Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioaerosol Samples
2.1.1. Airport MD8
2.1.2. BioSampler
2.1.3. BioSpot-VIVAS
2.2. Wastewater
2.3. qPCR, Library Preparation, and Sequencing
2.4. Bioinformatic Analysis
3. Results
4. Discussion
4.1. Bioaerosol Samples
4.2. Wastewater Samples
4.3. Comparison between Air Sampling System Devices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth System: Climate, Health, and Ecosystem Interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, L.; Wu, D.; Xie, J.; Li, J.; Fu, X.; Cong, Z.; Fu, P.; Zhang, Y.; Luo, X.; et al. Global Airborne Bacterial Community—Interactions with Earth’s Microbiomes and Anthropogenic Activities. Proc. Natl. Acad. Sci. USA 2022, 119, e2204465119. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Das, A.; Lal, H. Bioaerosol and Its Impact on Human Health. In Airborne Particulate Matter; Sonwani, S., Shukla, A., Eds.; Springer Nature: Singapore, 2022; pp. 167–193. ISBN 9789811653865. [Google Scholar]
- Moccia, G.; De Caro, F.; Pironti, C.; Boccia, G.; Capunzo, M.; Borrelli, A.; Motta, O. Development and Improvement of an Effective Method for Air and Surfaces Disinfection with Ozone Gas as a Decontaminating Agent. Medicina 2020, 56, 578. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.; Ciliberto, E.; Cirino, A.M.E.; Capitani, D.; Di Tullio, V. A New Preparation of Doped Photocatalytic TiO2 Anatase Nanoparticles: A Preliminary Study for the Removal of Pollutants in Confined Museum Areas. Appl. Phys. A 2016, 122, 530. [Google Scholar] [CrossRef]
- Greco, E.; Ciliberto, E.; Verdura, P.D.; Lo Giudice, E.; Navarra, G. Nanoparticle-Based Concretes for the Restoration of Historical and Contemporary Buildings: A New Way for CO2 Reduction in Architecture. Appl. Phys. A 2016, 122, 524. [Google Scholar] [CrossRef]
- Greco, E.; Shang, J.; Zhu, J.; Zhu, T. Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega 2019, 4, 20948–20954. [Google Scholar] [CrossRef] [PubMed]
- Šantl-Temkiv, T.; Sikoparija, B.; Maki, T.; Carotenuto, F.; Amato, P.; Yao, M.; Morris, C.E.; Schnell, R.; Jaenicke, R.; Pöhlker, C.; et al. Bioaerosol Field Measurements: Challenges and Perspectives in Outdoor Studies. Aerosol Sci. Technol. 2020, 54, 520–546. [Google Scholar] [CrossRef]
- Mbareche, H.; Brisebois, E.; Veillette, M.; Duchaine, C. Bioaerosol Sampling and Detection Methods Based on Molecular Approaches: No Pain No Gain. Sci. Total Environ. 2017, 599–600, 2095–2104. [Google Scholar] [CrossRef]
- Dybwad, M.; Skogan, G.; Blatny, J.M. Comparative Testing and Evaluation of Nine Different Air Samplers: End-to-End Sampling Efficiencies as Specific Performance Measurements for Bioaerosol Applications. Aerosol Sci. Technol. 2014, 48, 282–295. [Google Scholar] [CrossRef]
- Nieto-Caballero, M.; Savage, N.; Keady, P.; Hernandez, M. High Fidelity Recovery of Airborne Microbial Genetic Materials by Direct Condensation Capture into Genomic Preservatives. J. Microbiol. Methods 2019, 157, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mescioglu, E.; Paytan, A.; Mitchell, B.W.; Griffin, D.W. Efficiency of Bioaerosol Samplers: A Comparison Study. Aerobiologia 2021, 37, 447–459. [Google Scholar] [CrossRef]
- Harnpicharnchai, P.; Pumkaeo, P.; Siriarchawatana, P.; Likhitrattanapisal, S.; Mayteeworakoon, S.; Ingsrisawang, L.; Boonsin, W.; Eurwilaichitr, L.; Ingsriswang, S. AirDNA Sampler: An Efficient and Simple Device Enabling High-Yield, High-Quality Airborne Environment DNA for Metagenomic Applications. PLoS ONE 2023, 18, e0287567. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mbareche, H.; Lindsley, W.G.; Duchaine, C. Field Sampling of Indoor Bioaerosols. Aerosol Sci. Technol. 2020, 54, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Kesavan, J.; Sagripanti, J.-L. Evaluation Criteria for Bioaerosol Samplers. Environ. Sci. Process. Impacts 2015, 17, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Raynor, P.C.; Adesina, A.; Aboubakr, H.A.; Yang, M.; Torremorell, M.; Goyal, S.M. Comparison of Samplers Collecting Airborne Influenza Viruses: 1. Primarily Impingers and Cyclones. PLoS ONE 2021, 16, e0244977. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yan, C.; Alcega, S.G.; Hassard, F.; Tyrrel, S.; Coulon, F.; Nasir, Z.A. Detection and Characterization of Bioaerosol Emissions from Wastewater Treatment Plants: Challenges and Opportunities. Front. Microbiol. 2022, 13, 958514. [Google Scholar] [CrossRef]
- Gelao, V.; Fornasaro, S.; Briguglio, S.C.; Mattiussi, M.; De Martin, S.; Astel, A.M.; Barbieri, P.; Licen, S. Self-Organizing Maps: An AI Tool for Identifying Unexpected Source Signatures in Non-Target Screening Analysis of Urban Wastewater by HPLC-HRMS. Toxics 2024, 12, 113. [Google Scholar] [CrossRef]
- Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic Chemicals in Sewage Sludges. Sci. Total Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef]
- Choi, P.M.; Tscharke, B.J.; Donner, E.; O’Brien, J.W.; Grant, S.C.; Kaserzon, S.L.; Mackie, R.; O’Malley, E.; Crosbie, N.D.; Thomas, K.V.; et al. Wastewater-Based Epidemiology Biomarkers: Past, Present and Future. TrAC Trends Anal. Chem. 2018, 105, 453–469. [Google Scholar] [CrossRef]
- Fracchia, L.; Pietronave, S.; Rinaldi, M.; Giovanna Martinotti, M. Site-Related Airborne Biological Hazard and Seasonal Variations in Two Wastewater Treatment Plants. Water Res. 2006, 40, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Burdsall, A.C.; Xing, Y.; Cooper, C.W.; Harper, W.F. Bioaerosol Emissions from Activated Sludge Basins: Characterization, Release, and Attenuation. Sci. Total Environ. 2021, 753, 141852. [Google Scholar] [CrossRef] [PubMed]
- Lebrero, R.; Bouchy, L.; Stuetz, R.; Muñoz, R. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 915–950. [Google Scholar] [CrossRef]
- Zhao, X.; An, D.; Liu, M.; Ma, J.; Ali, W.; Zhu, H.; Li, M.; Ai, X.; Nasir, Z.A.; Alcega, S.G.; et al. Bioaerosols Emission Characteristics from Wastewater Treatment Aeration Tanks and Associated Health Risk Exposure Assessment during Autumn and Winter. Sci. Total Environ. 2022, 851, 158106. [Google Scholar] [CrossRef] [PubMed]
- Riaz, T.; Shehzad, W.; Viari, A.; Pompanon, F.; Taberlet, P.; Coissac, E. ecoPrimers: Inference of New DNA Barcode Markers from Whole Genome Sequence Analysis. Nucleic Acids Res. 2011, 39, e145. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.A.; Turner, C.R. The Ecology of Environmental DNA and Implications for Conservation Genetics. Conserv. Genet. 2016, 17, 1–17. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N.; et al. Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Bukin, Y.S.; Galachyants, Y.P.; Morozov, I.V.; Bukin, S.V.; Zakharenko, A.S.; Zemskaya, T.I. The Effect of 16S rRNA Region Choice on Bacterial Community Metabarcoding Results. Sci. Data 2019, 6, 190007. [Google Scholar] [CrossRef]
- Santos, A.; Van Aerle, R.; Barrientos, L.; Martinez-Urtaza, J. Computational Methods for 16S Metabarcoding Studies Using Nanopore Sequencing Data. Comput. Struct. Biotechnol. J. 2020, 18, 296–305. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, Present, and Future Perspectives of Environmental DNA (eDNA) Metabarcoding: A Systematic Review in Methods, Monitoring, and Applications of Global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Peccia, J.; Hernandez, M. Incorporating Polymerase Chain Reaction-Based Identification, Population Characterization, and Quantification of Microorganisms into Aerosol Science: A Review. Atmos. Environ. 2006, 40, 3941–3961. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.L.; Darling, A.E.; Eisen, J.A. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community. PLoS ONE 2010, 5, e10209. [Google Scholar] [CrossRef]
- Luhung, I.; Wu, Y.; Ng, C.K.; Miller, D.; Cao, B.; Chang, V.W.-C. Protocol Improvements for Low Concentration DNA-Based Bioaerosol Sampling and Analysis. PLoS ONE 2015, 10, e0141158. [Google Scholar] [CrossRef] [PubMed]
- Behzad, H.; Gojobori, T.; Mineta, K. Challenges and Opportunities of Airborne Metagenomics. Genome Biol. Evol. 2015, 7, 1216–1226. [Google Scholar] [CrossRef]
- Kowalski, M.; Wolany, J.; Pastuszka, J.S.; Płaza, G.; Wlazło, A.; Ulfig, K.; Malina, A. Characteristics of Airborne Bacteria and Fungi in Some Polish Wastewater Treatment Plants. Int. J. Environ. Sci. Technol. 2017, 14, 2181–2192. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M.; Kulig, A.; Miaśkiewicz-Pęska, E. Seasonal Changes in the Concentrations of Airborne Bacteria Emitted from a Large Wastewater Treatment Plant. Int. Biodeterior. Biodegrad. 2016, 115, 11–16. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Li, L.; Xu, G.; Liu, J.; Yang, K. Bacterial Population and Chemicals in Bioaerosols from Indoor Environment: Sludge Dewatering Houses in Nine Municipal Wastewater Treatment Plants. Sci. Total Environ. 2018, 618, 469–478. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, Z.; Huo, Y.; Wang, X.; Wang, Y.; Wu, J.; Huo, M. Particle Size Matters: Distribution, Source, and Seasonality Characteristics of Airborne and Pathogenic Bacteria in Wastewater Treatment Plants. Atmosphere 2023, 14, 465. [Google Scholar] [CrossRef]
- Han, Y.; Li, L.; Wang, Y.; Ma, J.; Li, P.; Han, C.; Liu, J. Composition, Dispersion, and Health Risks of Bioaerosols in Wastewater Treatment Plants: A Review. Front. Environ. Sci. Eng. 2020, 15, 38. [Google Scholar] [CrossRef]
- Han, Y.; Yang, K.; Yang, T.; Zhang, M.; Li, L. Bioaerosols Emission and Exposure Risk of a Wastewater Treatment Plant with A2O Treatment Process. Ecotoxicol. Environ. Saf. 2019, 169, 161–168. [Google Scholar] [CrossRef]
- Korzeniewska, E. Emission of Bacteria and Fungi in the Air from Wastewater Treatment Plants—A Review. Front. Biosci. 2011, S3, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Han, Y.; Liu, J.; Li, L. Aerosols from a Wastewater Treatment Plant Using Oxidation Ditch Process: Characteristics, Source Apportionment, and Exposure Risks. Environ. Pollut. 2019, 250, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, L.; Liu, J.; Zhang, M. Microbial Structure and Chemical Components of Aerosols Caused by Rotating Brushes in a Wastewater Treatment Plant. Environ. Sci. Pollut. Res. 2012, 19, 4097–4108. [Google Scholar] [CrossRef]
- Bruni, E.; Simonetti, G.; Bovone, B.; Casagrande, C.; Castellani, F.; Riccardi, C.; Pomata, D.; Di Filippo, P.; Federici, E.; Buiarelli, F.; et al. Evaluation of Bioaerosol Bacterial Components of a Wastewater Treatment Plant Through an Integrate Approach and In Vivo Assessment. Int. J. Environ. Res. Public Health 2019, 17, 273. [Google Scholar] [CrossRef]
- Singh, N.K.; Sanghvi, G.; Yadav, M.; Padhiyar, H.; Thanki, A. A State-of-the-Art Review on WWTP Associated Bioaerosols: Microbial Diversity, Potential Emission Stages, Dispersion Factors, and Control Strategies. J. Hazard. Mater. 2021, 410, 124686. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Aguilar, M.I.; Fenoll, R.; Roig, A. Effect of the Aeration System on the Levels of Airborne Microorganisms Generated at Wastewater Treatment Plants. Water Res. 2008, 42, 3739–3744. [Google Scholar] [CrossRef] [PubMed]
- Scherwing, C.; Patzelt, D. Sampling of Human Pathogenic Viruses from Air by Gelatin Membrane Filters and Subsequent Detection by PCR Analysis. 2020. Available online: https://www.sartorius.com/resource/blob/459252/6029025e92001053404d1f7485e25c7a/virus-detection-application-note-en-l-sartorius-data.pdf (accessed on 1 April 2024).
- Hogan, C.J.; Kettleson, E.M.; Lee, M.-H.; Ramaswami, B.; Angenent, L.T.; Biswas, P. Sampling Methodologies and Dosage Assessment Techniques for Submicrometre and Ultrafine Virus Aerosol Particles. J. Appl. Microbiol. 2005, 99, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Reponen, T.; Willeke, K.; Wang, Z.; Grinshpun, S.A.; Trunov, M. Survival of Airborne Microorganisms During Swirling Aerosol Collection. Aerosol Sci. Technol. 2000, 32, 184–196. [Google Scholar] [CrossRef]
- Willeke, K.; Lin, X.; Grinshpun, S.A. Improved Aerosol Collection by Combined Impaction and Centrifugal Motion. Aerosol Sci. Technol. 1998, 28, 439–456. [Google Scholar] [CrossRef]
- Hering, S.V.; Stolzenburg, M.R. A Method for Particle Size Amplification by Water Condensation in a Laminar, Thermally Diffusive Flow. Aerosol Sci. Technol. 2005, 39, 428–436. [Google Scholar] [CrossRef]
- Pan, M.; Eiguren-Fernandez, A.; Hsieh, H.; Afshar-Mohajer, N.; Hering, S.V.; Lednicky, J.; Hugh Fan, Z.; Wu, C.-Y. Efficient Collection of Viable Virus Aerosol through Laminar-flow, Water-based Condensational Particle Growth. J. Appl. Microbiol. 2016, 120, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Lednicky, J.; Pan, M.; Loeb, J.; Hsieh, H.; Eiguren-Fernandez, A.; Hering, S.; Fan, Z.H.; Wu, C.-Y. Highly Efficient Collection of Infectious Pandemic Influenza H1N1 Virus (2009) through Laminar-Flow Water Based Condensation. Aerosol Sci. Technol. 2016, 50, i–iv. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; O’Sullivan, O.; Wang, Q.; Nikkilä, J.; Marchesi, J.R.; Smidt, H.; De Vos, W.M.; Ross, R.P.; O’Toole, P.W. Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS ONE 2009, 4, e6669. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Deredjian, A.; Alliot, N.; Blanchard, L.; Brothier, E.; Anane, M.; Cambier, P.; Jolivet, C.; Khelil, M.N.; Nazaret, S.; Saby, N.; et al. Occurrence of Stenotrophomonas Maltophilia in Agricultural Soils and Antibiotic Resistance Properties. Res. Microbiol. 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Park, J.-H.; Seo, K.-H. Presence of Stenotrophomonas Maltophilia Exhibiting High Genetic Similarity to Clinical Isolates in Final Effluents of Pig Farm Wastewater Treatment Plants. Int. J. Hyg. Environ. Health 2018, 221, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Yesmin, L. Sulfur-Oxidizing Plant Growth Promoting Rhizobacteria for Enhanced Canola Performance. U.S. Patent US07491535, 14 April 2009. [Google Scholar]
- Denton, M.; Kerr, K.G. Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 1998, 11, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.; Stabnikov, V.; Zhuang, W.Q.; Tay, J.H.; Tay, S.T.L. Phosphate Removal from the Returned Liquor of Municipal Wastewater Treatment Plant Using Iron-Reducing Bacteria. J. Appl. Microbiol. 2005, 98, 1152–1161. [Google Scholar] [CrossRef]
- Brooke, J.S. Stenotrophomonas Maltophilia: An Emerging Global Opportunistic Pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef]
- Pompilio, A.; Piccolomini, R.; Picciani, C.; D’Antonio, D.; Savini, V.; Di Bonaventura, G. Factors Associated with Adherence to and Biofilm Formation on Polystyrene by Stenotrophomonas maltophilia: The Role of Cell Surface Hydrophobicity and Motility. FEMS Microbiol. Lett. 2008, 287, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic Analysis of Diversity, Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella pneumoniae, an Urgent Threat to Public Health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed]
- Paczosa, M.K.; Mecsas, J. Klebsiella Pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Dong, N.; Zheng, Z.; Lin, D.; Huang, M.; Wang, L.; Chan, E.W.-C.; Shu, L.; Yu, J.; Zhang, R.; et al. A Fatal Outbreak of ST11 Carbapenem-Resistant Hypervirulent Klebsiella Pneumoniae in a Chinese Hospital: A Molecular Epidemiological Study. Lancet Infect. Dis. 2018, 18, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella Pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M.; Macedo, G.; Fatta-Kassinos, D.; Nunes, O.C. Antibiotic Resistance in Urban Aquatic Environments: Can It Be Controlled? Appl. Microbiol. Biotechnol. 2016, 100, 1543–1557. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population Genomics of Klebsiella Pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Holt, K.E. Klebsiella Pneumoniae as a Key Trafficker of Drug Resistance Genes from Environmental to Clinically Important Bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Fine, M.J.; Shlaes, D.M.; Quinn, J.P.; Hooper, D.C.; Johnson, M.P.; Ramphal, R.; Wagener, M.M.; Miyashiro, D.K.; Yu, V.L. Enterobacter Bacteremia: Clinical Features and Emergence of Antibiotic Resistance during Therapy. Ann. Intern. Med. 1991, 115, 585–590. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Cantón, R.; Oliver, A.; Coque, T.M.; Varela, M.D.C.; Pérez-Díaz, J.C.; Baquero, F. Epidemiology of Extended-Spectrum β-Lactamase-Producing Enterobacter Isolates in a Spanish Hospital during a 12-Year Period. J. Clin. Microbiol. 2002, 40, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Davin-Regli, A.; Pagès, J.-M. Enterobacter Aerogenes and Enterobacter Cloacae; Versatile Bacterial Pathogens Confronting Antibiotic Treatment. Front. Microbiol. 2015, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Dam, S.; Pagès, J.-M.; Masi, M. Stress Responses, Outer Membrane Permeability Control and Antimicrobial Resistance in Enterobacteriaceae. Microbiology 2018, 164, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Gotkowska-Płachta, A.; Filipkowska, Z.; Korzeniewska, E.; Janczukowicz, W.; Dixon, B.; Gołaś, I.; Szwalgin, D. Airborne Microorganisms Emitted from Wastewater Treatment Plant Treating Domestic Wastewater and Meat Processing Industry Wastes. Clean Soil Air Water 2013, 41, 429–436. [Google Scholar] [CrossRef]
- Henriksen, S.D. Moraxella, neisseria, branhamella, and acinetobacter. Annu. Rev. Microbiol. 1976, 30, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Espinal, P.; Martí, S.; Vila, J. Effect of Biofilm Formation on the Survival of Acinetobacter Baumannii on Dry Surfaces. J. Hosp. Infect. 2012, 80, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Towner, K.J. Acinetobacter: An Old Friend, but a New Enemy. J. Hosp. Infect. 2009, 73, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zuo, J.; Yu, X.; Shi, X.; Chen, L.; Li, Z. Quantification of Multi-Antibiotic Resistant Opportunistic Pathogenic Bacteria in Bioaerosols in and around a Pharmaceutical Wastewater Treatment Plant. J. Environ. Sci. 2018, 72, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Oerther, D.B.; Pernthaler, J.; Schramm, A.; Amann, R.; Raskin, L. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems. Appl. Environ. Microbiol. 2000, 66, 2154–2165. [Google Scholar] [CrossRef]
- Park, Y.S.; Lee, H.; Lee, K.S.; Hwang, S.S.; Cho, Y.K.; Kim, H.Y.; Uh, Y.; Chin, B.S.; Han, S.H.; Jeong, S.H.; et al. Extensively Drug-Resistant Acinetobacter Baumannii: Risk Factors for Acquisition and Prevalent OXA-Type Carbapenemases—A Multicentre Study. Int. J. Antimicrob. Agents 2010, 36, 430–435. [Google Scholar] [CrossRef]
- Grosso, F.; Quinteira, S.; Peixe, L. Emergence of an Extreme-Drug-Resistant (XDR) Acinetobacter Baumannii Carrying blaOXA-23 in a Patient with Acute Necrohaemorrhagic Pancreatitis. J. Hosp. Infect. 2010, 75, 82–83. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef]
- Jain, R.; Danziger, L.H. Multidrug-Resistant Acinetobacter Infections: An Emerging Challenge to Clinicians. Ann. Pharmacother. 2004, 38, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Kumar, V.; Gupta, P.; Chandra, A. Effect of Endosulfan Tolerant Bacterial Isolates (Delftia Lacustris IITISM30 and Klebsiella Aerogenes IITISM42) with Helianthus Annuus on Remediation of Endosulfan from Contaminated Soil. Ecotoxicol. Environ. Saf. 2019, 168, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Stolze, Y.; Eikmeyer, F.; Wibberg, D.; Brandis, G.; Karsten, C.; Krahn, I.; Schneiker-Bekel, S.; Viehöver, P.; Barsch, A.; Keck, M.; et al. IncP-1β Plasmids of Comamonas sp. and Delftia sp. Strains Isolated from a Wastewater Treatment Plant Mediate Resistance to and Decolorization of the Triphenylmethane Dye Crystal Violet. Microbiology 2012, 158, 2060–2072. [Google Scholar] [CrossRef]
- Zang, N.; Tian, H.; Kang, X.; Liu, J. Bioaerosolization Behaviour of Potential Pathogenic Microorganisms from Wastewater Treatment Plants: Occurrence Profile, Social Function and Health Risks. Sci. Total Environ. 2024, 923, 171300. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Taylor, K.E.; Overman, T.L.; McCormick, M.I. Acute Infective Endocarditis Caused by Delftia Acidovorans, a Rare Pathogen Complicating Intravenous Drug Use. J. Clin. Microbiol. 2012, 50, 3799–3800. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.A.; Ubalde, M.C.; Braña, V.; Castro-Sowinski, S. Delftia sp. JD2: A Potential Cr(VI)-Reducing Agent with Plant Growth-Promoting Activity. Arch. Microbiol. 2011, 193, 63–68. [Google Scholar] [CrossRef]
- Benndorf, D.; Babel, W. Assimilatory Detoxification of Herbicides by Delftia Acidovorans MC1: Induction of Two Chlorocatechol 1,2-Dioxygenases as a Response to Chemostress The SWISS-PROT Accession Numbers for the Sequences Reported in This Paper Are P83115, P83116 and P83117. Microbiology 2002, 148, 2883–2888. [Google Scholar] [CrossRef]
- Juárez-Jiménez, B.; Manzanera, M.; Rodelas, B.; Martínez-Toledo, M.V.; Gonzalez-López, J.; Crognale, S.; Pesciaroli, C.; Fenice, M. Metabolic Characterization of a Strain (BM90) of Delftia Tsuruhatensis Showing Highly Diversified Capacity to Degrade Low Molecular Weight Phenols. Biodegradation 2010, 21, 475–489. [Google Scholar] [CrossRef]
- Ubalde, M.C.; Braña, V.; Sueiro, F.; Morel, M.A.; Martínez-Rosales, C.; Marquez, C.; Castro-Sowinski, S. The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies. Curr. Microbiol. 2012, 64, 597–603. [Google Scholar] [CrossRef]
- Luczkiewicz, A.; Kotlarska, E.; Artichowicz, W.; Tarasewicz, K.; Fudala-Ksiazek, S. Antimicrobial Resistance of Pseudomonas spp. Isolated from Wastewater and Wastewater-Impacted Marine Coastal Zone. Environ. Sci. Pollut. Res. 2015, 22, 19823–19834. [Google Scholar] [CrossRef]
- Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Maria Picco, A.; Dacarro, C. Assessment of Airborne Microorganism Contamination in an Industrial Area Characterized by an Open Composting Facility and a Wastewater Treatment Plant. Environ. Res. 2009, 109, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Delden, C. Virulence Factors in Pseudomonas aeruginosa. In Virulence and Gene Regulation; Ramos, J.-L., Ed.; Springer: Boston, MA, USA, 2004; pp. 3–45. ISBN 978-0-306-48376-9. [Google Scholar]
- Livermore, D.M. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas Aeruginosa: Our Worst Nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.O.; Cardoso, A.M.; Coutinho, F.H.; Pinto, L.H.; Vieira, R.P.; Albano, R.M.; Clementino, M.M. Diversity and Antibiotic Resistance Profiles of Pseudomonads from a Hospital Wastewater Treatment Plant. J. Appl. Microbiol. 2015, 119, 1527–1540. [Google Scholar] [CrossRef]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef]
- Cai, L.; Ju, F.; Zhang, T. Tracking Human Sewage Microbiome in a Municipal Wastewater Treatment Plant. Appl. Microbiol. Biotechnol. 2014, 98, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, T. Bacterial Communities in Different Sections of a Municipal Wastewater Treatment Plant Revealed by 16S rDNA 454 Pyrosequencing. Appl. Microbiol. Biotechnol. 2013, 97, 2681–2690. [Google Scholar] [CrossRef]
- McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L. Diversity and Population Structure of Sewage-Derived Microorganisms in Wastewater Treatment Plant Influent. Environ. Microbiol. 2010, 12, 378–392. [Google Scholar] [CrossRef]
- Levican, A.; Collado, L.; Figueras, M.J. The Use of Two Culturing Methods in Parallel Reveals a High Prevalence and Diversity of Arcobacter spp. in a Wastewater Treatment Plant. BioMed Res. Int. 2016, 2016, 8132058. [Google Scholar] [CrossRef]
- Collado, L.; Inza, I.; Guarro, J.; Figueras, M.J. Presence of Arcobacter spp. in Environmental Waters Correlates with High Levels of Fecal Pollution: Correlation of Arcobacter with Fecal Pollution. Environ. Microbiol. 2008, 10, 1635–1640. [Google Scholar] [CrossRef]
- Zhang, Y.; Marrs, C.F.; Simon, C.; Xi, C. Wastewater Treatment Contributes to Selective Increase of Antibiotic Resistance among Acinetobacter spp. Sci. Total Environ. 2009, 407, 3702–3706. [Google Scholar] [CrossRef] [PubMed]
- Martín-Aspas, A.; Guerrero-Sánchez, F.M.; García-Colchero, F.; Rodríguez-Roca, S.; Girón-González, J.-A. Differential Characteristics of Acinetobacter Baumannii Colonization and Infection: Risk Factors, Clinical Picture, and Mortality. Infect. Drug Resist. 2018, 11, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Shlaes, D.M.; Bradford, P.A. Antibiotics—From There to Where? Pathog. Immun. 2018, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.; Lipman, L.; Gaastra, W. Arcobacter, What Is Known and Unknown about a Potential Foodborne Zoonotic Agent! Vet. Microbiol. 2006, 115, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Luís, Â.; Oleastro, M.; Pereira, L.; Domingues, F.C. A Meta-Analytic Perspective on Arcobacter spp. Antibiotic Resistance. J. Glob. Antimicrob. Resist. 2019, 16, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Collado, L.; Figueras, M.J. Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin. Microbiol. Rev. 2011, 24, 174–192. [Google Scholar] [CrossRef]
- On, S.L.W.; Miller, W.G.; Biggs, P.J.; Cornelius, A.J.; Vandamme, P. Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter and Poseidonibacter Are Later Synonyms of Arcobacter: Transfer of Poseidonibacter parvus, Poseidonibacter antarcticus, ‘Halarcobacter arenosus’, and ‘Aliarcobacter vitoriensis’ to Arcobacter as Arcobacter parvus Comb. Nov., Arcobacter antarcticus Comb. Nov., Arcobacter arenosus Comb. Nov. and Arcobacter vitoriensis Comb. Nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 005133. [Google Scholar] [CrossRef]
- Snelling, W.J.; Matsuda, M.; Moore, J.E.; Dooley, J.S.G. Under the Microscope: Arcobacter. Lett. Appl. Microbiol. 2006, 42, 7–14. [Google Scholar] [CrossRef]
- Hsu, T.-T.D.; Lee, J. Global Distribution and Prevalence of A. Rcobacter in Food and Water. Zoonoses Public Health 2015, 62, 579–589. [Google Scholar] [CrossRef]
- Rahman, F.U.; Andree, K.B.; Salas-Massó, N.; Fernandez-Tejedor, M.; Sanjuan, A.; Figueras, M.J.; Furones, M.D. Improved Culture Enrichment Broth for Isolation of Arcobacter-like Species from the Marine Environment. Sci. Rep. 2020, 10, 14547. [Google Scholar] [CrossRef]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the Pathogenesis and Resistance of Arcobacter: A Review. Crit. Rev. Microbiol. 2015, 42, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gordon, J.I. Honor Thy Symbionts. Proc. Natl. Acad. Sci. USA 2003, 100, 10452–10459. [Google Scholar] [CrossRef] [PubMed]
- Wexler, A.G.; Goodman, A.L. An Insider’s Perspective: Bacteroides as a Window into the Microbiome. Nat. Microbiol. 2017, 2, 17026. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef] [PubMed]
- VandeWalle, J.L.; Goetz, G.W.; Huse, S.M.; Morrison, H.G.; Sogin, M.L.; Hoffmann, R.G.; Yan, K.; McLellan, S.L. Acinetobacter, Aeromonas and Trichococcus Populations Dominate the Microbial Community within Urban Sewer Infrastructure. Environ. Microbiol. 2012, 14, 2538–2552. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Sung, K.; Khan, S.A.; Khan, A.A.; Steele, R. Biochemical and Molecular Characterization of Tetracycline-Resistant Aeromonas veronii Isolates from Catfish. Appl. Environ. Microbiol. 2006, 72, 6461–6466. [Google Scholar] [CrossRef]
- Pablos, M.; Rodríguez-Calleja, J.M.; Santos, J.A.; Otero, A.; García-López, M.-L. Occurrence of Motile Aeromonas in Municipal Drinking Water and Distribution of Genes Encoding Virulence Factors. Int. J. Food Microbiol. 2009, 135, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Figueira, V.; Vaz-Moreira, I.; Silva, M.; Manaia, C.M. Diversity and Antibiotic Resistance of Aeromonas spp. in Drinking and Waste Water Treatment Plants. Water Res. 2011, 45, 5599–5611. [Google Scholar] [CrossRef]
- Hubad, B.; Lapanje, A. The efficient method for simultaneous monitoring of the culturable as well as nonculturable airborne microorganisms. PLoS ONE 2013, 8, e82186. [Google Scholar] [CrossRef]
- Gaviria-Figueroa, A.; Preisner, E.C.; Hoque, S.; Feigley, C.E.; Norman, R.S. Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Sci. Total Environ. 2019, 686, 402–412. [Google Scholar] [CrossRef] [PubMed]
Parameter | Airport MD8 | BioSampler | BioSpot-VIVAS |
---|---|---|---|
Flow rate (L/min) | 50 | 12.5 | 8 |
Total volume (L) | 1440 | 1440 | 1440 |
Sampling Time | 28.8 min | 1.92 h | 3 h |
Sampler Characteristics | Airport MD8 | BioSampler | BioSpot-VIVAS |
---|---|---|---|
Supplier | Sartorius (Goettingen, Germany) | SKC Inc. (Eighty Four, PA, USA) | Aerosol Devices Inc., Ft. Collins, CO, USA |
Sampling flow rate (L/min) | 50 | 12.5 | 8 |
Sampling principle | Filtration | Swirling aerosol collection | Condensation growth tube |
Support | Gelatine | Liquid | Liquid |
Collection media | Gelatine | PBS | PBS, DNA/RNA shield™ |
Sampling volume | 80 mm diameter | 20 mL | 2.5 mL |
Weight | 2.5 kg | 0.16 kg * | 24 kg |
Dimensions | 300 mm × 135 mm × 165 mm | 220 mm × 50 mm × 50 mm * | 760 mm × 485 mm × 370 mm |
Wastewater | Sample ID | Sampling | Day | |
---|---|---|---|---|
Water_24h_1 | Composite | 2 | ||
Water_24h_2 | Composite | 3 | ||
Water_24h_3 | Composite | 5 | ||
Water_24h_4 | Composite | 6 | ||
Water_1 | Grab | 1 | ||
Water_2 | Grab | 2 | ||
Water_3 | Grab | 3 | ||
Water_4 | Grab | 4 | ||
Water_5 | Grab | 5 | ||
Water_6 | Grab | 6 | ||
Water_7 | Grab | 7 | ||
Aerosol | Sample ID | Sampler | Support medium | Day |
MD8_tank | Airport MD8 | Gelatine filter | 6 | |
SKC_PBS_tank | BioSampler | PBS | 6 | |
Vivas_PS_tank | BioSpot-VIVAS | DNA/RNA shield™ | 6 | |
Vivas_PBS_tank | BioSpot-VIVAS | PBS | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaetano, A.S.; Semeraro, S.; Greco, S.; Greco, E.; Cain, A.; Perrone, M.G.; Pallavicini, A.; Licen, S.; Fornasaro, S.; Barbieri, P. Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant. Microorganisms 2024, 12, 965. https://doi.org/10.3390/microorganisms12050965
Gaetano AS, Semeraro S, Greco S, Greco E, Cain A, Perrone MG, Pallavicini A, Licen S, Fornasaro S, Barbieri P. Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant. Microorganisms. 2024; 12(5):965. https://doi.org/10.3390/microorganisms12050965
Chicago/Turabian StyleGaetano, Anastasia Serena, Sabrina Semeraro, Samuele Greco, Enrico Greco, Andrea Cain, Maria Grazia Perrone, Alberto Pallavicini, Sabina Licen, Stefano Fornasaro, and Pierluigi Barbieri. 2024. "Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant" Microorganisms 12, no. 5: 965. https://doi.org/10.3390/microorganisms12050965