Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations and Site Characteristics
2.2. Sediments Collection
2.3. Water Collection
2.4. Plastics Collection and Characterization
2.5. Snail Collection
2.6. Isolation of DNA
2.7. DNA Sequencing and Identification of Bacteria
2.8. Data Analysis and Statistical Methods
3. Results
3.1. Chemical Composition of Plastics
3.2. Diversity of the Bacterial Communities
3.3. Abundance of Bacterial Communities
3.3.1. OTUs from All Substrates in Two Lagoons
3.3.2. OTUs from Different Substrates in Two Lagoons
3.4. Taxonomic Analysis of Bacterial Communities
3.4.1. Distribution and Relative Abundance of Bacterial Communities across Locations and Substrates: Phylum-Level
3.4.2. Distribution and Relative Abundance of Bacterial Communities across Locations and Substrates: Class-Level
3.4.3. Distribution and Relative Abundance of Bacterial Communities across Locations and Substrates: Genus-Level
3.5. Structure of Bacterial Communities
4. Discussion
4.1. Diversity of Microbes between Two Lagoons and across Different Substrates in the Study Area
4.2. Dominant Groups of Bacteria
4.3. Bacterial Communities on Different Substrates
4.4. Bacterial Communities in Different Lagoons
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marinelli, R.L.; Waldbusser, G.G. Plant-animal-microbe interactions in coastal sediments: Closing the ecological loop. In Interactions between Macro- and Microorganisms in Marine Sediments; American Geophysical Union: Washington, DC, USA, 2005. [Google Scholar]
- Fusi, M.; Booth, J.M.; Marasco, R.; Merlino, G.; Garcias-Bonet, N.; Barozzi, A.; Garuglieri, E.; Mbobo, T.; Diele, K.; Duarte, C.M.; et al. Bioturbation Intensity Modifies the Sediment Microbiome and Biochemistry and Supports Plant Growth in an Arid Mangrove System. Microbiol. Spectr. 2022, 10, e01117-22. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Ghosh, S.; Vashisth, K.; Han, S.; Bhaskar, R. Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability 2023, 15, 10821. [Google Scholar] [CrossRef]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Yu, X.L.; Hu, R.W.; Luo, Z.W.; Liu, X.Y.; Zheng, X.F.; Xiao, F.S.; Peng, Y.S.; He, Q.; Tian, Y.; et al. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. npj Biofilms Microbiomes 2020, 6, 52. [Google Scholar] [CrossRef]
- Ghose, M.; Parab, A.S.; Manohar, C.S.; Mohanan, D.; Toraskar, A. Unraveling the role of bacterial communities in mangrove habitats under the urban influence, using a next-generation sequencing approach. J. Sea Res. 2024, 198, 102469. [Google Scholar] [CrossRef]
- De Santana, C.O.; Spealman, P.; Melo, V.M.M.I.; Gresham, D.; De Jesus, T.B.; Chinalia, F.A. Effects of tidal influence on the structure and function of prokaryotic communities in the sediments of a pristine Brazilian mangrove. Biogeosciences 2021, 18, 2259–2273. [Google Scholar] [CrossRef]
- Crump, B.C.; Bowen, J.L. The Microbial Ecology of Estuarine Ecosystems. Annu. Rev. Mar. Sci. 2024, 16, 335–360. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, R.; Singh, R.L. Microbes and Environment BT—Principles and Applications of Environmental Biotechnology for a Sustainable Future; Singh, R.L., Ed.; Springer: Singapore, 2017; pp. 43–84. [Google Scholar] [CrossRef]
- Narula, N.; Kothe, E.; Behl, R.K. Role of root exudates in plant-microbe interactions. J. Appl. Bot. Food Qual. 2009, 82, 122–130. [Google Scholar]
- Gaiero, J.R.; McCall, C.A.; Thompson, K.A.; Day, N.J.; Best, A.S.; Dunfield, K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am. J. Bot. 2013, 100, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Chattopadhyay, D. Exploring environmental systems and processes through next-generation sequencing technologies: Insights into microbial response to petroleum contamination in key environments. Nucleus 2017, 60, 175–186. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.M.; Zhang, R.; Wang, Z.M.; Ren, C.Y.; Mao, D.H.; Wang, Y.Q. Mangrove species mapping in coastal China using synthesized Sentinel-2 high-separability images. Remote Sens. Environ. 2024, 307, 114151. [Google Scholar] [CrossRef]
- Tong, T.; Li, R.; Wu, S.; Xie, S. The distribution of sediment bacterial community in mangroves across China was governed by geographic location and eutrophication. Mar. Pollut. Bull. 2018, 140, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.C.C.; Cleary, D.F.R.; Cunha, A.; Dealtry, S.; Almeida, A.; Mendonça-Hagler, L.C.S.; Smalla, K.; Gomes, N.C.M. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl. Environ. Microbiol. 2012, 78, 5520–5528. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.W.; Tsai, S.M. Variations of bacterial community structure and composition in mangrove sediment at different depths in Southeastern Brazil. Diversity 2014, 6, 827–843. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Plastic Debris in the Marine Environment: History and Future Challenges. Glob. Chall. 2020, 4, 1900081. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Yu, Y.; Adyel, T.M.; Wang, C.Q.; Liu, Z.L.; Liu, S.Q.; Huang, L.Y.; You, G.X.; Meng, M.; Qu, H.; et al. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J. Hazard. Mater. 2020, 403, 123577. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Kim, S.W.; Zhu, Y.-G. The soil plastisphere. Nat. Rev. Microbiol. 2024, 22, 64–74. [Google Scholar] [CrossRef]
- Osborn, A.M.; Stojkovic, S. Marine microbes in the Plastic Age. Microbiol. Aust. 2014, 35, 207. [Google Scholar] [CrossRef]
- Bryant, J.A.; Clemente, T.M.; Viviani, D.A.; Fong, A.A.; Thomas, K.A.; Kemp, P.; Karl, D.M.; White, A.E.; DeLong, E.F. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. MSystems 2016, 1, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Li, W.Y.; Adyel, T.M.; Yao, Y.; Deng, Y.; Wu, J.; Zhou, Y.Q.; Yu, Y.; Hou, J. Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems. Water Res. 2022, 229, 119406. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, Y.; Zhao, Z.; He, J.H.; Li, W.J.; Xu, W.A.; Ma, Y.Z.; Niu, Z.G. Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary. Sci. Total Environ. 2020, 708, 134876. [Google Scholar] [CrossRef]
- dos Santos, H.F.; Cury, J.C.; do Carmo, F.L.; dos Santos, A.L.; Tiedje, J.; van Elsas, J.D.; Rosado, A.S.; Peixoto, R.S. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE 2011, 6, e16943. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.V.R.; Costa, S.S.; Schaan, A.P.; Ribeiro-dos-Santos, Â.K.C.; Silva, A.; das Graças, D.A.; Baraúna, R.A. Amazonia Seasons Have an Influence in the Composition of Bacterial Gut Microbiota of Mangrove Oysters (Crassostrea gasar). Front. Genet. 2021, 11, 602608. [Google Scholar] [CrossRef] [PubMed]
- Pacific Consultants International. The Master Plan Study on Restoration, Conservation and Management of Mangrove in the Sultanate of Oman; Pacific Consultants International: Tokyo, Japan, 2004; Volume 1, pp. 1–146. [Google Scholar]
- Al-Tarshi, M.; Dobretsov, S.; Gallardo, W. Marine litter and microplastic pollution in mangrove sediments in the Sea of Oman. Mar. Pollut. Bull. 2024, 201, 116132. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, D.R.; Kumar, M.; Kalla, V. Sediment microbial community structure, enzymatic activities and functional gene abundance in the coastal hypersaline habitats. Arch. Microbiol. 2023, 205, 56. [Google Scholar] [CrossRef] [PubMed]
- Noguez, A.M.; Arita, H.T.; Escalante, A.E.; Forney, L.J.; García-Oliva, F.; Souza, V. Microbial macroecology: Highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob. Ecol. Biogeogr. 2005, 14, 241–248. [Google Scholar] [CrossRef]
- Li, P.; Yang, S.F.; Lv, B.B.; Zhao, K.; Lin, M.F.; Zhou, S.; Tang, X.M. Comparison of extraction methods of total microbial DNA from freshwater. Genet. Mol. Res. 2015, 14, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Jia, S.L.; Chi, Z.; Liu, G.L.; Hu, Z.; Chi, Z.M. Fungi in mangrove ecosystems and their potential applications. Crit. Rev. Biotechnol. 2020, 40, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.M.; Costa, M.T.; Bulseco, A.N.; Helfer, V.; Wilkins, L.G.; Hassenrück, C.; Bowman, J. Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches to Better Understand, Protect; Rehabilitate Mangrove Ecosystems. MSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Cotta, S.R.; Cadete, L.L.; van Elsas, J.D.; Andreote, F.D.; Dias, A.C.F. Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity. Mar. Pollut. Bull. 2019, 141, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Shentu, J.; Chen, Q.; Cui, Y.; Wang, Y.; Lu, L.; Long, Y.; Zhu, M. Disturbance and restoration of soil microbial communities after in-situ thermal desorption in a chlorinated hydrocarbon contaminated site. J. Hazard. Mater. 2023, 448, 130870. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Stotzky, G. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. Interact. Soil. Miner. Nat. Org. Microbes 1986, 17, 305–428. [Google Scholar]
- Chen, J.P.; Kim, S.L.; Ting, Y.P. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Nicolai, A.; Rouland-Lefèvre, C.; Ansart, A.; Filser, J.; Lenz, R.; Pando, A.; Charrier, M. Inter-Population Differences and Seasonal Dynamic of the Bacterial Gut Community in the Endangered Land Snail Helix pomatia (Gastropoda: Helicidae). Malacologia 2015, 59, 177–190. [Google Scholar] [CrossRef]
- Uddin, M.M.; Hossain, M.M.; Aziz, A.A.; Lovelock, C.E. Ecological development of mangrove plantations in the Bangladesh Delta. For. Ecol. Manag. 2022, 517, 120269. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove–microbe–soil relations. In Interactions between Macro- and Microorganisms in Marine Sediments; American Geophysical Union: Washington, DC, USA, 2005; Volume 60, pp. 85–103. [Google Scholar]
- Robinson, C.J.; Bohannan, B.J.; Young, V.B. From structure to function: The ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 2010, 74, 453–476. [Google Scholar] [CrossRef]
- Wang, J.; Peng, C.; Li, H.; Zhang, P.; Liu, X. The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. Sci. Total Environ. 2021, 773, 145697. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Ma, J.; Murinda, S.E. Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Sci. Total Environ. 2016, 566, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, A.N.; Wang, J.; Liu, S.; Jiang, X.; Dang, C.; Ni, J. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Kivistik, C. The Impact of Environmental Disturbances on the Gastrointestinal Bacterial Community and the Viability of Aquatic Gastropods. Ph.D. Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2022. [Google Scholar]
- Zhang, P.; Li, W.; Qiu, H.; Liu, M.; Li, Y.; He, E. Metal resistant gut microbiota facilitates snails feeding on metal hyperaccumulator plant Sedum alfredii in the phytoremediation field. Ecotoxicol. Environ. Saf. 2022, 236, 113514. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, A.; Pascault, N.; Chardon, C.; Bouvy, M.; Cecchi, P.; Lambs, L.; Leboulanger, C. Mangrove microbial diversity and the impact of trophic contamination. Mar. Pollut. Bull. 2013, 66, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Barone, M.; Negroni, A.; Brigidi, P.; Fava, F.; Biagi, E.; Zanaroli, G. Bacterial colonization dynamics of different microplastic types in an anoxic salt marsh sediment and impact of adsorbed polychlorinated biphenyls on the plastisphere. Environ. Pollut. 2022, 315, 120411. [Google Scholar] [CrossRef] [PubMed]
- Eckert, E.M.; Amalfitano, S.; Di Cesare, A.; Manzari, C.; Corno, G.; Fontaneto, D. Different substrates within a lake harbour connected but specialised microbial communities. Hydrobiologia 2020, 847, 1689–1704. [Google Scholar] [CrossRef]
- Nealson, K.H.; Habitats, W.B.S.; Berelson, W. Sediment Habitats, Including Watery. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 350–360. [Google Scholar] [CrossRef]
- Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, X.; Chang, J.; Yu, J.; Tong, Q.; Li, S.; Niu, H. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high throughput Illumina sequencing. Microbiology 2018, 6, e5537. [Google Scholar] [CrossRef] [PubMed]
- Stenger, K.S.; Wikmark, O.G.; Bezuidenhout, C.C.; Molale-Tom, L.G. Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Environ. Pollut. 2021, 291, 118130. [Google Scholar] [CrossRef]
- Behera, P.; Mohapatra, M.; Kim, J.Y.; Adhya, T.K.; Pattnaik, A.K.; Rastogi, G. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environ. Sci. Pollut. Res. 2019, 26, 3893–3908. [Google Scholar] [CrossRef] [PubMed]
- Marcial Gomes, N.C.; Borges, L.R.; Paranhos, R.; Pinto, F.N.; Mendonça-Hagler, L.C.S.; Smalla, K. Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol. Ecol. 2008, 66, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.X.; Jiang, Z.Y.; Wu, P.; Wang, Y.F.; Cheng, H.; Wang, Y.S.; Gu, J.D. Effect of mangrove restoration on sediment properties and bacterial community. Ecotoxicology 2021, 30, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Saha, R.; Bhadury, P. Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ 2022, 10, e13169. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, H.; Li, D.; Zeng, W.; Huang, J.; Wu, Z. Comparison of gut microbiome in the Chinese mud snail (Cipangopaludina chinensis) and the invasive golden apple snail (Pomacea canaliculata). PeerJ 2022, 10, e13245. [Google Scholar] [CrossRef] [PubMed]
- Vaksmaa, A.; Knittel, K.; Abdala Asbun, A.; Goudriaan, M.; Ellrott, A.; Witte, H.J.; Niemann, H. Microbial communities on plastic polymers in the Mediterranean Sea. Front. Microbiol. 2021, 12, 673553. [Google Scholar] [CrossRef] [PubMed]
- Puthusseri, R.M.; Nair, H.P.; Johny, T.K.; Bhat, S.G. Insights into the response of mangrove sediment microbiomes to heavy metal pollution: Ecological risk assessment and metagenomics perspectives. J. Environ. Manag. 2021, 298, 113492. [Google Scholar] [CrossRef]
- Rocha, L.L.; Colares, G.B.; Nogueira, V.L.R.; Paes, F.A.; Melo, V.M.M. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments. Int. J. Microbiol. 2016, 2016, 3435809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-J.; Chen, Y.-L.; Sun, Y.-H.; Pan, J.; Cai, M.-W. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar. Life Sci. Technol. 2021, 3, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gómez, B.; Richter, M.; Schüler, M.; Pinhassi, J.; Acinas, S.G.; González, J.M.; Pedros-Alio, C. Ecology of marine bacteroidetes: A comparative genomics approach. ISME J. 2013, 7, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [PubMed]
- Romalde, J.L.; Diéguez, A.L.; Lasa, A.; Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 2014, 4, 413. [Google Scholar] [CrossRef] [PubMed]
- Kesy, K.; Labrenz, M.; Scales, B.S.; Kreikemeyer, B.; Oberbeckmann, S. Vibrio colonization is highly dynamic in early microplastic-associated biofilms as well as on field-collected microplastics. Microorganisms 2021, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.; Oliver, D.M.; Moresco, V.; Quilliam, R.S. Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate ‘control’ material. Sci. Total Environ. 2022, 810, 152292. [Google Scholar] [CrossRef]
- Caruso, G.; Pedà, C.; Cappello, S.; Leonardi, M.; La Ferla, R.; Lo Giudice, A.; Romeo, T. Effects of microplastics on trophic parameters, abundance and metabolic activities of seawater and fish gut bacteria in mesocosm conditions. Environ. Sci. Pollut. Res. 2018, 25, 30067–30083. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Abe, M.; Miyazaki, M.; Koide, O.; Nunoura, T.; Imachi, H.; Kobayashi, T. Sunxiuqinia faeciviva sp. nov.; a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int. J. Syst. Evol. Microbiol. 2013, 5, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Chen, C.; Ren, Y.; Wang, R.; Zhang, C.; Han, S.; Wu, M. Pseudomonas mangrovi sp. nov.; isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 2019, 69, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Gu, J.-D.; Wan, N. Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment. Int. Biodeterior. Biodegrad. 2005, 56, 243–248. [Google Scholar] [CrossRef]
- North, E.; Minton, R.L. Diversity and predicted function of gut microbes from two species of viviparid snails. Freshw. Mollusk Biol. Conserv. 2021, 24, 104–113. [Google Scholar] [CrossRef]
- Hu, Z.; Tong, Q.; Chang, J.; Xu, J.; Wu, B.; Han, Y.; Niu, H. Host species of freshwater snails within the same freshwater ecosystem shapes the intestinal microbiome. Front. Ecol. Evol. 2024, 12, 1341359. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Cavalcante, J.J.; Vieira, R.P.; Lima, J.L.; Grieco, M.A.B.; Clementino, M.M.; Martins, O.B. Gut bacterial communities in the giant land snail Achatina fulica and their modification by sugarcane-based diet. PLoS ONE 2012, 7, e33440. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Chinen, A.; Fukuda, H. Vibrio algivorus sp. nov.; an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int. J. Syst. Evol. Microbiol. 2016, 66, 3164–3169. [Google Scholar] [CrossRef] [PubMed]
- Guoliang, W.; Tianlun, Z.; Tongxia, L.; Yinong, W.; Hong, Y.; Shan, J. Bacteriological analysis of the digestive tube of the mud snail (Bullacta exarata Philippi) and its rearing shoal. J. Ocean Univ. Qingdao 2002, 1, 161–164. [Google Scholar] [CrossRef]
- Song, Y.; Qiu, R.; Hu, J.; Li, X.; Zhang, X.; Chen, Y.; He, D. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Sci. Total Environ. 2020, 746, 141289. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Pawar, K.D.; Pandit, R.S. Prospecting the gut fluid of giant African land snail, Achatina fulica for cellulose degrading bacteria. Int. Biodeterior. Biodegrad. 2018, 126, 103–111. [Google Scholar] [CrossRef]
- Dussud, C.; Meistertzheim, A.L.; Conan, P.; Pujo-Pay, M.; George, M.; Fabre, P.; Ghiglione, J.F. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 2018, 236, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Didier, D.; Anne, M.; Alexandra, T.H. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 2017, 600, 1222–1232. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Chen, Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. J. Hazard. Mater. 2021, 418, 126329. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Ding, Y.; Ren, C.; Sun, Z.; Rodionov, D.A.; Zhang, W.; Jiang, W. Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genom. 2010, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- de Vogel, F.A.; Goudriaan, M.; Zettler, E.R.; Niemann, H.; Eich, A.; Weber, M.; Amaral-Zettler, L.A. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. Sci. Total Environ. 2024, 928, 172288. [Google Scholar] [CrossRef] [PubMed]
- Erni-Cassola, G.; Wright, R.J.; Gibson, M.I.; Christie-Oleza, J.A. Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater. Microb. Ecol. 2020, 79, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.; Miranda, R.R.; Eddingsaas, N.C.; Chu, J.; Freezman, I.M.; Tyler, A.C.; Hudson, A.O. Polystyrene degradation by Exiguobacterium sRIT 594: Preliminary evidence for a pathway containing an atypical oxygenase. Microorganisms 2022, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Agrawal, G.; Deshmukh, S.; Roy, S.S.; Priyadarshini, R. Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Adv. 2018, 8, 37590–37599. [Google Scholar] [CrossRef] [PubMed]
- Maroof, L.; Khan, I.; Hassan, H.; Azam, S.; Khan, W. Microbial degradation of low density polyethylene by Exiguobacterium sp. strain LM-IK2 isolated from plastic dumped soil. World J. Microbiol. Biotechnol. 2022, 38, 197. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Hao, X.; Zhang, X.; Ma, Y.; Niu, Z. A novel marine bacterium Exiguobacterium marinum a-1 isolated from in situ plastisphere for degradation of additive-free polypropylene. Environ. Pollut. 2023, 336, 122390. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gilbert, J.A.; Zhu, Y.; Yang, X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci. Total Environ. 2018, 631, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Ikenaga, M.; Guevara, R.; Dean, A.L.; Pisani, C.; Boyer, J.N. Changes in Community Structure of Sediment Bacteria along the Florida Coastal Everglades Marsh–Mangrove–Seagrass Salinity Gradient. Microb. Ecol. 2010, 59, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Meera, S.P.; Bhattacharyya, M.; Nizam, A.; Kumar, A. A review on microplastic pollution in the mangrove wetlands and microbial strategies for its remediation. Environ. Sci. Pollut. Res. 2022, 29, 4865–4879. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, L.; Zhang, Y.; Liu, H.; Jing, H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci. Rep. 2019, 9, 5739. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tarshi, M.; Dobretsov, S.; Al-Belushi, M. Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats. Microorganisms 2024, 12, 1561. https://doi.org/10.3390/microorganisms12081561
Al-Tarshi M, Dobretsov S, Al-Belushi M. Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats. Microorganisms. 2024; 12(8):1561. https://doi.org/10.3390/microorganisms12081561
Chicago/Turabian StyleAl-Tarshi, Muna, Sergey Dobretsov, and Mohammed Al-Belushi. 2024. "Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats" Microorganisms 12, no. 8: 1561. https://doi.org/10.3390/microorganisms12081561