024-unaids-global-aids-update-adolescent-girls-young-women (accessed on 17 August 2024).
- Whiteley, J.; DiBonaventura, M.D.; Wagner, J.-S.; Alvir, J.; Shah, S. The Impact of Menopausal Symptoms on Quality of Life, Productivity, and Economic Outcomes. J. Womens Health 2013, 22, 983–990. [Google Scholar] [CrossRef]
- World Health Organisation. WHO 2022—Menopause. Available online: https://www.who.int/news-room/fact-sheets/detail/menopause (accessed on 6 September 2024).
- Peacock, K.; Carlson, K.; Ketvertis, K.M. Menopause; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gehrke, B.; Farias, M.L.F.; Wildemberg, L.E.; Ferraiuoli, G.I.; Ribeiro, V.; Bosgnoli, R.; Neto, F.d.P.P.; de Mendonça, L.M.C.; Madeira, M.; Coelho, M.C.A. Evaluation of bone mineral density, microarchitecture, and detection of fractures on young patients living with human immunodeficiency virus: When and how to screen? Endocrine 2023, 83, 214–226. [Google Scholar] [CrossRef]
- Suarez-García, I.; Alejos, B.; Pérez-Elías, M.J.; Iribarren, J.A.; Hernando, A.; Ramírez, M.; Tasias, M.; Pascual, M.; Jarrin, I.; Hernando, V.; et al. How do women living with HIV experience menopause? Menopausal symptoms, anxiety and depression according to reproductive age in a multicenter cohort. BMC Womens Health 2021, 21, 223. [Google Scholar] [CrossRef]
- King, E.M.; Swann, S.A.; Murray, M.C.M. Markers of ovarian reserve in women living HIV: A systematic review. HIV Med. 2023, 24, 247–259. [Google Scholar] [CrossRef]
- Bedenk, J.; Vrtačnik-Bokal, E.; Virant-Klun, I. The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J. Assist. Reprod. Genet. 2020, 37, 89–100. [Google Scholar] [CrossRef]
- Zicari, S.; Sessa, L.; Cotugno, N.; Ruggiero, A.; Morrocchi, E.; Concato, C.; Rocca, S.; Zangari, P.; Manno, E.C.; Palma, P. Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART. Viruses 2019, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Abelman, R.; Tien, P.C. The Reproductive Transition: Effects on Viral Replication, Immune Activation, and Metabolism in Women with HIV infection. Curr. HIV/AIDS Rep. 2022, 19, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Schank, M.; Zhao, J.; Moorman, J.P.; Yao, Z.Q. The Impact of HIV- and ART-Induced Mitochondrial Dysfunction in Cellular Senescence and Aging. Cells 2021, 10, 174. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Sampaio, O.G.M.; Câmara, F.E.A.; Schneider, A.; de Ávila, B.M.; Prosczek, J.; Masternak, M.M.; Campos, A.R. Ovarian aging in humans: Potential strategies for extending reproductive lifespan. Geroscience 2023, 45, 2121–2133. [Google Scholar] [CrossRef]
- Ahmed, M.; Bondje, S.; Jiwan, R.; Rawther, F.; Duku, A.; Husain, N.E.; Woodward, C.; Mital, D. Early menopause in acquired immunodeficiency syndrome. J. Res. Med. Sci. 2021, 26, 122. [Google Scholar] [CrossRef]
- Chikwati, R.P.; Jaff, N.G.; Mahyoodeen, N.G.; Micklesfield, L.K.; Ramsay, M.; Gómez-Olivé, F.X.; Mohamed, S.F.; Choma, S.S.R.; George, J.A.; Crowther, N.J. The association of menopause with cardiometabolic disease risk factors in women living with and without HIV in sub-Saharan Africa: Results from the AWI-Gen 1 study. Maturitas 2024, 187, 108069. [Google Scholar] [CrossRef]
- Shuster, L.T.; Rhodes, D.J.; Gostout, B.S.; Grossardt, B.R.; Rocca, W.A. Premature menopause or early menopause: Long-term health consequences. Maturitas 2010, 65, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Breasail, M.Ó.; Gregson, C.L.; Norris, S.A.; Madanhire, T.; Jaff, N.; Crowther, N.J.; Micklesfield, L.K.; Ward, K.A. Menopause is associated with bone loss, particularly at the distal radius, in black South African women: Findings from the Study of Women Entering and in Endocrine Transition (SWEET). Bone 2022, 164, 116543. [Google Scholar] [CrossRef]
- Genant, H.K.; Cooper, C.; Poor, G.; Reid, I.; Ehrlich, G.; Kanis, J.; Nordin, B.E.; Barrett-Connor, E.; Black, D.; Bonjour, J.P.; et al. Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos. Int. 1999, 10, 259–264. [Google Scholar] [CrossRef]
- Amarnath, S.S.; Kumar, V.; Das, S.L. Classification of Osteoporosis. Indian J. Orthop. 2023, 57 (Suppl. S1), 49–54. [Google Scholar] [CrossRef]
- Melton, J.L. Epidemiology of Spinal Osteoporosis. Spine 1997, 22, 2S–11S. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.; Kelly, M.; Quinlan, J.F. Changing trends in the mortality rate at 1-year post hip fracture—A systematic review. World J. Orthop. 2019, 10, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Dragovic, B.; Rymer, J.; Nwokolo, N. Menopause care in women living with HIV in the UK—A review. J. Virus Erad. 2022, 8, 100064. [Google Scholar] [CrossRef]
- Zahn, K.; Pittman, A.; Conklin, J.; Knittel, A.; Neal-Perry, G. Disparities in menopausal care in the United States: A systematic review. Maturitas 2024, 186, 108021. [Google Scholar] [CrossRef] [PubMed]
- Scofield, D.; Moseholm, E.; Aebi-Popp, K.; Hachfeld, A. Management of menopause in women living with HIV—A comparative guideline review. Maturitas 2024, 183, 107937. [Google Scholar] [CrossRef]
- Kharsany, A.B.M.; Karim, Q.A. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016, 10, 34–48. [Google Scholar] [CrossRef]
- Joint United Nations Programme on HIV/AIDS. Dangerous Inequalities: World AIDS Day Report; UNAIDS: Geneva, Switzerland, 2022; Available online: https://www.unaids.org/en/resources/documents/2022/dangerous-inequalities (accessed on 17 August 2024).
- AA World. Global Population Tops 8 Billion as Aging Trend Accelerates. Turkey. 2024. Available online: https://www.aa.com.tr/en/world/global-population-tops-8-billion-as-aging-trendaccelerates/3271467#:~:text=The%20global%20population%20aged%2065,already%20surpassed%208%20billion%20people (accessed on 17 August 2024).
- United States. Gilead Sciences. Gilead’s HIV Age Positively. Phase Two 18-Month Progress Report. 2023. Available online: https://www.gilead.com/-/media/files/pdfs/other/gilead-agepositively-boardreport.pdf (accessed on 17 August 2024).
- Tariq, S.; Burns, F.M.; Gilson, R.; Sabin, C. PRIME (Positive Transitions Through the Menopause) Study: A protocol for a mixed-methods study investigating the impact of the menopause on the health and well-being of women living with HIV in England. BMJ Open 2019, 9, e025497. [Google Scholar] [CrossRef]
- Manolagas, S.C. Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis. Endocr. Rev. 2000, 21, 115–137. [Google Scholar]
- Eisman, J.A.; Bogoch, E.R.; Dell, R.; Harrington, J.T.; McKinney, R.E.; McLellan, A.; Mitchell, P.J.; Silverman, S.; Singleton, R.; Siris, E.; et al. Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. J. Bone Miner. Res. 2012, 27, 2039–2046. [Google Scholar] [CrossRef]
- Cortés, Y.I.; Yin, M.T.; Reame, N.K. Bone Density and Fractures in HIV-infected Postmenopausal Women: A Systematic Review. J. Assoc. Nurses AIDS Care 2015, 26, 387–398. [Google Scholar] [CrossRef]
- Sharma, A.; Hoover, D.R.; Shi, Q.; Tien, P.C.; Weber, K.M.; Shah, J.G.; Yin, M.T. Human Immunodeficiency Virus (HIV) and Menopause Are Independently Associated with Lower Bone Mineral Density: Results from the Women’s Interagency HIV Study. Clin. Infect. Dis. 2022, 75, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Leite-Silva, P.R.; Pinheiro, R.S.; Barbosa-Ferreira, J.M.B.; Balieiro, A.; Sabidó, M.; Lacerda, M.V.G.; Chaves, Y.O.; Nogueira, P.A.; Benzaken, A.S. Bone mass, fracture risk, and associated factors in postmenopausal women living with HIV. Menopause 2024, 31, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Matovu, F.K.; Pettifor, J.M.; Compston, J.E. HIV and Bone Health Considerations for Menopausal Women Living with HIV in sub-Saharan Africa. J. Bone Miner. Res. 2020, 38, 617–618. [Google Scholar] [CrossRef]
- Cabrera, D.M.; Cornejo, M.P.; Slotkin, R.; Pinedo, Y.; Yu, W.; Guan, W.; Garcia, P.J.; Hsieh, E. Prevalence of and risk factors for vertebral fracture and low bone mineral density among Peruvian women aging with HIV. Arch. Osteoporos. 2023, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wilson, I.B.; Zullo, A.R.; Meyers, D.J.; Lee, Y.; Daiello, L.A.; Kim, D.H.; Kiel, D.P.; Shireman, T.I.; Berry, S.D. Hip Fracture Rates in Nursing Home Residents with and without HIV. J. Am. Med. Dir. Assoc. 2022, 23, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Ilha, T.A.S.H.; Comim, F.V.; Copes, R.M.; Compston, J.E.; Premaor, M.O. HIV and Vertebral Fractures: A Systematic Review and Metanalysis. Sci. Rep. 2018, 8, 7838. [Google Scholar] [CrossRef]
- Güerri-Fernandez, R.; Vestergaard, P.; Carbonell, C.; Knobel, H.; Avilés, F.F.; Castro, A.S.; Noguès, X.; Prieto-Alhambra, D.; Diez-Perez, A. HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: A population-based cohort study. J. Bone Miner. Res. 2013, 28, 1259–1263. [Google Scholar] [CrossRef]
- ERAnand Scott, L.A.; Harrison, W.J. Hip and Knee Replacement in the HIV positive patient. Malawi Med. J. 2012, 24, 14–16. [Google Scholar]
- Akkaya, M.; Buday, Z.; Akcaalan, S.; Linke, P.; Gehrke, T.; Citak, M. In-hospital complications following total knee and hip arthroplasty in patients with human immunodeficiency virus. Jt. Dis. Relat. Surg. 2022, 33, 3–8. [Google Scholar] [CrossRef]
- Curlewis, K.; Leung, B.; Sinclair, L.; Thornhill, C.; Chan, G.; Ricketts, D. Systemic medical complications following joint replacement: A review of the evidence. Ann. R. Coll. Surg. Engl. 2023, 105, 191–195. [Google Scholar] [CrossRef]
- Weitzmann, M.N.; Ofotokun, I.; Titanji, K.; Sharma, A.; Yin, M.T. Bone Loss Among Women Living With HIV. Curr. HIV/AIDS Rep. 2016, 13, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Riggs, B.L.; Khosla, S.; Melton, L.J. Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocr. Rev. 2002, 23, 279–302. [Google Scholar] [CrossRef]
- Khosla, S. Minireview: The OPG/RANKL/RANK System. Endocrinology 2001, 142, 5050–5055. [Google Scholar] [CrossRef]
- Indridason, O.S.; Franzson, L.; Sigurdsson, G. Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover. Osteoporos. Int. 2005, 16, 417–423. [Google Scholar] [CrossRef]
- Pollock, E.; Klotsas, A.E.; Compston, J.; Gkrania-Klotsas, E. Bone health in HIV infection. Br. Med. Bull. 2009, 92, 123–133. [Google Scholar] [CrossRef]
- Compston, J. HIV infection and bone disease. J. Intern. Med. 2016, 280, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Samji, H.; Cescon, A.; Hogg, R.S.; Modur, S.P.; Althoff, K.N.; Buchacz, K.; Burchell, A.N.; Cohen, M.; Gebo, K.A.; Gill, M.J.; et al. Closing the Gap: Increases in Life Expectancy among Treated HIV-Positive Individuals in the United States and Canada. PLoS ONE 2013, 8, e81355. [Google Scholar] [CrossRef]
- Xu, J.F.; Wang, P.C.; Cheng, F. Health related behaviors among HIV-infected people who are successfully linked to care: An institutional-based cross-sectional study. Infect. Dis. Poverty 2020, 9, 28. [Google Scholar] [CrossRef]
- Titanji, K.; Vunnava, A.; Sheth, A.N.; Delille, C.; Lennox, J.L.; Sanford, S.E.; Foster, A.; Knezevic, A.; Easley, K.A.; Weitzmann, M.N.; et al. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection. PLoS Pathog. 2014, 10, e1004497. [Google Scholar] [CrossRef]
- Vikulina, T.; Fan, X.; Yamaguchi, M.; Roser-Page, S.; Zayzafoon, M.; Guidot, D.M.; Ofotokun, I.; Weitzmann, M.N. Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc. Natl. Acad. Sci. USA 2010, 107, 13848–13853. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.M.; Arnold, K.M.; Oviedo, M.; Westendorf, J.J.; Weaver, S.R. Inflammatory Processes Affecting Bone Health and Repair. Curr. Osteoporos. Rep. 2023, 21, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Moser, C.B.; Johnston, E.; Stein, J.H.; Dube, M.P.; Yang, O.O.; McComsey, G.A.; Currier, J.S.; Brown, T.T. Brief Report: Changes in Plasma RANKL-Osteoprotegerin in a Prospective, Randomized Clinical Trial of Initial Antiviral Therapy: A5260s. J. Acquir. Immune Defic. Syndr. 2018, 78, 362–366. [Google Scholar] [CrossRef]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef]
- Delpino, M.V.; Quarleri, J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front. Endocrinol 2020, 11, 502. [Google Scholar] [CrossRef]
- Lin, W.; Li X fu Ren D cheng Song, M.; Duan, L.; Liu, J.-Z.; Zhan, Z. Administration of zoledronic acid alleviates osteoporosis in HIV patients by suppressing osteoclastogenesis via regulating RANKL expression. Mol. Med. 2021, 27, 19. [Google Scholar] [CrossRef] [PubMed]
- Triguero-Martínez, A.; Pardines, M.; Montes, N.; Ortiz, A.M.; Iglesia-Cedeira, A.; Valero-Martínez, C.; Martín, J.; González-Álvarot, I.; Castañeda, S.; Lamana, A. Genetic Variants in RANK and OPG Could Influence Disease Severity and Bone Remodeling in Patients with Early Arthritis. Life 2024, 14, 1109. [Google Scholar] [CrossRef]
- Ofotokun, I. Deciphering how HIV-1 weakens and cracks the bone. Proc. Natl. Acad. Sci. USA 2018, 115, 2551–2553. [Google Scholar] [CrossRef]
- Titanji, K.; Vunnava, A.; Foster, A.; Sheth, A.N.; Lennox, J.L.; Knezevic, A.; Shenvi, N.; Easley, K.A.; Ofotokun, I.; Weitzmann, M.N. T-cell receptor activator of nucleat factor-kB ligand/osteoprotegein imbalance is associated with HIV-induced bone loss in patients with higher CD4+ T-cell counts. AIDS 2018, 32, 885–894. [Google Scholar] [CrossRef]
- Eghbali-Fatourechi, G.; Khosla, S.; Sanyal, A.; Boyle, W.J.; Lacey, D.L.; Riggs, B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Investig. 2003, 111, 1221–1230. [Google Scholar] [CrossRef]
- Van Ommen, C.E.; Hsieh, A.Y.Y.; Albert, A.Y.; Kimmel, E.R.; Cote, H.C.F.; Maan, E.J.; Prior, J.C.; Pick, N.; Murray, M.C.M.; CIHR Team on Cellular Aging, HIV Comorbidities in Women, Children (CARMO-Endo) CIHR CTN 277. Lower anti-Müllerian hormone levels are associated with HIV in reproductive age women and shorter leukocyte telomere length among late reproductive age women. AIDS 2023, 37, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.M.; Davis, S.R.; Kalantaridou, S.; Lumsden, M.A.; Panay, N.; Anderson, R.A. Anti-Müllerian hormone for the diagnosis and prediction of menopause: A systematic review. Hum. Reprod. Update 2023, 29, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, R.; Greenblatt, R.M.; Merhi, Z.O.; Kassaye, S.; Lambert-Messerlian, G.; Maki, P.M.; Murphy, K.; Karim, R.; Bacchetti, P. Use of antimüllerian hormone to predict the menopausal transition in HIV-infected women. Am. J. Obstet. Gynecol. 2017, 216, e1–e46. [Google Scholar] [CrossRef]
- Hachfeld, A.; Atkinson, A.; Stute, P.; Calmy, A.; Tarr, P.E.; Darling, K.; Flury, B.B.; Polli, C.; Sultan-Beyer, L.; Abela, I.A.; et al. Women with HIV transitioning through menopause: Insights from the Swiss HIV Cohort Study (SHCS). HIV Med. 2022, 23, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.P.W.; Lampe, F.C.; Arenas-Pinto, A.; Smith, C.; McDonnell, J.; Haddow, L.; Johnson, M.; Yousef, E.; Lascar, M.; Geretti, A.M.; et al. Alcohol, smoking, recreational drug use and association with virological outcomes among people living with HIV: Cross-sectional and longitudinal analyses. HIV Med. 2022, 23, 209–226. [Google Scholar] [CrossRef]
- Schoenbaum, E.E.; Hartel, D.; Lo, Y.; Howard, A.A.; Floris-Moore, M.; Arnsten, J.H.; Santoro, N. HIV Infection, Drug Use, and Onset of Natural Menopause. Clin. Infect. Dis. 2005, 41, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Willems, N.; Lemoine, C.; Liesnard, C.; Gervy, C.; Hien, A.D.; Karama, R.; Somda, I.; Englert, Y. Is ovarian function impaired in HIV patients? A clinical pilot study in Burkina Faso. Rev. Med. Brux. 2013, 34, 397–404. [Google Scholar]
- Lipid and Lipoprotein Profile in Menopausal Transition. Effects of Hormones, Age and Fat Distribution. Horm. Metab. Res. 2004, 36, 215–220. [Google Scholar] [CrossRef]
- Mesch, V.R.; Siseles, N.O.; Maidana, P.N.; Boero, L.E.; Sayegh, F.; Prada, M.; Royer, M.; Schreier, L.; Benencia, H.J.; Berg, G.A. Androgens in relationship to cardiovascular risk factors in the menopausal transition. Climacteric 2008, 11, 509–517. [Google Scholar] [CrossRef]
- Jeong, H.G.; Park, H. Metabolic Disorders in Menopause. Metabolites 2022, 12, 954. [Google Scholar] [CrossRef]
- Myerson, M.; Malvestutto, C.; Aberg, J.A. Management of lipid disorders in patients living with HIV. J. Clin. Pharmacol. 2015, 55, 957–974. [Google Scholar] [CrossRef] [PubMed]
- Grunfeld, C.; Pang, M.; Doerrler, W.; Shigenaga, J.K.; Jensen, P.; Feingold, K.R. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 1992, 74, 1045–1052. [Google Scholar] [PubMed]
- Riddler, S.A.; Smit, E.; Cole, S.R.; Li, R.; Chmiel, J.S.; Dobs, A.; Palella, F.; Visscher, B.; Evans, R.; Kingsley, L.A. Impact of HIV infection and HAART on serum lipids in men. JAMA 2003, 289, 2978–2982. [Google Scholar] [CrossRef]
- Semu, H.; Zack, R.M.; Liu, E.; Hertzmark, E.; Spiegelman, D.; Sztam, K.; Hawkins, C.; Chalamila, G.; Muya, A.; Siril, H. Prevalence and Risk Factors for Overweight and Obesity among HIV-Infected Adults in Dar es Salaam, Tanzania. J. Int. Assoc. Provid. AIDS Care 2016, 15, 512–521. [Google Scholar] [CrossRef]
- Freitas, P.; Carvalho, D.; Souto, S.; Sarmento, A.; Medina, J.L. Lipodystrophy: The Metabolic Link of HIV Infection with Insulin-Resistance Syndrome. In Current Perspectives in HIV Infection; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Capeau, J. From lipodystrophy and insulin resistance to metabolic syndrome: HIV infection, treatment and aging. Curr. Opin. HIV AIDS 2007, 2, 247–252. [Google Scholar] [CrossRef]
- Boccara, F. Cardiovascular complications and atherosclerotic manifestations in the HIV-infected population: Type, incidence and associated risk factors. AIDS 2008, 22 (Suppl. S3), S19–S26. [Google Scholar] [CrossRef]
- Triant, V.A.; Lee, H.; Hadigan, C.; Grinspoon, S.K. Increased Acute Myocardial Infarction Rates and Cardiovascular Risk Factors among Patients with Human Immunodeficiency Virus Disease. J. Clin. Endocrinol. Metab. 2007, 92, 2506–2512. [Google Scholar] [CrossRef]
- Dolan, S.E.; Frontera, W.; Librizzi, J.; Ljungquist, K.; Juan, S.; Dorman, R.; Cole, M.E.; Kanter, J.R.; Grinspoon, S. Effects of a Supervised Home-Based Aerobic and Progressive Resistance Training Regimen in Women Infected with Human Immunodeficiency Virus. Arch. Intern. Med. 2006, 166, 1225. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.P.; Tran, B.X.; Hwang, L.Y.; Markham, C.M.; Swartz, M.D.; Vidrine, J.I.; Phan, H.T.T.; Latkin, C.A.; Vidrine, D.J. Motivation to quit smoking among HIV-positive smokers in Vietnam. BMC Public Health 2015, 15, 326. [Google Scholar] [CrossRef]
- Al-Mansoori, L.; Al-Jaber, H.; Prince, M.S.; Elrayess, M.A. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2022, 45, 31–44. [Google Scholar] [CrossRef]
- Freitas, P.; Carvalho, D.; Santos, A.C.; Madureira, A.J.; Martinez, E.; Pereira, J.; Sarmento, A.; Medina, J.M. Adipokines, hormones related to body composition, and insulin resistance in HIV fat redistribution syndrome. BMC Infect. Dis. 2014, 14, 347. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, V.A.; Carvalho, D.; Freitas, P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J. Obes. 2022, 2022, 2252516. [Google Scholar] [CrossRef] [PubMed]
- Laroche, M.; Pécourneau, V.; Blain, H.; Breuil, V.; Chapurlat, R.; Cortet, B.; Sutter, B.; Degboe, Y.; The GRIO scientific committee. Osteoporosis and ischemic cardiovascular disease. Jt. Bone Spine 2017, 84, 427–432. [Google Scholar] [CrossRef]
- Shieh, A.; Greendale, G.A.; Cauley, J.A.; Srikanthan, P.; Karlamangla, A.S. Longitudinal associations of insulin resistance with change in bone mineral density in midlife women. JCI Insight 2022, 7, e162085. [Google Scholar] [CrossRef]
- Liu, X.; Chen, F.; Liu, L.; Zhang, Q. Prevalence of osteoporosis in patients with diabetes mellitus: A systematic review and meta-analysis of observational studies. BMC Endocr. Disord. 2023, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yang, K.; Hu, Z.; Li, M.; Wei, H.; Tang, Z.; Chen, B.; Su, C.; Cai, D.; Xu, J. Determining the association between hypertension and bone metabolism markers in osteoporotic patients. Medicine 2021, 100, e26276. [Google Scholar] [CrossRef]
- Ahn, S.H.; Seo, D.H.; Kim, S.H.; Nam, M.S.; Hong, S. The relationship between fatty liver index and bone mineral density in Koreans: KNHANES 2010–2011. Osteoporos. Int. 2018, 29, 181–190. [Google Scholar] [CrossRef]
- Sowers, M.; Zheng, H.; Tomey, K.; Karvonen-Gutierrez, C.; Jannausch, M.; Li, X.; Yosef, M.; Symons, J. Changes in Body Composition in Women over Six Years at Midlife: Ovarian and Chronological Aging. J. Clin. Endocrinol. Metab. 2007, 92, 895–901. [Google Scholar] [CrossRef]
- Guthrie, J.R.; Dennerstein, L.; Taffe, J.R.; Ebeling, P.R.; Randolph, J.F.; Burger, H.G.; Wark, J.D. Central abdominal fat and endogenous hormones during the menopausal transition. Fertil. Steril. 2003, 79, 1335–1340. [Google Scholar] [CrossRef]
- Finkelstein, J.L.; Gala, P.; Rochford, R.; Glesby, M.J.; Mehta, S. HIV/AIDS and lipodystrophy: Implications for clinical management in resource-limited settings. J. Int. AIDS Soc. 2015, 18, 19033. [Google Scholar] [CrossRef]
- Tien, P.C.; Benson, C.; Zolopa, A.R.; Sidney, S.; Osmond, D.; Grunfeld, C. Study of Fat Redistribution and Metabolic Change in HIV Infection (FRAM): Methods, design and sample characteristics. Am. J. Epidemiol. J. 2006, 163, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Currier, J.; Scherzer, R.; Bacchetti, P.; Heymsfield, S.; Lee, D.; Sidney, S.; Tien, P.C.; The Fat Redistribution and Metabolic Changes in HIV Infection Study Investigators. Regional Adipose Tissue and Lipid and Lipoprotein Levels in HIV-Infected Women. JAIDS J. Acquir. Immune Defic. Syndr. 2008, 48, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ghayomzadeh, M.; Earnest, C.P.; Hackett, D.; SeyedAlinaghi, S.; Navalta, J.W.; Gholami, M.; Hosseini, N.; Mohraz, M.; Voltarelli, F. Combination of resistance and aerobic exercise for six months improves bone mass and physical function in HIV infected individuals: A randomized controlled trial. Scand. J. Med. Sci. Sports 2021, 31, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hu, J.; Han, D. Causal relationships between gut microbiota, plasma metabolites, and HIV infection: Insights from Mendelian randomization and mediation analysis. Virol. J. 2024, 21, 204. [Google Scholar] [CrossRef]
- Xu, Z.; He, P.; Xian, J.; Lu, W.; Shu, J.; Luo, W.; Gan, C.; Ke, R.; Xia, J.; Han, Z.; et al. Association between Nonalcoholic Fatty Liver Disease and Bone Mineral Density in HIV-Infected Patients Receiving Long-term TDF-Based Antiretroviral Therapy. Curr. HIV Res. 2021, 19, 40–46. [Google Scholar] [CrossRef]
- Dolan, S.E.; Hadigan, C.; Killilea, K.M.; Sullivan, M.P.; Hemphill, L.; Lees, R.S.; Schoenfeld, D.; Grinspoon, S. Increased Cardiovascular Disease Risk Indices in HIV-Infected Women. JAIDS J. Acquir. Immune Defic. Syndr. 2005, 39, 44–54. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Papadopoulou, S.K.; Detopoulou, P.; Tsoumana, D.; Giaginis, C.; Kondyli, F.S.; Lymperaki, E.; Prtisa, A. Vitamin D and Calcium in Osteoporosis, and the Role of Bone Turnover Markers: A Narrative Review of Recent Data from RCTs. Diseases 2023, 11, 29. [Google Scholar] [CrossRef]
- BMJ Best Practice. BMJ.com. Vitamin D Deficiency-Symptoms, Diagnosis and Treatment. 2019. Available online: https://bestpractice.bmj.com/topics/en-gb/641 (accessed on 17 August 2024).
- Faber, J.; Bech, A.; van Bentum, P.; Gisolf, J.; Hassing, R.J.; de Boer, H. Long-Term Impact of Calcium and Vitamin D Supplementation on Bone Density in HIV+ Patients with Documented Deficiencies. AIDS Res. Hum. Retroviruses 2020, 36, 58–64. [Google Scholar] [CrossRef]
- Overton, E.T.; Chan, E.S.; Brown, T.T.; Tebas, P.; McComsey, G.A.; Melbourne, K.M.; Napoli, A.; Hardin, W.R.; Ribaudo, H.J.; Yin, M.T. Vitamin D and Calcium Attenuate Bone Loss With Antiretroviral Therapy Initiation. Ann. Intern. Med. 2015, 162, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Wu, Y.; Li, A.; Tian, Y.; Ren, M.; Li, Z.; Zhang, T.; Wu, H.; Wang, W. Increased Risk of Vitamin D Deficiency Among HIV-Infected Individuals: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 722032. [Google Scholar] [CrossRef]
- Adeyemi, O.M.; Agniel, D.; French, A.L.; Tien, P.C.; Weber, K.; Glesby, M.J.; Villacres, M.C.; Sharma, A.; Merenstein, D.; Golub, E.T.; et al. Vitamin D Deficiency in HIV-Infected and HIV-Uninfected Women in the United States. JAIDS J. Acquir. Immune Defic. Syndr. 2011, 57, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Tey, S.L.; Leong, C.; Quek, R.; Henry, C.J. Prevalence of Vitamin D Deficiency in Singapore: Its Implications to Cardiovascular Risk Factors. PLoS ONE 2016, 11, e0147616. [Google Scholar] [CrossRef] [PubMed]
- Chailurkit, L.O.; Aekplakorn, W.; Ongphiphadhanakul, B. Regional variation and determinants of vitamin D status in sunshine-abundant Thailand. BMC Public Health 2011, 11, 853. [Google Scholar] [CrossRef]
- Binkley, N.; Novotny, R.; Krueger, D.; Kawahara, T.; Daida, Y.G.; Lensmeyer, G.; Hollis, B.W.; Drezner, M.K. Low Vitamin D Status despite Abundant Sun Exposure. J. Clin. Endocrinol. Metab. 2007, 92, 2130–2135. [Google Scholar] [CrossRef]
- Dave, J.A.; Cohen, K.; Micklesfield, L.K.; Maartens, G.; Levitt, N.S. Antiretroviral Therapy, Especially Efavirenz, Is Associated with Low Bone Mineral Density in HIV-Infected South Africans. PLoS ONE 2015, 10, e0144286. [Google Scholar] [CrossRef]
- Dzavakwa, N.V.; Chisenga, M.; McHugh, G.; Filteau, S.; Gregson, C.L.; Kasonka, L.; Kranzer, K.; Mabuda, H.B.; Mujuru, H.; Redzo, N.; et al. Update: Vitamin D3 and calcium carbonate supplementation for adolescents with HIV to reduce musculoskeletal morbidity and immunopathology (VITALITY trial): Study protocol for a randomised placebo-controlled trial. Trials 2024, 25, 499. [Google Scholar] [CrossRef]
- Hsieh, E.; Yin, M.T. Continued Interest and Controversy: Vitamin D in HIV. Curr. HIV/AIDS Rep. 2018, 15, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Bopitya, S.; Chowdhury, A.R.; Das, A.; Taha, H. Effect of Low Dose Oral Vitamin-D and Calcium Replacement in HIV Patients. Recent Pat. Antiinfect. Drug Discov. 2016, 11, 59–67. [Google Scholar] [CrossRef]
- Gebru, T.H.; Mekonen, H.H.; Kiros, K.G. Undernutrition and associated factors among adult HIV/AIDS patients receiving antiretroviral therapy in eastern zone of Tigray, Northern Ethiopia: A cross-sectional study. Arch. Public Health 2020, 78, 100. [Google Scholar] [CrossRef]
- Wadhwa, S.; Finn, T.R.; Kister, K.; Matsumura, S.; Levit, M.; Cantos, A.; Shah, J.; Bohn, B.; Lalla, E.; Grbic, J.T.; et al. Postmenopausal women with HIV have increased tooth loss. BMC Oral Health 2024, 24, 52. [Google Scholar] [CrossRef]
- De Cravalho, L.G.; de Fátima dos Santos Teixeira, P.; Panico, A.L.B.G.; Cohen, M.V.; Pinheiro, M.F.M.C.; Barroso, P.F.; Vaisman, M. Evaluation of thyroid function and autoimmunity in HIV-infected women. Arq. Bras. Endocrinol. Metabol. 2013, 57, 450–456. [Google Scholar] [CrossRef]
- Carta, S.; Olivieri, A.; Sorcini, M.; Medda, E.; Fazzini, C.; Battisti, P.; Sorcini, I.; Grandolfo, M.E. Endocrine response to HIV infection. Involvement of thyroid gland. Ann. dell’Ist. Super. Sanita 2018, 29, 451–456. [Google Scholar]
- Zhu, S.; Pang, Y.; Xu, J.; Chen, X.; Zhang, C.; Wu, B.; Gao, J. Endocrine Regulation on Bone by Thyroid. Front. Endocrinol. 2022, 13, 873820. [Google Scholar] [CrossRef] [PubMed]
- Parsa, A.A.; Bhangoo, A. HIV and thyroid dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Ranabir, S.; Thongam, S.; Keithelakpam, S.; Singh, T.Y.; Singh, R.L.; Singh, A.M. Thyroid dysfunction in human immunodeficiency virus-infected children and its correlation with CD4 + T lymphocyte count. Indian J. Endocrinol. Metab. 2015, 19, 272–276. [Google Scholar] [CrossRef]
- Ji, S.; Jin, C.; Höxtermann, S.; Fuchs, W.; Xie, T.; Lu, X.; Wu, H.; Cheng, L.; Skaletz-Rorowski, A.; Brockmeyer, N.H.; et al. Prevalence and Influencing Factors of Thyroid Dysfunction in HIV-Infected Patients. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Sinha, U.; Sengupta, N.; Mukhopadhyay, P.; Roy, K. Human immunodeficiency virus endocrinopathy. Indian J. Endocrinol. Metab. 2011, 15, 251–260. [Google Scholar] [CrossRef]
- Del Ghianda, S.; Tonacchera, M.; Vitti, P. Thyroid and menopause. Climacteric 2013, 17, 225–234. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020, 9, 1034. [Google Scholar] [CrossRef]
- Waung, J.A.; Bassett, J.D.; Williams, G.R. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol. Metab. 2012, 23, 155–162. [Google Scholar] [CrossRef]
- Hoffmann, C.J.; Brown, T.T. Thyroid Function Abnormalities in HIV-Infected Patients. Clin. Infect. Dis. 2007, 45, 488–494. [Google Scholar] [PubMed]
- Micali, C.; Russotto, Y.; Celesia, B.M.; Santoro, L.; Marino, A.; Pellicanò, G.F.; Nunnari, G.; Rullo, E.V. Thyroid Diseases and Thyroid Asymptomatic Dysfunction in People Living With HIV. Infect. Dis. Rep. 2022, 14, 655–667. [Google Scholar] [CrossRef] [PubMed]
- McComsey, G.A.; Tebas, P.; Shane, E.; Yin, M.T.; Overton, E.T.; Huang, J.S.; Aldrovandi, G.M.; Cardoso, S.W.; Santana, J.L.; Brown, T.T. Bone Disease in HIV infection: A Practical Review and Recommendations for HIV Care Providers. Clin. Infect. Dis. 2010, 51, 937–946. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Walker, A.S.; Gibb, D.M.; Manabe, Y.C. Rapid antiretroviral therapy initiation in low- and middle-income countries: A resource-based approach. PLoS Med. 2019, 16, e1002723. [Google Scholar] [CrossRef]
- Sathi, S.R.T.T.; Anastasopoulou, C. HIV-Related Endocrinopathies; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK599549/ (accessed on 11 June 2024).
- Rosario, P.W. Radioiodine therapy in elderly patients with subclinical hyperthyroidism due to non-voluminous nodular goiter and its effect on bone metabolism. Arq. Bras. Endocrinol. Metabol. 2013, 57, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Platt, L.; Easterbrook, P.; Gower, E.; McDonald, B.; Sabin, K.; McGowan, C.; Yanny, I.; Razavi, H.; Vickerman, P. Prevalence and burden of HCV co-infection in people living with HIV: A global systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 797–808. [Google Scholar] [CrossRef]
- Premaor, M.; Compston, J. People living with HIV and fracture risk. Osteoporos. Int. 2020, 31, 1633–1644. [Google Scholar] [CrossRef]
- Dong, H.V.; Cortés, Y.I.; Shiau, S.; Yin, M.T. Osteoporosis and fractures in HIV/hepatitis C virus coinfection: A systematic review and meta-analysis. AIDS 2014, 28, 2119–2131. [Google Scholar] [CrossRef]
- O’neill, T.J.; Rivera, L.; Struchkov, V.; Zaheen, A.; Thein, H.-H. The Effect of HIV-Hepatitis C Co-Infection on Bone Mineral Density and Fracture: A Meta-Analysis. PLoS ONE 2014, 9, e101493. [Google Scholar] [CrossRef]
- Lin, M.-S.; Chen, P.-H.; Wang, P.-C.; Lin, H.-S.; Huang, T.-J.; Chang, S.-T.; Chiu, W.-N.; Chen, M.-Y. Association between hepatitis C virus infection and osteoporotic fracture risk among postmenopausal women: A cross-sectional investigation in Taiwan. BMJ Open 2019, 9, e021990. [Google Scholar] [CrossRef]
- González-Reimers, E.; López-Prieto, J.; Pelazas-González, R.; Alemán-Valls, M.R.; José de la Vega-Prieto, M.; Jorge-Ripper, C.; Durán-Castellón, M.C.; Santolaria-Fernández, F. Serum Sclerostin in Hepatitis C Virus Infected Patients. J. Bone Metab. 2014, 21, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Tong, D.; Ou, Y.; Zhang, H.; Zhang, Z.; Li, S.; Zhou, J.; Zhang, J.; Liao, E. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in Central South Chinese postmenopausal women. Clin. Endocrinol. 2012, 76, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Bedimo, R.; Maalouf, N.M.; Re, V.L.I. Hepatitis C virus coinfection as a risk factor for osteoporosis and fracture. Curr. Opin. HIV AIDS 2016, 11, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, P.; Siracusa, L.; Mazzola, G.; Colletti, P.; Soresi, M.; Giannitrapani, L.; Vecchi, V.L.; Montalto, G. Vitamin D and Osteoporosis in HIV/HCV Coinfected Patients: A Literature Review. Int. J. Endocrinol. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ofotokun, I.; Titanji, K.; Vikulina, T.; Roser-Page, S.; Yamaguchi, M.; Zayzafoon, M.; Williams, I.R.; Weitzmann, M.N. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat. Commun. 2015, 6, 8282. [Google Scholar] [CrossRef]
- Brown, T.T.; Qaqish, R.B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: A meta-analytic review. AIDS 2006, 20, 2165–2174. [Google Scholar] [CrossRef]
- Biver, E. Osteoporosis and HIV Infection. Calcif. Tissue Int. 2022, 110, 624–640. [Google Scholar] [CrossRef]
- Ahmed, M.; Mital, D.; Abubaker, N.E.; Panourgia, M.; Owles, H.; Papadaki, I.; Ahmed, M.H. Bone Health in People Living with HIV/AIDS: An Update of Where We Are and Potential Future Strategies. Microorganisms 2023, 11, 789. [Google Scholar] [CrossRef]
- Baranek, B.; Wang, S.; Cheung, A.M.; Mishra, S.; Tan, D.H. The Effect of Tenofovir Disoproxil Fumarate on Bone Mineral Density: A Systematic Review and Meta-Analysis. Antivir. Ther. 2020, 25, 21–32. [Google Scholar] [CrossRef]
- Tourret, J.; Deray, G.; Isnard-Bagnis, C. Tenofovir Effect on the Kidneys of HIV-Infected Patients. J. Am. Soc. Nephrol. 2013, 24, 1519–1527. [Google Scholar] [CrossRef]
- Jacobson, M.A.; Gambertoglio, J.G.; Aweeka, F.T.; Causey, D.M.; Portale, A.A. Foscarnet-Induced Hypocalcemia and Effects of Foscarnet on Calcium Metabolism. J. Clin. Endocrinol. Metab. 1991, 72, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, E.W.; Anders, H.J.; Bogner, J.R.; Obermaier, J.; Goebel, F.D.; Schlöndorff, D. Hypocalcaemia in HIV infection and AIDS. J. Intern. Med. 1999, 245, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Peluso, M.J.; Wang, Y.; Bikle, D.; Shoback, D.; Kim, S. Rapid onset of hypercalcemia from high-grade lymphoma in the setting of HIV-related immune reconstitution inflammatory syndrome. Bone Rep. 2018, 10, 100194. [Google Scholar] [CrossRef] [PubMed]
- Starup-Linde, J.; Rosendahl, S.B.; Storgaard, M.; Langdahl, B. Management of Osteoporosis in Patients Living With HIV—A Systematic Review and Meta-analysis. Am. J. Ther. 2020, 83, 1–8. [Google Scholar] [CrossRef]
- Han, W.M.; Wattanachanya, L.; Apornpong, T.; Jantrapakde, J.; Avihingsanon, A.; Kerr, S.J.; Teeratakulpisarn, N.; Jadwattanakul, T.; Chaiwatanarat, T.; Buranasupkajorn, P.; et al. Bone mineral density changes among people living with HIV who have started with TDF-containing regimen: A five-year prospective study. PLoS ONE 2020, 15, e0230368. [Google Scholar] [CrossRef]
- Olali, A.Z.; Carpenter, K.A.; Myers, M.; Sharma, A.; Yin, M.T.; Al-Harthi, L.; Ross, R.D. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr. HIV/AIDS Rep. 2022, 19, 312–327. [Google Scholar] [CrossRef]
- Hoy, J. Bone Disease in HIV: Recommendations for Screening and Management in the Older Patient. Drugs Aging 2015, 32, 549–558. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; Vitale, G.; Gangemi, S.; Iaria, C.; Cascio, A. Vitamin D Deficiency in HIV Infection: Not Only a Bone Disorder. BioMed Res. Int. 2015, 2015, 735615. [Google Scholar] [CrossRef]
- Gedmintas, L.; Wright, E.A.; Losina, E.; Katz, J.N.; Solomon, D.H. Comparative risk of fracture in men and women with HIV. J. Clin. Endocrinol. Metab. 2014, 99, 486–490. [Google Scholar] [CrossRef]
- Bhatta, D.N.; Subedi, A.; Sharma, N. Tobacco smoking and alcohol drinking among HIV infected people using antiretroviral therapy. Tob. Induc. Dis. 2018, 16, 16. [Google Scholar] [CrossRef]
- Godos, J.; Giampieri, F.; Chisari, E.; Micek, A.; Paladino, N.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; La Vignera, S.; Musumeci, G.; et al. Alcohol Consumption, Bone Mineral Density, and Risk of Osteoporotic Fractures: A Dose–Response Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1515. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, C.; Alessi, A.; Girotti, G.; Zanforlini, B.M.; Bertocco, A.; Mazzochin, M.; Zoccarato, F.; Piovesan, F.; Dianin, M.; Giannini, S.; et al. The impact of smoking on bone metabolism, bone mineral density and vertebral fractures in postmenopausal women. J. Clin. Densitom. 2020, 23, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.; Kruger, H.S.; Viljoen, M.; Dave, J.A.; Kruger, M.C. Factors Associated with Bone Mineral Density and Bone Resorption Markers in Postmenopausal HIV-Infected Women on Antiretroviral Therapy: A Prospective Cohort Study. Nutrients 2021, 13, 2090. [Google Scholar] [CrossRef] [PubMed]
- Ivers, L.C.; Cullen, K.A.; Freedberg, K.A.; Block, S.; Coates, J.; Webb, P.; Mayer, K.H. HIV/AIDS, Undernutrition, and Food Insecurity. Clin. Infect. Dis. 2009, 49, 1096–1102. [Google Scholar] [CrossRef]
- Takarinda, K.C.; Mutasa-Apollo, T.; Madzima, B.; Nkomo, B.; Chigumira, A.; Banda, M.; Muti, M.; Harries, A.D.; Mugurungi, O. Malnutrition status and associated factors among HIV-positive patients enrolled in ART clinics in Zimbabwe. BMC Nutr. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Cusano, N.E. Skeletal Effects of Smoking. Curr. Osteoporos. Rep. 2015, 13, 302–309. [Google Scholar] [CrossRef]
- Morgan, S.L.; Prater, G.L. Quality in dual-energy X-ray absorptiometry scans. Bone 2017, 104, 13–28. [Google Scholar] [CrossRef]
- Yin, M.T.; Shiau, S.; Rimland, D.; Gibert, C.L.; Bedimo, R.J.; Rodriguez-Barradas, M.C.; Harwood, K.; Aschheim, J.B.; Justice, A.C.; Womack, J.A.C. Fracture Prediction with Modified-FRAX in Older HIV-Infected and Uninfected Men. Am. J. Ther. 2016, 72, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Vizcarra, P.; Gallego, J.; Vivancos, M.J.; Sifuentes, W.A.; Llop, M.; Casado, J.L. Evaluation of the fracture risk assessment tool for determining bone disease and the impact of secondary causes of osteoporosis in people living with HIV. HIV Clin. Trials 2020, 21, 63–71. [Google Scholar] [CrossRef]
- McGee, D.M.; Cotter, A.G. HIV and fracture: Risk, assessment and intervention. HIV Med. 2024, 25, 511–528. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Isabel, P.B.; Muramatsu, T.; Chirwa, M.; Mandalia, S.; Moyle, G.; Marta, B.; Milinkovic, A. FRAX assessment in people ageing with HIV. HIV Med. 2021, 23, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Liao, E.Y.; Wu, X.P.; Liao, H.J.; Zhang, H.; Peng, J. Effects of skeletal size of the lumbar spine on areal bone density, volumetric bone density, and the diagnosis of osteoporosis in postmenopausal women in China. J. Bone Miner. Metab. 2004, 22, 270–277. [Google Scholar] [CrossRef]
- Prior, J.; Burdge, D.; Maan, E.; Milner, R.; Hankins, C.; Klein, M.; Walmsley, S. Fragility fractures and bone mineral density in HIV positive women: A case-control population-based study. Osteoporos. Int. 2007, 18, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.T.; McMahon, D.J.; Ferris, D.C.; Zhang, C.A.; Shu, A.; Staron, R.; Colon, I.; Laurence, J.; Dobkin, J.F.; Hammer, S.M.; et al. Low Bone Mass and High Bone Turnover in Postmenopausal Human Immunodeficiency Virus-Infected Women. J. Clin. Endocrinol. Metab. 2010, 95, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Liu, C.; Liang, T.; Zhang, Z.; Qin, Z.; Zhan, X. Predictors of osteoporotic fracture in postmenopausal women: A meta-analysis. J. Orthop. Surg. Res. 2023, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pramukti, I.; Lindayani, L.; Chen, Y.-C.; Yeh, C.-Y.; Tai, T.-W.; Fetzer, S.; Ko, N.-Y. Bone fracture among people living with HIV: A systematic review and meta-regression of prevalence, incidence, and risk factors. PLoS ONE 2020, 15, e0233501. [Google Scholar] [CrossRef] [PubMed]
- Aidsmap. A Double Whammy: The Impact of HIV and Menopause on Bone Mineral Density. 2021. Available online: https://www.aidsmap.com/news/nov-2021/double-whammy-impact-hiv-and-menopause-bone-mineral-density (accessed on 6 September 2024).
- Wattanachanya, L.; Sunthornyothin, S.; Apornpong, T.; Lwin, H.M.S.; Kerr, S.; Gatechompol, S.; Han, W.M.; Wichiansan, T.; Siwamongsatham, S.; Chattranukulchai, P.; et al. Bone mineral density among virologically suppressed Asians older than 50 years old living with and without HIV: A cross-sectional study. PLoS ONE 2022, 17, e0277231. [Google Scholar] [CrossRef]
- Dravid, A.; Kulkarni, M.; Borkar, A.; Dhande, S. Prevalence of low bone mineral density among HIV patients on long-term suppressive antiretroviral therapy in resource limited setting of western India. J. Int. AIDS Soc. 2014, 17, 19567. [Google Scholar] [CrossRef]
- Madanhire, T.; Goedecke, J.H.; Ward, K.A.; Jaff, N.; Crowther, N.J.; Norris, S.; Ferrand, R.A.; Rehman, A.M.; Micklesfield, L.K.; Gregson, C.L. The Impact of Human Immunodeficiency Virus and Menopause on Bone Mineral Density: A Longitudinal Study of Urban-Dwelling South African Women. J. Bone Miner. Res. 2020, 38, 619–630. [Google Scholar] [CrossRef]
- Paruk, F.; Tsabasvi, M.; Kalla, A.A. Osteoporosis in Africa—Where are we now. Clin. Rheumatol. 2021, 40, 3419–3428. [Google Scholar] [CrossRef]
- Johansson, H.; Dela, S.S.; Cassim, B.; Paruk, F.; Brown, S.L.; Conradie, M.; Harvey, N.C.; Jordaan, J.D.; Kalla, A.A.; Liu, E.; et al. FRAX-based fracture probabilities in South Africa. Arch. Osteoporos. 2021, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Gregson, C.L.; Msc, T.M.; Rehman, A.; Ferrand, R.A.; Cappola, A.R.; Tollman, S.; Mokoena, T.; Micklesfield, L.K.; Wade, A.N.; Fabian, J.; et al. Osteoporosis, Rather Than Sarcopenia, Is the Predominant Musculoskeletal Disease in a Rural South African Community Where Human Immunodeficiency Virus Prevalence Is High: A Cross-Sectional Study. J. Bone Miner. Res. 2020, 37, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.A.; Pearse, C.M.; Madanhire, T.; Wade, A.N.; Fabian, J.; Micklesfield, L.K.; Gregson, C.L. Disparities in the Prevalence of Osteoporosis and Osteopenia in Men and Women Living in Sub-Saharan Africa, the UK, and the USA. Curr. Osteoporos. Rep. 2023, 21, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Gregson, C.L.; Cassim, B.; Micklesfield, L.K.; Lukhele, M.; Ferrand, R.A.; Ward, K.A. Fragility fractures in sub-Saharan Africa: Time to break the myth. Lancet Glob. Health 2019, 7, e26–e27. [Google Scholar] [CrossRef]
- Kruger, M.J.; Nell, T.A. Bone mineral density in people living with HIV: A narrative review of the literature. AIDS Res. Ther. 2017, 14, 35. [Google Scholar] [CrossRef]
- Hamill, M.M.; Pettifor, J.M.; Ward, K.A.; Norris, S.A.; Prentice, A. Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months. J. Bone Miner. Res. 2017, 32, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Atiase, Y.; Quarde, A. A call to action for osteoporosis research in sub-saharan Africa. Ghana Med. J. 2020, 54, 58–67. [Google Scholar] [CrossRef]
- Sitati, F.C.; Gichangi, P.; Obimbo, M.M. Prevalence of osteoporosis and its associated factors among postmenopausal women in Kiambu County, Kenya: A household survey. Arch. Osteoporos. 2020, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Miedany, Y.E.; Paruk, F.; Kalla, A.; Adebajo, A.; Gaafary, M.E.; Maghraoui, A.E.; Ngandeu, M.; Dey, D.; Gadallah, N.; Elwy, M.; et al. Consensus evidence-based clinical practice guidelines for the diagnosis and treat-to-target management of osteoporosis in Africa: An initiative by the African society of bone health and metabolic bone diseases. Arch Osteoporos. 2021, 16, 176. [Google Scholar] [CrossRef]
- Chen, X.; Orom, H.; Hay, J.L.; Waters, E.A.; Schofield, E.; Li, Y.; Kiviniemi, M.T. Differences in Rural and Urban Health Information Access and Use. J. Rural. Health 2019, 35, 405–417. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Pant, R.; Kulkarni, B.; Kinra, S. Comparison of Bone Mineral Density between Urban and Rural Areas: Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0132239. [Google Scholar]
- Gu, W.; Rennie, K.L.; Lin, X.; Wang, Y.; Yu, Z. Differences in bone mineral status between urban and rural Chinese men and women. Bone 2007, 41, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.E.; Berntsen, G.K.R.; Søgaard, A.J.; Langhammer, A.; Schei, B.; Fønnebø, V.; Forsmo, S.; Tell, G.S. Higher Bone Mineral Density in Rural Compared with Urban Dwellers: The NOREPOS Study. Am. J. Epidemiol. 2004, 160, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, A.; Alare, K.; Opeyemi, M.A.; Oluwatosin, A. The outlook of rheumatological care in Africa: Current state, challenges, and recommendation. Ann. Med. Surg. 2022, 82, 104689. [Google Scholar] [CrossRef]
- Syed, S.T.; Gerber, B.S.; Sharp, L.K. Traveling towards Disease: Transportation Barriers to Health Care Access. J. Community Health 2013, 38, 976–993. [Google Scholar] [CrossRef]
- Shangase, N.; Pence, B.; Lippman, S.A.; Dufour, M.-S.K.; Kabudula, C.W.; Gómez-Olivé, F.X.; Kahn, K.; Pettifor, A. Built Environment and HIV Linkage to Care in Rural South Africa. Community Health Equity Res. Policy 2021, 43, 133–141. [Google Scholar] [CrossRef]
- Mbonu, N.C.; Borne, B.v.D.; De Vries, N.K. Stigma of People with HIV/AIDS in Sub-Saharan Africa: A Literature Review. J. Trop. Med. 2009, 2009, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.S.; Fletcher, F.E.; Akingbade, B.; Kan, M.; Whitfield, S.; Ross, S.; Gakumo, C.A.; Ofotokun, I.; Konkle-Parker, D.J.; Cohen, M.H.; et al. Quality of care for Black and Latina women living with HIV in the U.S.: A qualitative study. Int. J. Equity Health 2020, 19, 1–13. [Google Scholar] [CrossRef]
- Key Barriers to Women’s Access to HIV Treatment: A Global Review|UN Women—Headquarters. Available online: https://www.unwomen.org/en/digital-library/publications/2017/12/key-barriers-to-womens-access-to-hiv-treatment (accessed on 6 September 2024).
- Gari, S.; Doig-Acuña, C.; Smail, T.; Malungo, J.R.; Martin-Hilber, A.; Merten, S. Access to HIV/AIDS care: A systematic review of socio-cultural determinants in low and high income countries. BMC Health Serv. Res. 2013, 13, 1–198. [Google Scholar] [CrossRef]
- Toth, M.; Messer, L.C.; Quinlivan, E.B. Barriers to HIV Care for Women of Color Living in the Southeastern US Are Associated with Physical Symptoms, Social Environment, and Self-Determination. AIDS Patient Care STDs 2013, 27, 613–620. [Google Scholar] [CrossRef]
- Pienaar, M.; van Rooyen, F.C.; Walsh, C.M. Household food security and HIV status in rural and urban communities in the Free State province, South Africa. SAHARA J 2017, 14, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.A.; Snow, R.C. The built environment & the impact of neighborhood characteristics on youth sexual risk behavior in Cape Town, South Africa. Health Place 2012, 18, 1088–1100. [Google Scholar] [PubMed]
- Ellen, I.G.; Mijanovich, T.; Dillman, K.-N. Neighborhood Effects on Health: Exploring the Links and Assessing the Evidence. J. Urban Aff. 2001, 23, 391–408. [Google Scholar] [CrossRef]
- Santos, M.M.D.; Kruger, P.; Mellors, S.E.; Wolvaardt, G.; van der Ryst, E. An exploratory survey measuring stigma and discrimination experienced by people living with HIV/AIDS in South Africa: The People Living with HIV Stigma Index. BMC Public Health 2014, 14, 80. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Farkhad, B.F.; Chan, M.-P.S.; Michels, A.; Albarracin, D.; Wang, S. Spatial accessibility to HIV testing, treatment, and prevention services in Illinois and Chicago, USA. PLoS ONE 2022, 17, e0270404. [Google Scholar] [CrossRef]
- Kimaru, L.J.; Habila, M.A.; Mantina, N.M.; Madhivanan, P.; Connick, E.; Ernst, K.; Ehiri, J. Neighborhood characteristics and HIV treatment outcomes: A scoping review. PLoS Glob. Public Heal. 2024, 4, e0002870. [Google Scholar] [CrossRef]
- Schinas, G.; Schinas, I.; Ntampanlis, G.; Polyzou, E.; Gogos, C.; Akinosoglou, K. Bone Disease in HIV: Need for Early Diagnosis and Prevention. Life 2024, 14, 522. [Google Scholar] [CrossRef] [PubMed]
- Miszkiewicz, J.J.; Cooke, K.M. Socio-economic Determinants of Bone Health from Past to Present. Clin. Rev. Bone Miner. Metab. 2019, 17, 109–122. [Google Scholar] [CrossRef]
- Zhu, B.; Hu, S.; Guo, J.; Dong, Z.; Dong, Y.; Li, F. Differences in the global exposure, mortality and disability of low bone mineral density between men and women: The underestimated burden in men. BMC Public Health 2023, 23, 1–13. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, X.; Wu, J.; Lin, X.; Zhou, X.; Zhu, Z.; Pan, X.; Xu, J.; Qiao, J.; Zhang, T.; et al. The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990–2019. Front. Endocrinol. 2022, 13, 882241. [Google Scholar] [CrossRef]
- Gruszczyńska, E.; Rzeszutek, M. HIV/AIDS stigma accumulation among people living with HIV: A role of general and relative minority status. Sci. Rep. 2023, 13, 10709. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Lopez, A.; White, T.M.; Fuster-RuizdeApodaca, M.J.; Lazarus, J.V. Prevalence and sociodemographic determinants of public stigma towards people with HIV and its impact on HIVtesting uptake: A cross-sectional study in 64 low- and middle-income countries. HIV Med. 2024, 25, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Halvorsen, K.; Win, M.T.; Yancey, M.; Rbil, N.; Chatterjee, A.; Jivanelli, B.; Khormaee, S. Clinical spine care partnerships between high-income countries and low-and-middle-income countries: A scoping review. PLoS ONE 2023, 18, e0287355. [Google Scholar] [CrossRef]
- Erdélyi, A.; Pálfi, E.; Tűű, L.; Nas, K.; Szűcs, Z.; Török, M.; Jakab, A.; Várbíró, S. The Importance of Nutrition in Menopause and Perimenopause—A Review. Nutrients 2023, 16, 27. [Google Scholar] [CrossRef]
- Whitcomb, B.W.; Purdue-Smithe, A.C.; Szegda, K.L.; Boutot, M.E.; Hankinson, S.E.; Manson, J.E.; Rosner, B.; Willett, W.C.; Eliassen, A.H.; Bertone-Johnson, E.R. Cigarette Smoking and Risk of Early Natural Menopause. Am. J. Epidemiol. 2017, 187, 696–704. [Google Scholar] [CrossRef]
- Biver, E.; Calmy, A.; Aubry-Rozier, B.; Birkhauser, M.; Bischoff-Ferrari, H.A.; Ferrari, S.; Frey, D.; Kressig, R.W.; Lamy, O.; Lippuner, K.; et al. Diagnosis, prevention, and treatment of bone fragility in people living with HIV: A position statement from the Swiss Association against Osteoporosis. Osteoporos. Int. 2019, 30, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Kebaetse, M.; Nkhwa, S.; Mogodi, M.; Masunge, J.; Gureja, Y.P.; Ramabu, M.; Mmopelwa, T.; Sharif, I.; Orford, A.; Harvey, N.C.; et al. A country-specific FRAX model for Botswana. Arch. Osteoporos. 2021, 16, 90. [Google Scholar] [CrossRef]
- Kumbale, C.M.; Voit, E.O. Toward Personalized Medicine for HIV/AIDS. J. AIDS HIV Treat. 2021, 3, 37–41. [Google Scholar]
- Lei, J.J.H.; Pereira, B.; Moyle, G.; Boffito, M.; Milinkovic, A. The benefits of tenofovir discontinuation with or without bisphosphonate therapy in osteoporotic people living with HIV. HIV Med. 2021, 22, 816–823. [Google Scholar] [CrossRef]
- Finnerty, F.; Walker-Bone, K.; Tariq, S. Osteoporosis in postmenopausal women living with HIV. Maturitas 2016, 95, 50–54. [Google Scholar] [CrossRef]
Study Type | Fracture Site | Findings |
---|---|---|
Cross-sectional [42] | Lumbar Spine, Femoral Neck, Total Hip | WLHIV had a 6.3% greater incidence of at least one vertebral fracture. WLHIV had lower femoral neck BMD (p = 0.012) and lower total hip BMD (p = 0.041). 22/104 WLHIV had osteoporosis. However, they were not found to be on any treatment. |
Population-based cohort [43] | Hip | 41.9% of the population aged 65 and above was female. HIV status was not associated with increased hip fracture risk: HR 1.02, 95% CI 0.78–1.34 p > 0.05. |
Systematic review and meta-analysis [44] | Vertebral | PLHIV had an odds ratio of vertebral fractures of 2.3 (95% CI 1.37, 3.85, I2 98.2% p < 0.00001) when compared to non-infected individuals. |
Population-based cohort [45] | Hip | Older patients with HIV were more likely to experience a hip fracture: HR 2.11 [1.05–4.22], p = 0.035). |
Population-based cohort [12] | Hip, Vertebral | FRAX-estimated risk for hip and major osteoporotic fractures was statistically higher in PLWH (p < 0.001). |
Cross-sectional [23] | Radius | Post-menopausal WLHIV had a greater risk of lower BMD and risk of fracture at the proximal and distal radius (p = 0.048) |
ART Class | Key Drugs | Mechanism of Bone Loss | BMD Impact Findings | Source(s) |
---|---|---|---|---|
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) | TDF (Tenofovir Disoproxil Fumarate), TAF (Tenofovir Alafenamide) |
|
| [156] |
Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) | Efavirenz (EFV), Nevirapine |
|
| [156,157] |
Protease Inhibitors (PIs) | Atazanavir, Darunavir |
|
| [156,157] |
Integrase Strand Transfer Inhibitors (INSTIs) | Dolutegravir (DTG), Raltegravir (RAL), Elvitegravir (EVG) |
|
| [156,157] |
Combination Therapy | TDF/EFV, TAF/DTG |
|
| [156,157] |
Risk Factor | Description |
---|---|
Knowledge, attitude, and practice | Ignorance and misconception about menopause. There is a need to increase knowledge and attitude and practice of WLHIV with regard to how to deal with menopause symptoms and protect themselves from risk of fractures [164]. |
Compliance with medication | Ensure patients have adequate compliance with medication. Aim to discuss compliance at every health check-up or point of contact [164]. |
Nutrition | Poor nutritional intake has been demonstrated in WLHIV, leading to vitamin D, calcium, magnesium, and phosphorus deficiencies [164]. Nutritional deficiencies in WLHIV are caused by malabsorption due to HIV and ART and worsened by food insecurity in low-income areas, leading to poor access to nutrient-rich diets [165,166]. |
Smoking | Smoking increases the risk of osteoporosis and fractures and is more common among HIV-positive individuals [164,167]. |
Alcohol use | Excessive alcohol consumption negatively impacts bone health and is a risk factor for low BMD [164,167]. |
Physical activity | Exercise, including combined resistance and aerobic training, can slow down bone loss in individuals with HIV [164]. |
Obesity | Obesity is a modifiable risk factor that can increase bone loss in individuals with HIV [164]. |
Study Source | Study Type | Population | Findings |
---|---|---|---|
[23,40,179,180] | Cross-sectional | Perimenopausal women in South Africa, HIV-infected, cART-naïve individuals in South Africa, Women in NorthWest province, South Africa PLHIV who are older than 50 years of age in Thailand PLHIV in western India who were on long-term cART vs. cART-naïve Brazilian post-menopausal WLHIV on cART living in the Amazon |
|
[181] | Longitudinal (5 years) | 450 women aged 40–60 in Soweto, South Africa | |
[182,183,184,185,186,187,188] | Review | Post-menopausal women in South Africa, rural South Africa, sub-Saharan Africa, resource-limited settings in South Africa, African nations using cART, various African regions and ethnic groups (mainly in the Gambia, Nigeria, Kenya, and Cameroon) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshaid, M.; Heidari, A.; Hassan, A.; Mital, D.; Pearce, O.; Panourgia, M.; Ahmed, M.H. Bone Loss and Fractures in Post-Menopausal Women Living with HIV: A Narrative Review. Pathogens 2024, 13, 811. https://doi.org/10.3390/pathogens13090811
Jamshaid M, Heidari A, Hassan A, Mital D, Pearce O, Panourgia M, Ahmed MH. Bone Loss and Fractures in Post-Menopausal Women Living with HIV: A Narrative Review. Pathogens. 2024; 13(9):811. https://doi.org/10.3390/pathogens13090811
Chicago/Turabian StyleJamshaid, Maryam, Amirmohammad Heidari, Ahmed Hassan, Dushyant Mital, Oliver Pearce, Maria Panourgia, and Mohamed H. Ahmed. 2024. "Bone Loss and Fractures in Post-Menopausal Women Living with HIV: A Narrative Review" Pathogens 13, no. 9: 811. https://doi.org/10.3390/pathogens13090811
APA StyleJamshaid, M., Heidari, A., Hassan, A., Mital, D., Pearce, O., Panourgia, M., & Ahmed, M. H. (2024). Bone Loss and Fractures in Post-Menopausal Women Living with HIV: A Narrative Review. Pathogens, 13(9), 811. https://doi.org/10.3390/pathogens13090811