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Abstract: Industrial robots can cause servo system instability during operation due to
friction between joints and changes in end loads, which results in jittering of the robotic
arm. Therefore, this paper proposes a hybrid sparrow search algorithm (HSSA) method for
PID parameter optimization. By studying the optimization characteristics of the genetic
algorithm (GA) and sparrow search algorithm (SSA), the method combines the global
optimization ability of GA and the local optimization ability of SSA, thus effectively
reducing the risk of SSA falling into local optimum and improving the ability of SSA to
find global optimization solutions. On the basis of the traditional PID control algorithm,
HSSA is used to intelligently optimize the PID parameters so that it can better meet the
nonlinear motion of the industrial robot servo system. It is proven through experiments
that the HSSA in this paper, compared with GA, SSA, and traditional PID, has a maximum
improvement of 73% in the step response time and a maximum improvement of more than
95% in the iterative optimization search speed. The experimental results show that the
method has a good suppression effect on the jitter generated by industrial robots in motion,
effectively improving the stability of the servo system, so this work greatly improves the
stability and safety of industrial robots in operation.

Keywords: industrial robotics; hybrid sparrow search algorithm; PID optimization; servo
system stability

1. Introduction
With the increasing cost of manual labor in recent years, people are also paying more

attention to the working environment and safety, and the demand for industrial robots
to replace workers is also increasing. In more and more industrial production, industrial
robots have been widely used by people in highly repetitive, environmentally harsh, and
complex and dangerous industry positions, such as mechanical and electronic, medical
and pharmaceutical, automobile manufacturing, industrial production and aerospace
industries. Industrial robots are mainly used for handling, welding, cutting, spraying,
grinding, and palletizing [1–4]. As the application scenarios of industrial robots become
more and more extensive, the requirements for the service life, operational accuracy, and
stability of industrial robots become higher and higher.

The three main technical cores of industrial robots are the controller in the control
system, the servo motor in the drive system, and the precision reducer in the mechanical
system. As one of the three core technologies, the servo control system of industrial
robots has the characteristics of nonlinearity, multiple variables, strong coupling, etc.,
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and to realize closed-loop control, most of the servo control systems use the traditional
integer order PID control [5–9]. Therefore, the control of servo motor PID parameters
is very important for the operational accuracy and stability of industrial robots. With
the deepening of research, more and more intelligent algorithms are being introduced
into the classical PID control to obtain more intelligent PID controllers, such as BP neural
networks [10–12], particle swarm algorithms [13,14], genetic algorithms [15,16], sparrow
algorithms [17,18], and single neuron [19,20] algorithms. Although all these methods make
the PID control more intelligent, the mathematical model-based PID self-tuning still has
the disadvantages of long identification time and low identification accuracy, which makes
the use of self-tuning PID controller algorithms in practice very limited.

A sparrow search algorithm (SSA) is a new intelligent optimization algorithm pro-
posed by Jiankai Xue in 2019 [21]. The principle of the SSA mathematical model is mainly
to simulate the behavior of sparrows searching for food and avoiding natural enemies.
The SSA searches for the optimal solution by progressively improving the current solu-
tion, which is to find a relatively good local optimal solution, and it has a high searching
efficiency in problems with a small solution space. However, the SSA only focuses on the
local improvement of the current solution and does not maintain the global information,
so it is easy to fall into the local optimal solution and not find the global optimal solution.
Zhang [22] proposed an improved PID control method for the SSA in order to improve
the accuracy of PID and to effectively solve the problem of the SSA easily falling into
the local optimal problem. Ouyang [23] proposed an improved SSA to optimize the PID
parameters for the problem of the SSA with reduced population diversity that easily falls
into the local optimum and, finally, improved the global optimization-seeking ability of
the SSA and enhanced the convergence speed and the ability to jump out of the local
optimal solution. Liu [24] proposed an improved SSA to optimize the PID for the problem
of the SSA with reduced population diversity at the later stage, which easily falls into the
local optimum. The optimized PID has better accuracy and stability and can be better
applied to engineering projects. Not only do some scholars improve the SSA itself, but
some researchers combine the sparrow algorithm with other algorithms. Raj [25] effectively
improved the robustness and stability of the PID controller by combining the sparrow with
the vulture. Fadheel [26] utilized the grey wolf to assist the sparrow, effectively suppressing
the oscillation of the PID parameter changes and improving the stability of the controller.
Huang [27] combined the BP neural network and sparrow search algorithm to effectively
improve the accuracy and robustness of the PID controller. At present, the research on
the stability of the servo system of industrial robots using the sparrow search algorithm is
relatively scarce. The strong coupling of industrial robots, the change of friction between
the joints, and the change of the end load will cause perturbations to the system so that the
servo control system cannot reach a stable state in a very short period.

In order to increase the anti-interference ability of industrial robots, reduce the jitter
in the working process, and further improve the stability of the servo system, this paper
proposes a hybrid sparrow search algorithm (HSSA) PID parameter optimization method.
The main contributions of this paper are twofold:

(1) To address the shortcomings of SSA’s insufficient global optimization search capa-
bility, the characteristics of GA’s strong global optimization search capability are utilized
to improve the SSA in a targeted manner and enhance its ability to jump out of the local
optimal solution.

(2) In the traditional PID controller, the use of a HSSA to optimize and adjust the PID
parameters, so that it can find the optimal solution more quickly, inhibit the jitter of indus-
trial robots during work and, at the same time, improve the stability of the servo system.
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The rest of this paper is organized as follows: Section 2 is about the principles and
methods of traditional PID controllers. Section 3 is the main principle and method of the
algorithm presented in this paper. Section 4 focuses on the experiments and analysis of the
servo system stability. Section 5 mainly summarizes the experiments and methods of the
servo system stability of industrial robots, as well as the outlook of future work.

2. Study of Conventional PID Control Algorithms
Classical PID control algorithms are widely used in many fields, such as traffic man-

agement, robotics, and aerospace exploration due to their simplicity and ease of implemen-
tation. The control process consists of the following steps: 1. Real-time feedback signals are
obtained from the controlled object through the sensors of the industrial robot, which may
include information such as position, speed, angle, etc. 2. The error signal is transmitted
between the desired value and the actual value to the PID controller. 3. The PID controller
processes and calculates the error signal by using set proportional, integral, and differential
parameters, and the calculated control signal passes through the actuator and acts on the
controlled object to realize the regulation of its state. 4. Through continuous adjustment and
optimization, the actual value of the system output gradually approaches the desired value
and, finally, achieves the goal of precise control. This control method has good robustness
and adaptability, can be applied to different types of control systems, and has achieved
wide success in practice.

The basic principle is shown in Figure 1.
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In Figure 1, r(t) denotes the preset desired value, y(t) denotes the actual value of the
system output, the control quantity output by the PID controller is u(t), and the error signal
is e(t).

e(t) = r(t)− y(t) (1)

The proportional link, integral link, and differential link are the three core links of
the PID classical controller, each having the same importance and a different role. The
following three links of the classical PID control algorithm are introduced:

2.1. Proportional Control Link

The proportional control link reflects the sensitivity of the controller to errors and
reduces the error e(t) between the desired value r(t) and the actual value of the system
output y(t), which is the basic and important control link in the classical PID control
algorithm. Assuming that only the proportional control link is used in the controller, the
response speed of the system will be faster, but the steady-state error will increase, which
will easily lead to oscillations.

2.2. Integral Control Link

In order to maintain and improve the stability and accuracy of the control system,
eliminating the steady-state error of the control system is the task of the integral control
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link, which is the static link of the control system. Assuming that only the integral control
link is used in the controller, although the purpose of eliminating the steady-state error can
be achieved, the response speed of the system will be reduced, resulting in the occurrence
of integral saturation.

2.3. Differential Control Link

The purpose of the integral control loop in the controller is to suppress the oscillations
and overshoots of the system, thus improving the dynamic response and immunity to
interference. Adding only the differential control link in the controller can suppress the
oscillation and overshoot of the system, but it will easily lead to noise interference, impaired
system stability, and other problems.

In summary, the three control links of the PID classical controller interact with each
other, and the parameters are adjusted according to the specific controlled object and
requirements, which can make the system control more accurate. The above-described pro-
portional control link, integral control link, and differential control link linear superposition
can be composed of a PID classical control algorithm expression:

u(t) = KPe(t) + Kt

∫ T

0
e(t)dt + KD

de(t)
dt

(2)

In Equation (2), KD = KPTD, KD denotes the differential coefficient, and TD denotes
the differential time constant.

Although the traditional PID controller is simple and easy to realize, there are some
disadvantages: the parameters of the control algorithm are fixed and cannot be adaptively
adjusted to meet the needs of industrial robots under different external factors; control
parameters are difficult to adjust and need a certain amount of experience and professional
knowledge in order to support the adjustment of the PID parameters; control of nonlinear
systems, such as poor and so on, may lead to the consequences of industrial robots, includ-
ing control accuracy and stability decline, and may even cause economic losses such as
industrial product scrap.

In recent years, model predictive control (MPC) has been widely adopted in industrial
applications due to its ability to handle multi-variable systems and constraints and antici-
pate future system states based on a predictive model. Studies such as [28,29] demonstrate
MPC’s effectiveness in optimizing performance for nonlinear and dynamic systems. How-
ever, MPC has significant drawbacks, including high computational complexity, sensitivity
to model inaccuracies, and the need for real-time optimization, which can make it less
practical for time-sensitive industrial applications such as robotic servo systems.

In contrast, PI control, despite its simplicity, is widely preferred in such scenarios due
to its ease of implementation, low computational requirements, and proven effectiveness in
stabilizing systems. The proposed HSSA-optimized PID controller enhances traditional
PI control by intelligently tuning parameters to handle nonlinearities and disturbances,
thereby narrowing the performance gap with advanced control strategies like MPC. This
makes the HSSA-optimized PID particularly suitable for real-time industrial applications
where computational simplicity and robustness are critical. The experimental results
presented in Section 4 confirm that the HSSA significantly improves system stability
and response time, underscoring its practical advantages over MPC in scenarios where
computational efficiency and real-time performance are paramount.

Therefore, in order to improve the control performance of industrial robots and the
adaptability of control algorithms, this paper explores the optimization of PID control
algorithms for industrial robots.
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3. Research on Hybrid Sparrow Search Algorithm (HSSA)
3.1. Traditional GA

In the 1970s, John Holland in the United States proposed the GA, which is designed
based on the laws of biological evolution in nature, and its core idea is to simulate the
natural evolutionary process to search for the optimal solution. When solving with a GA,
the set of all practical solutions to the problem is called the population, and each solution
in the population is called an individual (also known as a chromosome).

The general process of the traditional GA consists of operations such as generating
the initialized number of populations N, calculating the individual fitness function values,
selection, crossover, and mutation, as shown in Figure 2.
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Figure 2. A flowchart of the genetic algorithm.

3.2. Traditional SSA

SSA algorithm is a swarm intelligence optimization algorithm proposed by Xue et al.
by simulating the foraging mechanism of sparrows, and there are three roles in the opti-
mization model: discoverer, follower, and scout. The discoverer is responsible for searching
for the location with sufficient food in the whole search area and providing a foraging
area or direction for all the followers. The discoverer is not static in the population; as
long as the sparrow can search for a better food location, it can become the discoverer, but
the proportion of the discoverers in the whole population is fixed. And the discoverer is
affected by predators. There will be two states: when there is no predator around, the
discoverer will enter the wide area search; otherwise, all the sparrows will move to the
safe area. So in each generation of the search, the position of the discoverer is updated
according to Equation (3):

Xt+1
i =

{
Xt

i · exp( −i
α·T ), R < ST

Xt
i + Q·L, R ≥ ST

(3)

where t denotes the current iteration, and T is the maximum number of iterations and
denotes the ith sparrow position at t iterations. α is a random number within (0,1), Q is a
random number obeying a normal distribution, L is a 1×D matrix, D is the dimension size
where all elements have a value of 1, and R (R ∈ [0, 1]) and ST (ST ∈ [0.5, 1]) are the set
alarm and safety values.
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The followers will always observe the behavior of the discoverer and adjust their
position with the behavior of the discoverer; the position of the followers is updated as
shown in Equation (4):

Xt+1
i

 Q· exp(Xt
worst−Xt

i
i2 ), i > n/2

Xt+1
p +

∣∣∣Xt
i − Xt+1

p

∣∣∣·A+·L, i ≤ n/2
(4)

where Xt
worst denotes the global worst position of the current iteration t, A denotes a 1xD

matrix and its elements are randomly assigned to 1 or −1, and A+ is the pseudo-inverse
matrix of matrix A. Xt+1

p is the best position found by the discoverer. When a follower fails
to compete with a finder when i ≥ n/2, the follower’s food source is insufficient and it
needs to search for food in a wider area.

The scout will realize the danger in the population and, thus, adjust its overall po-
sition in the sparrow population, which is randomly generated in the whole population,
accounting for 10% to 20% of the whole population and updated as per Equation (5)
that follows:

Xt
best =

 Xt
best + β·

∣∣Xt
i − Xt

best

∣∣, fi > fg

Xt
i + K·( |X

t
i−Xt

worst|
( fi− fω)+ε

), fi = fg
(5)

where Xt
best denotes the global best position, β is a step control parameter, K is a random

number in [−1, 1], fi is the current individual fitness, and fg and fω are the current global
best and worst fitness values. ε is the smallest constant to avoid divide-by-zero error.
When fg > fω, it means that the sparrow is at the edge of the population and in a safe
state; while fg = fω, it means that the sparrow realizes the danger and needs to move to
another position.

3.3. Hybrid Sparrow Search Algorithm (HSSA)

The sparrow search algorithm has advantages in local search problems but limitations
in dealing with global optimal problems, while the genetic algorithm has good global search
ability and can quickly search out all the solutions in the solution space without falling into
the trap of rapid decline of local optimal solutions. Based on the above observations, this
paper organically combines SSA and GA to form a two-stage optimization process:

Step one: Global search (GA stage)
In the first stage of the optimization process, the genetic algorithm (GA) is employed

to conduct a thorough and systematic global search across the entire solution space. The GA
begins by encoding potential solutions as chromosome-like individuals, with the random
initialization of a population P(t) represented as:

P(t) =
{

x1, x2, . . . , xN), xi ∈ Rd (6)

Each individual xi is evaluated using a fitness function f (x), which measures the
quality of the solution. The optimization goal is typically formulated as:

f (x) → max(ormin), i = 1, 2, . . . , N (7)

These individuals are then subjected to a series of biology-inspired operations, includ-
ing selection. Individuals are selected based on their fitness, often using a roulette-wheel
selection scheme. The probability of selecting an individual is proportional to its fitness:

probability(xi) =
f (xi)

∑N
j=1 f (xi)

(8)
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The fittest individuals are chosen to propagate to the next generation; selected individ-
uals undergo crossover to produce offspring. A common crossover formula is:

xnew = αxa + (1 − α)xb, α ∈ [0, 1] (9)

where xa and xb are parent solutions, and α controls the proportion of contribution from
each parent. And mutation introduces random variations to enhance diversity and avoid
premature convergence. The mutation formula is:

xnew, i = xi + δ, δ ∼ U(−σ, σ) (10)

where σ is the mutation range, and U( −σ, σ) represents a uniform distribution.
Through these iterative steps, GA is capable of efficiently navigating the vast and

complex solution space, uncovering regions with high-potential solutions. Its robustness
and ability to handle nonlinear and multimodal problems make it particularly effective
for large-scale searches. GA’s global search capability is crucial for the efficiency of the
overall optimization process. GA uses population-based methods that allow for parallel
exploration of many potential solutions simultaneously, dramatically reducing the time
required to explore vast and high-dimensional search spaces. The evolutionary operators
(selection, crossover, and mutation) facilitate broad exploration without becoming trapped
in local minima, enabling the algorithm to quickly eliminate suboptimal regions and focus
on promising areas. By leveraging these evolutionary strategies, GA not only accelerates
the discovery of promising areas but also ensures that the algorithm explores a diverse
range of solutions, avoiding being trapped in local optima. This stage serves as the
foundation for subsequent optimization, laying the groundwork for more refined and
localized searches. The global search phase of GA ensures that HSSA does not fall into
the traps of local optimization as it thoroughly explores the entire solution space. By
doing so, GA guarantees that the algorithm does not prematurely converge to suboptimal
solutions. This broad exploration enhances the optimization accuracy of the HSSA by
identifying regions with better potential solutions before transitioning to the SSA phase for
further refinement.

Step two: Localized search (SSA stage)
Once the global search phase is completed, the optimization process transitions into a

more focused stage involving the sparrow search algorithm (SSA). This stage is specifically
designed to perform localized searches, refining the solutions identified in the GA phase,
and the solutions obtained from the GA stage are used to initialize the sparrow population:

X(t) = {x1, x2, . . . , xN} (11)

The best solution found so far is denoted as xbest .
Discoverers are responsible for global exploration. Their positions are updated as follows:

xi(t + 1) =

{
xi(t)· exp( −i

β·T ), R1 < ps

xi(t) + K·(xi(t)− xbest), R1 ≥ ps
(12)

where R1 ∈ [0, 1] is a random number; ps is the safety threshold for detecting danger; β

controls the step size; T is the current iteration; K is a random step size factor.
Followers adjust their positions based on the discoverers’ locations and their rela-

tive fitness:
xi(t + 1) = xi(t) + S·(xbest − xi(t)) + L·(xworst − xi(t)) (13)
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where S and L are random factors controlling the step size; xworst represents the
least-fit individual.

To simulate danger awareness, sparrows can adjust their behavior dynamically when
the safety threshold ps is exceeded:

xi(t + 1) = xbest + γ·|xi(t)− xbest| (14)

where γ is a random factor controlling the degree of adjustment.
The SSA operates by modeling the behavior of sparrows in a flock where individuals

adjust their positions dynamically based on both local information (positions of nearby
individuals) and global information (the overall distribution of the population). This dual-
layered strategy allows SSA to balance exploration and exploitation effectively, covering a
broad search space while honing in on regions with high potential for optimal solutions.
The SSA phase improves the computational efficiency of the overall algorithm by focusing
the search on promising regions identified by GA. Unlike traditional exhaustive searches,
SSA’s adaptive mechanism allows it to exploit local information effectively, optimizing
solutions with fewer iterations. This reduces the need for broad exploration and, thus,
decreases the total computational burden. SSA’s ability to self-organize and adjust search
intensity based on fitness values further ensures that it refines solutions with a minimal
computational cost.

The adaptability of the SSA flock is a key strength of this algorithm. By continuously
updating their positions through intelligent interactions, sparrow individuals ensure that
no promising area is overlooked. This phase complements the global search by focusing on
fine-tuning and narrowing down the search space to achieve high precision in identifying
the best possible solutions. Furthermore, the SSA’s ability to self-organize and adjust its
search intensity makes it particularly suitable for large-scale optimization problems where
efficient exploration and exploitation are critical for success. The SSA phase significantly
improves the accuracy of the solutions obtained from the GA phase. While GA ensures
that the solution space is explored thoroughly, SSA’s localized search allows for fine-tuning
of solutions, adjusting parameters to maximize their performance. This dual-layered
optimization approach guarantees that solutions are not only optimal in their broader
regions but are also precise and well-suited to the specific problem.

The combination of GA’s global search and SSA’s localized search forms a hybrid
optimization process that offers both enhanced algorithm efficiency and optimization
accuracy. The global search phase (GA) rapidly narrows down the potential solution space,
identifying promising areas while maintaining computational efficiency. The localized
search phase (SSA) then fine-tunes the solutions, ensuring that the results obtained are not
only close to the global optimum but also precise and well-adjusted.

By integrating these two powerful algorithms, HSSA ensures a highly efficient and
accurate optimization process, which is critical for solving complex and large-scale prob-
lems, such as those encountered in industrial robot servo systems. The efficiency of the GA
phase ensures that the algorithm quickly converges to promising regions of the solution
space, while the accuracy of the SSA phase ensures that the optimal solutions are finely
tuned and highly precise.

This hybrid approach significantly improves both the efficiency of finding solutions
and the accuracy of the final optimized outcomes. The overall performance of the algorithm
is superior to the individual contributions of GA or SSA alone as it takes advantage of both
global exploration and local exploitation. The specific workflow for the localized search
phase is visually represented in Figure 3, providing a clear and structured overview of its
implementation process



Actuators 2025, 14, 49 9 of 17

Actuators 2025, 14, x FOR PEER REVIEW 9 of 18

By integrating these two powerful algorithms, HSSA ensures a highly efficient and 
accurate optimization process, which is critical for solving complex and large-scale prob-
lems, such as those encountered in industrial robot servo systems. The efficiency of the 
GA phase ensures that the algorithm quickly converges to promising regions of the solu-
tion space, while the accuracy of the SSA phase ensures that the optimal solutions are 
finely tuned and highly precise.

This hybrid approach significantly improves both the efficiency of finding solutions 
and the accuracy of the final optimized outcomes. The overall performance of the algo-
rithm is superior to the individual contributions of GA or SSA alone as it takes advantage 
of both global exploration and local exploitation. The specific workflow for the localized 
search phase is visually represented in Figure 3, providing a clear and structured over-
view of its implementation process

Figure 3. A flowchart of the HSSA.Figure 3. A flowchart of the HSSA.

Figure 3 illustrates the workflow of the hybrid sparrow search algorithm (HSSA)
and its integration with the PID control system for optimizing the stability of industrial
robot servo systems. The figure highlights the dual-phase optimization process: the
global search phase (conducted by the GA) and the localized search phase (handled by
the SSA). The optimization process outputs dynamically tuned PID parameters (Kp, Ki,
Kd), which are provided to the PID controller to minimize the system error (e(t)) and
improve performance metrics such as rise time, overshoot, and steady-state error. The
GA phase initializes and explores a wide range of candidate solutions, identifying regions
with high potential for optimization. These solutions are then fine-tuned in the SSA phase
where discoverers and followers iteratively refine parameters by balancing global and local
information. The optimized control signal (u(t)) is applied to the servo motor to correct
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deviations caused by nonlinearities, external disturbances, and load changes. This hybrid
approach addresses the nonlinear, multivariate, and strongly coupled characteristics of
industrial robot servo systems, enhancing both computational efficiency and optimization
accuracy. The annotated workflow in Figure 3 clarifies the input error signal (e(t)) to the
PID controller and the output control signal (u(t)), which ensures precise and stable motion
of the servo system.

4. Analysis of Experimental Data and Results
In order to prove that the HSSA algorithm in this paper has a better effect on opti-

mizing the PID parameters and, at the same time, can better improve the stability of the
servo system of industrial robots, this paper carries out comparison experiments from
two aspects. The first aspect is the simulation experiment of the algorithm performance,
comparing the results of the algorithm in the dimensions of iterative convergence and step
response and analyzing the performance differences of different algorithms to highlight
the superiority of this paper’s HSSA algorithm in terms of performance. The second aspect
is the application of this paper’s algorithm in industrial robots through the monitoring
oscilloscope to compare the results of the industrial robots before and after the addition of
the HSSA in the two dimensions of pulse smoothness and pulse tracking error with and
without load, to analyze the effect of this paper’s algorithm on the suppression of industrial
robot jitter.

4.1. Experimental Environment

To complete the various comparative experiments mentioned above, the experimental
environment used in this paper is shown in Table 1.

Table 1. The hardware and software configuration.

Hardware
Processor 12th Gen Intel(R) Core (TM)

i7-12490F 3.0 GHz(Chengdu, China)
RAM 16 GB (15.8 GB available)

Software
Operating System Windows 11 (64-bit operating system)
Simulation Tool MATLAB R2023a

Experiments used in the six-axis industrial robot, model SYB0805A (5 KG) (SanYi
Intelligent Robotics, Yibin, China), are shown in Figure 4. In this paper, all industrial robot
control experiments will be set up to complete the industrial robot above. The industrial
robot joints and the range of motion and the movement of each joint at the maximum speed
are shown in Table 2.

Actuators 2025, 14, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 4. A six-axis industrial robot. 

Table 2. Joint motion parameters. 

Joint Range of Motion (°) Maximum Speed (*/s) 
J1 −170~170 220 
J2 −90~+90 220 
J3 −90~+90 220 
J4 −170~170 290 
J5 −120~120 337 
J6 −360~360 540 

4.2. Experimental Analysis and Discussion 

4.2.1. Algorithm Performance Analysis 

To evaluate the algorithm’s performance, a second-order control system model is uti-
lized as the testbed, given by: 

2

2 2( )
2

n

n n

G s
s s

ω
ξω ω

=
+ +

 (15)

This model accurately reflects the dynamics of robotic servo systems, incorporating 
parameters such as natural frequency ( nω ) and damping ratio (ξ ) to simulate real-world 

conditions. The experimental parameters used for this analysis are summarized in Table 
3. The results of the simulation experiments are illustrated in Figures 5 and 6. These fig-
ures compare the iterative convergence speed and step response time of the HSSA with 
those of PID, GA, and SSA. The HSSA demonstrates significantly improved performance, 
achieving faster convergence and shorter response times, thereby validating its superior 
optimization capability. 

Table 3. The experimental parameters. 

Parameter PID GA SSA HSSA 
Initial population (N) - 200 

Maximum number of iterations - 500 
Damping ratio (ξ ) 0.7 

Natural frequency ( nω ) 5 rad/s 
Kp 5.0    
Ki 1.0    
Kd 0.01    

Figure 4. A six-axis industrial robot.



Actuators 2025, 14, 49 11 of 17

Table 2. Joint motion parameters.

Joint Range of Motion (◦) Maximum Speed (*/s)

J1 −170~170 220
J2 −90~+90 220
J3 −90~+90 220
J4 −170~170 290
J5 −120~120 337
J6 −360~360 540

4.2. Experimental Analysis and Discussion
4.2.1. Algorithm Performance Analysis

To evaluate the algorithm’s performance, a second-order control system model is
utilized as the testbed, given by:

G(s) =
ω2

n
s2 + 2ξωns + ω2

n
(15)

This model accurately reflects the dynamics of robotic servo systems, incorporating
parameters such as natural frequency (ωn) and damping ratio (ξ) to simulate real-world
conditions. The experimental parameters used for this analysis are summarized in Table 3.
The results of the simulation experiments are illustrated in Figures 5 and 6. These fig-
ures compare the iterative convergence speed and step response time of the HSSA with
those of PID, GA, and SSA. The HSSA demonstrates significantly improved performance,
achieving faster convergence and shorter response times, thereby validating its superior
optimization capability.

Table 3. The experimental parameters.

Parameter PID GA SSA HSSA

Initial population (N) - 200
Maximum number of iterations - 500

Damping ratio (ξ) 0.7
Natural frequency (ωn) 5 rad/s

Kp 5.0
Ki 1.0
Kd 0.01

Upper bound [100, 10, 1]
[0, 0, 0]Lower bound

Dim 3 3
Cross rate 0.6 0.6

Mutation rate 0.05 0.1
Discovery rate (ps) 0.7 0.7
Vigilance rate (pv) 0.2 0.2

Safety threshold (τ) 0.6 0.6

The experimental parameter settings in Table 3 were selected to balance optimization
performance and computational efficiency, ensuring the HSSA effectively optimized the
PID parameters for the industrial robot servo system. The initial population size of 200 was
chosen to provide sufficient diversity in the solution space, facilitating effective global ex-
ploration while maintaining computational feasibility. The maximum number of iterations,
set to 500, was determined through preliminary tests, ensuring the algorithms achieved
convergence without unnecessary computational overhead. The damping ratio (ξ = 0.7)
and natural frequency (ωn = 5 rad/s) were selected to align with the typical dynamics
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of second-order robotic systems, promoting stable operation and minimizing overshoot.
PID parameter ranges (Kp, Ki, Kd) were defined with initial values of 5.0, 1.0, and 0.01,
respectively, and upper bounds of [100, 10, 1] to accommodate the nonlinear behavior of
the servo system and provide ample flexibility for optimization. The dimensionality of the
search space was set to 3, corresponding to the three PID parameters. Algorithm-specific
settings included a crossover rate of 0.6 and a mutation rate of 0.05 for GA, ensuring
genetic diversity and avoiding premature convergence. For the SSA, a discovery rate of
0.7, a vigilance rate of 0.2, and a safety threshold of 0.6 were used to balance exploration
and exploitation effectively. These parameter values were validated through preliminary
experiments and tailored to address the nonlinear, multivariate, and strongly coupled
characteristics of the system, ensuring robust and efficient optimization.
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Figure 5 illustrates the step response of different algorithms, showcasing the superior
performance of the HSSA in adjusting PID parameters. To enhance readability, Table 4
summarizes the specific step response times, highlighting the improvements achieved by
the HSSA. The HSSA achieves a maximum improvement in response time of approximately
73% compared to traditional PID. Notably, the traditional PID and GA-PID algorithms ex-
hibit overshooting, while the HSSA effectively eliminates overshooting and achieves faster
convergence. Compared to the SSA-PID, the HSSA not only has a shorter response time
but also converges more quickly, demonstrating its better global optimization capability
and its ability to suppress servo system jitter.

Table 4. Step response time comparison.

Algorithm Response Time (s) Overshoot (%) Improvement over PID (%)

PID 120 10 -
GA-PID 95 7 20.8%
SSA-PID 75 0 37.5%

HSSA 32 0 73.3%

Figure 6 presents the iterative convergence curves, comparing the performance of
the HSSA, GA, and SSA in terms of convergence speed and optimal solution quality. To
provide more concrete insights, Table 5 summarizes the number of iterations required for
convergence and the quality of the optimal fitness value achieved. The HSSA shows a 95%
improvement in the speed of iterative convergence over GA and achieves a better optimal
value compared to GA and SSA. This underscores HSSA’s superior ability to jump out of
local optima and improve servo system stability.

Table 5. Iterative convergence speed and optimal value comparison.

Algorithm Iterations to
Convergence

Optimal
Fitness Value

Improvement Over GA in
Iterations (%)

GA 210 55 -
SSA 260 49 50%

HSSA 5 40 95%

The results confirm that the HSSA converges the fastest and achieves the best optimal
fitness value, demonstrating its efficiency and robustness in PID parameter optimization.

4.2.2. Algorithm Application Analysis

This section focuses on the practical application of the HSSA algorithm to an industrial
robot (model SYB0805A ( SanYi Intelligent Robotics, Yibin, China)), which has six degrees of
freedom (DoFs). For the experiments, Joint 3—responsible for vertical motion—was selected
for analysis as its movement is critical for ensuring overall stability and performance during
industrial tasks. The experiments evaluated the robot’s performance in two dimensions:
pulse smoothness and pulse tracking error, both with and without load. Using a monitoring
oscilloscope, the motion of the robot joints was analyzed before and after deploying the
HSSA-optimized PID parameters.

The input to the robot during these experiments was a sinusoidal trajectory signal with
an amplitude of 30◦ and a frequency of 0.5 Hz. This input was chosen to simulate typical
operational movements and evaluate the ability of the HSSA algorithm to handle dynamic
and variable-speed conditions. The evaluation focused on assessing improvements in
stability, jitter suppression, and tracking precision.
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Figures 7 and 8 show the pulse smoothness experiments for Joint 3 before and after
deploying the HSSA algorithm. The y-axis (speed) is measured in ◦/s, while the x-axis
(time) is measured in seconds. Before the HSSA deployment (Figure 7), the robotic joint
exhibited irregular and jagged pulse outputs, resulting in significant jitter and instability
during operation. After the HSSA deployment (Figure 8), the pulse outputs became
noticeably smoother, demonstrating the algorithm’s ability to optimize PID parameters
and enhance stability. These results confirm the HSSA’s effectiveness in ensuring consistent
and smooth joint motion, reducing vibrations, and improving control performance.
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The improvements in pulse smoothness are summarized in Table 6. After deploying
the HSSA, the pulse stability index increased by 17%, and the peak jitter was reduced by
13%, highlighting the algorithm’s superior stability performance.

Table 6. A comparison of pulse smoothness.

Parameter Before HSSA
Deployment

After HSSA
Deployment Improvement

Pulse Stability Index 75% 92% +17%
Peak Jitter (%) 18% 5% −13%
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Figures 9 and 10 illustrate the tracking error experiments for Joint 3, both with and
without load. The y-axis (tracking error) is measured in millimeters (mm), and the x-axis
(time) is measured in seconds. Before deploying the HSSA algorithm (Figure 9), the robot
exhibited significant and irregular tracking errors, particularly under load conditions. After
deploying the HSSA algorithm (Figure 10), the tracking errors were greatly reduced and
smoothed, even under load. This demonstrates the HSSA’s superior ability to optimize
PID parameters, improve trajectory tracking precision, and maintain robustness in varying
operational conditions.
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The improvements in the tracking error are summarized in Table 7. The tracking
error without load was reduced by 68%, while the error under load was reduced by 76%,
highlighting the robustness and universality of the HSSA algorithm.

Table 7. A comparison of tracking error.

Condition Before HSSA
Deployment

After HSSA
Deployment Improvement

Tracking Error (No Load) ±2.5 mm ±0.8 mm 68%
Tracking Error (With Load) ±5.0 mm ±1.2 mm 76%
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5. Conclusions
In order to eliminate the jittering of the robotic arm caused by the instability of the

servo system due to the friction between the joints and the change in the end load of
the industrial robots during operation, this paper designs a PID parameter optimization
method with a hybrid sparrow search algorithm (HSSA). By studying the optimization
characteristics of the genetic algorithm (GA) and sparrow search algorithm (SSA), the
method combines the global optimization ability of the GA and the local optimization
ability of the SSA, thus effectively reducing the risk of SSA falling into local optimum
and improving the ability of SSA to find global optimization solutions. Through the
experimental results, we find that the HSSA in this paper has better convergence speed and
optimization ability compared with GA, SSA, and traditional PID, and the response time
is maximally improved by about 73% in the comparison experiment of the step system
response, and the speed of the iterative optimization is maximally improved by more than
95% in the comparison experiment of the iterative convergence. The experiment effectively
proves that HSSA has a good suppression effect on the jitter generated by industrial robots
in motion, effectively improves the stability of the servo system, and effectively ensures the
stability and safety of industrial robots at work. Finally, due to time reasons, we did not
carry out the simulation experiment of adding interference and the comparison experiment
of industrial robots under complex working conditions. The next step will be to carry out
experiments in unknown environments; at the same time, we will carry out more in-depth
research on the influence of interference and external factors.
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