Metarhizium-Inoculated Coffee Seeds Promote Plant Growth and Biocontrol of Coffee Leaf Miner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and Suspensions for Seed Inoculations
2.2. Coffee Seed Inoculation
2.3. Coffee Seedling Cultivation
2.4. Insect Rearing
2.5. Effect of M. robertsii and M. brunneum Inoculation on CLM Development
2.6. Effect of M. robertsii and M. brunneum Inoculation on CLM Second-Generation
2.7. Effect of M. robertsii and M. brunneum Inoculation on Plant Development
2.8. Statistical Analysis
3. Results
3.1. Fungi Recover from Plants and Identification
3.2. Effect of M. robertsii and M. brunneum Inoculation on CLM Development
3.3. Effect of M. robertsii and M. brunneum Inoculation on CLM Second-Generation
3.4. Effect of M. robertsii and M. brunneum Inoculation on Plant Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwanicki, N.S.; Pereira, A.A.; Botelho, A.B.R.Z.; Rezende, J.M.; de Andrade Moral, R.; Zucchi, M.I.; Delalibera Júnior, I. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp. in insects, soil and sugarcane roots. Sci. Rep. 2019, 9, 4443. [Google Scholar] [CrossRef] [PubMed]
- Maina, U.; Galadima, I.; Gambo, F.; Dauda, Z. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 2018, 6, 27–32. [Google Scholar]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Li, Z.; Alves, S.B.; Roberts, D.W.; Fan, M.; Delalibera, I.; Tang, J.; Lopes, R.B.; Faria, M.; Rangel, D.E.N. Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci. Technol. 2010, 20, 117–136. [Google Scholar] [CrossRef]
- Méndez-González, F.; Castillo-Minjarez, J.M.; Loera, O.; Favela-Torres, E. Current developments in the resistance, quality, and production of entomopathogenic fungi. World J. Microbiol. Biotechnol. 2022, 38, 115. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.M.; Santos, P.L.; Gêa, B.C.C.; Carvalho, V.R.; Oliveira, F.N.; Soliman, E.P.; Silva, W.M.; Zanuncio, J.C.; Santos Junior, V.C.; Wilcken, C.F. Isolation and molecular characterization of Cordyceps sp. from Bemisia tabaci (Hemiptera: Aleyrodidae) and pathogenic to Glycaspis brimblecombei (Hemiptera: Aphalaridae). Braz. J. Biol. 2022, 84, e253028. [Google Scholar] [CrossRef]
- Furuie, J.L.; Stuart, A.K.d.C.; Voidaleski, M.F.; Zawadneak, M.A.C.; Pimentel, I.C. Isolation of Beauveria strains and their potential as control agents for Lema bilineata Germar (Coleoptera: Chrysomelidae). Insects 2022, 13, 93. [Google Scholar] [CrossRef]
- Clifton, E.H.; Jaronski, S.T.; Coates, B.S.; Hodgson, E.W.; Gassmann, A.J. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 2018, 13, e0194815. [Google Scholar] [CrossRef]
- Franzin, M.L.; Moreira, C.C.; da Silva, L.N.P.; Martins, E.F.; Fadini, M.A.M.; Pallini, A.; Elliot, S.L.; Venzon, M. Metarhizium Associated with coffee seedling roots: Positive effects on plant growth and protection against Leucoptera coffeella. Agriculture 2022, 12, 2030. [Google Scholar] [CrossRef]
- Kabaluk, J.T.; Ericsson, J.D. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron. J. 2007, 99, 1377–1381. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; de Farias, C.R.J.; Moreira-Nunêz, V.; Moccellin, R.; Gaviria-Hernández, V.; da Rosa, A.P.S.A. Effect of agrochemicals used in the cultivation of soybean and irrigated rice on Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. J. Agric. Sci. 2019, 11, 167. [Google Scholar] [CrossRef]
- Joshi, M.; Gaur, N.; Pandey, R. Compatibility of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae with selective pesticides. J. Entomol. Zool. Stud. 2018, 6, 867–872. [Google Scholar]
- Peng, G.; Xie, J.; Guo, R.; Keyhani, N.O.; Zeng, D.; Yang, P.; Xia, Y. Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests. J. Pest Sci. 2021, 94, 969–980. [Google Scholar] [CrossRef]
- Presa-Parra, E.; Hernández-Rosas, F.; Bernal, J.S.; Valenzuela-González, J.E.; Martínez-Tlapa, J.; Birke, A. Impact of Metarhizium robertsii on adults of the parasitoid Diachasmimorpha longicaudata and parasitized Anastrepha ludens larvae. Insects 2021, 12, 125. [Google Scholar] [CrossRef]
- Ahmad, I.; Jiménez-Gasco, M.d.M.; Luthe, D.S.; Shakeel, S.N.; Barbercheck, M.E. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biol. Control 2020, 144, 104167. [Google Scholar] [CrossRef]
- Sheng, H.; McNamara, P.J.; St. Leger, R.J. Metarhizium: An opportunistic middleman for multitrophic lifestyles. Curr. Opin. Microbiol. 2022, 69, 102176. [Google Scholar] [CrossRef] [PubMed]
- St. Leger, R.J.; Wang, J.B. Metarhizium: Jack of all trades, master of many. Open Biol. 2020, 10, 200307. [Google Scholar] [CrossRef]
- Stone, L.B.L.; Bidochka, M.J. The multifunctional lifestyles of Metarhizium: Evolution and applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef]
- Hu, S.; Bidochka, M.J. Abscisic acid implicated in differential plant responses of Phaseolus vulgaris during endophytic colonization by Metarhizium and pathogenic colonization by Fusarium. Sci. Rep. 2021, 11, 11327. [Google Scholar] [CrossRef]
- Rivas-Franco, F.; Hampton, J.G.; Narciso, J.; Rostás, M.; Wessman, P.; Saville, D.J.; Jackson, T.A.; Glare, T.R. Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biol. Control 2020, 150, 104347. [Google Scholar] [CrossRef]
- El-Husseini, M.M.; Agamy, E.A.; Bekheit, H.K.; Ali, S.S. Virulence of Destruxins from two Metarhizium anisopliae (Metch.) Isolates versus larvae of the sugar beet worm, Spodoptera exigua (Hübner). Egypt. J. Biol. Pest Control 2010, 20, 179–183. [Google Scholar]
- Golo, P.S.; Gardner, D.R.; Grilley, M.M.; Takemoto, J.Y.; Krasnoff, S.B.; Pires, M.S.; Fernandes, É.K.K.; Bittencourt, V.R.E.P.; Roberts, D.W. Production of Destruxins from Metarhizium spp. Fungi in artificial medium and endophytically colonized cowpea plants. PLoS ONE 2014, 9, e104946. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.R.; Souza, J.C.; Venzon, M. Manejo ecológico das principais pragas do cafeeiro. Inf. Agropecu 2002, 23, 83–99. [Google Scholar]
- Reis, P.R.; de Souza, J.C. Manejo integrado do bicho-mineiro, Perileucoptera coffeella (Guérin-Meneville) (Lepidoptera: Lyonetiidae), e seu reflexo na produção de café. An. Soc. Entomológica Bras. 1996, 1, 77–82. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef]
- Leite, S.A.; Dos Santos, M.P.; Resende-Silva, G.A.; da Costa, D.R.; Moreira, A.A.; Lemos, O.L.; Guedes, R.N.C.; Castellani, M.A. Area-wide survey of chlorantraniliprole resistance and control failure likelihood of the Neotropical coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J. Econ. Entomol. 2020, 113, 1399–1410. [Google Scholar] [CrossRef]
- Leite, S.A.; Santos, M.P.; Costa, D.R.; Moreira, A.A.; Guedes, R.N.C.; Castellani, M.A. Time concentration interplay in insecticide resistance among populations of the Neotropical coffee leaf miner, Leucoptera coffeella. Agric. For. Entomol. 2021, 23, 232–241. [Google Scholar] [CrossRef]
- Venzon, M. Agro-ecological management of coffee pests in Brazil. Front. Sustain. Food Syst. 2021, 5, 72–84. [Google Scholar] [CrossRef]
- Moreira, S.D.; França, A.C.; Rocha, W.W.; Tibães, E.S.R.; Neiva Júnior, E. Inoculation with mycorrhizal fungi on the growth and tolerance to water deficit of coffee plants. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 747–752. [Google Scholar] [CrossRef]
- Petch, T. Notes on entomogenous fungi. Trans. Br. Mycol. Soc. 1935, 19, 55–75. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef]
- Canassa, F.; Tall, S.; Moral, R.A.; de Lara, I.A.; Delalibera, I.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Martins, E.F.; Franzin, M.L.; Perez, A.L.; Schmidt, J.M.; Venzon, M. Is Ceraeochrysa cubana a coffee leaf miner predator? Biol. Control 2021, 160, 104691. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. Packpage “Emmeans”. 2021. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 2 August 2023).
- R CoreTeam. R: A Language and Environment for Statistical Computing; Version 4.0.2; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Liu, B.L.; Tzeng, Y.M. Development and applications of destruxins: A review. Biotechnol. Adv. 2012, 6, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, G.D.B.; Krasnoff, S.B.; Sun-Moon, Y.; Churchill, A.C.L.; Gibson, D.M. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Curr. Genet. 2012, 58, 105–116. [Google Scholar] [CrossRef]
- Ríos-Moreno, A.; Garrido-Jurado, I.; Resquín-Romero, G.; Arroyo-Manzanares, N.; Arce, L.; Quesada-Moraga, E. Destruxin A production by Metarhizium brunneum strains during transient endophytic colonization of Solanum tuberosum. Biocontrol Sci. Technol. 2016, 26, 1574–1585. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Clark, R.Á.; Zeto, S.K. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 2000, 7, 867–902. [Google Scholar] [CrossRef]
- Schenkel, D.; Maciá-Vicente, J.G.; Bissell, A.; Splivallo, R. Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. Front. Microbiol. 2018, 9, 1847. [Google Scholar] [CrossRef]
- Ahmad, I.; Jiménez-Gasco, M.d.M.; Luthe, D.S.; Barbercheck, M.E. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses. PLoS ONE 2022, 17, e0272944. [Google Scholar] [CrossRef]
- Sasan, R.K.; Bidochka, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 2012, 99, 101–107. [Google Scholar] [CrossRef]
- MAPA Ministério da Agricultura Pecúária e Abastecimento. Available online: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 2 May 2024).
- Pava-Ripoll, M.; Angelini, C.; Fang, W.; Wang, S.; Posada, F.J.; St. Leger, R. The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology 2011, 157, 47–55. [Google Scholar] [CrossRef] [PubMed]
- St. Leger, R.J. Studies on adaptations of Metarhizium anisopliae to life in the soil. J. Invertebr. Pathol. 2008, 98, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Behie, S.W.; Zelisko, P.M.; Bidochka, M.J. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 2012, 336, 1576–1577. [Google Scholar] [CrossRef] [PubMed]
- Lahey, S.; Angelone, S.; DeBartolo, M.O.; Coutinho-Rodrigues, C.; Bidochka, M.J. Localization of the insect pathogenic fungal plant symbionts Metarhizium robertsii and Metarhizium brunneum in bean and corn roots. Fungal Biol. 2020, 124, 877–883. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, J.L.A.; Franzin, M.L.; Ferreira, D.d.S.; Magina, L.C.R.; Martins, E.F.; Mendonça, L.V.P.; Neves, W.d.S.; Pallini, A.; Valicente, F.H.; Schmidt, J.M.; et al. Metarhizium-Inoculated Coffee Seeds Promote Plant Growth and Biocontrol of Coffee Leaf Miner. Microorganisms 2024, 12, 1845. https://doi.org/10.3390/microorganisms12091845
Martins JLA, Franzin ML, Ferreira DdS, Magina LCR, Martins EF, Mendonça LVP, Neves WdS, Pallini A, Valicente FH, Schmidt JM, et al. Metarhizium-Inoculated Coffee Seeds Promote Plant Growth and Biocontrol of Coffee Leaf Miner. Microorganisms. 2024; 12(9):1845. https://doi.org/10.3390/microorganisms12091845
Chicago/Turabian StyleMartins, Jéssica Letícia Abreu, Mayara Loss Franzin, Douglas da Silva Ferreira, Larissa Cristina Rocha Magina, Elem Fialho Martins, Laís Viana Paes Mendonça, Wânia dos Santos Neves, Angelo Pallini, Fernando Hercos Valicente, Jason M. Schmidt, and et al. 2024. "Metarhizium-Inoculated Coffee Seeds Promote Plant Growth and Biocontrol of Coffee Leaf Miner" Microorganisms 12, no. 9: 1845. https://doi.org/10.3390/microorganisms12091845