Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Initial Identification
2.3. PCR
2.3.1. Genomic DNA Extraction
2.3.2. Amplification Setup
2.3.3. Cycling Conditions
2.3.4. Primers for Gene Detection
2.3.5. Electrophoresis of PCR Products
2.3.6. Controls and Sequencing Validation
2.4. MIC
2.4.1. MIC Testing Methodology
2.4.2. Evaluation of MIC Results
2.5. Statistical Analysis
2.6. Ethics Statement
3. Results
3.1. Bacterial Identification and Serotyping
3.2. Antimicrobial Susceptibility
3.3. MIC Values
3.4. Multidrug-Resistance and Phenotypic Resistance Patterns
3.5. Frequency of Virulence-Associated Genes (VAGs)
3.6. Frequency of Resistance Genes
3.7. Associations
4. Discussion
4.1. Serotype Detection and Virulence-Associated Genes
4.2. Antimicrobial Susceptibility
4.3. Resistance Genes
4.4. Limitations
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buczinski, S.; Achard, D.; Timsit, E. Effects of calfhood respiratory disease on health and performance of dairy cattle: A systematic review and meta-analysis. J. Dairy Sci. 2021, 104, 8214–8227. [Google Scholar] [CrossRef]
- Donlon, J.D.; McAloon, C.G.; Hyde, R.; Aly, S.; Pardon, B.; Mee, J.F. A systematic review of the relationship between housing environmental factors and bovine respiratory disease in preweaned calves—Part 1: Ammonia, air microbial count, particulate matter and endotoxins. Vet. J. 2023, 300–302, 106031. [Google Scholar] [CrossRef] [PubMed]
- Donlon, J.D.; McAloon, C.G.; Hyde, R.; Aly, S.; Pardon, B.; Mee, J.F. A systematic review of the relationship between housing environmental factors and bovine respiratory disease in preweaned calves—Part 2: Temperature, relative humidity and bedding. Vet. J. 2023, 300–302, 106032. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Lasheras, S.; Ha, R.; Zaheer, R.; Lee, C.; Booker, C.W.; Dorin, C.; van Donkersgoed, J.; Deardon, R.; Gow, S.; Hannon, S.J.; et al. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease—A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front. Vet. Sci. 2021, 8, 692646. [Google Scholar] [CrossRef]
- Pratelli, A.; Cirone, F.; Capozza, P.; Trotta, A.; Corrente, M.; Balestrieri, A.; Buonavoglia, C. Bovine respiratory disease in beef calves supported long transport stress: An epidemiological study and strategies for control and prevention. Res. Vet. Sci. 2021, 135, 450–455. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Wang, M.; Schneider, L.G.; Hubbard, K.J.; Smith, D.R. Cost of bovine respiratory disease in preweaned calves on US beef cow-calf operations (2011–2015). J. Am. Vet. Med. Assoc. 2018, 253, 624–631. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Saatkamp, H.W.; Verhoeff, J.; Dijkhuizen, A.A. Effects of bovine respiratory disease on the productivity of dairy heifers quantified by experts. Livest. Prod. Sci. 2002, 75, 157–166. [Google Scholar] [CrossRef]
- Lachowicz-Wolak, A.; Klimowicz-Bodys, M.D.; Płoneczka-Janeczko, K.; Bednarski, M.; Dyba, K.; Knap, P.; Rypuła, K. Simultaneous Presence of Antibodies against Five Respiratory Pathogens in Unvaccinated Dairy Calves from South-Western Poland. Animals 2024, 14, 2520. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz-Wolak, A.; Klimowicz-Bodys, M.D.; Płoneczka-Janeczko, K.; Bykowy, M.; Siedlecka, M.; Cinciała, J.; Rypuła, K. The Prevalence, Coexistence, and Correlations between Seven Pathogens Detected by a PCR Method from South-Western Poland Dairy Cattle Suffering from Bovine Respiratory Disease. Microorganisms 2022, 10, 1487. [Google Scholar] [CrossRef]
- Peek, S.F.; Ollivett, T.L.; Divers, T.J. Respiratory Diseases. In Rebhun’s Diseases of Dairy Cattle; Peek, S.F., Divers, T.J., Eds.; Saunders: Philadelphia, PA, USA, 2018; pp. 94–167. [Google Scholar] [CrossRef]
- Werid, G.M.; Van, T.D.; Miller, D.; Hemmatzadeh, F.; Fulton, R.W.; Kirkwood, R.; Petrovski, K. Bovine Parainfluenza-3 Virus Detection Methods and Prevalence in Cattle: A Systematic Review and Meta-Analysis. Animals 2024, 14, 494. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Nagamine, B.; Ducatez, M.F.; Meyer, G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: A comprehensive literature review of experimental evidence. Vet. Res. 2022, 53, 70. [Google Scholar] [CrossRef] [PubMed]
- Mitra, N.; Cernicchiaro, N.; Torres, S.; Li, F.; Hause, B.M. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus. J. Gen. Virol. 2016, 97, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Gülaydin, Ö.; Gürtürk, K. Investigation of biotype, genotype and virulence associated genes in Pasteurella multocida capsular type A strains from the respiratory tract of cattle andtheir relationship with disease cases. Turk. J. Vet. Anim. Sci. 2020, 44, 503–510. [Google Scholar] [CrossRef]
- Denholm, K.; Evans, N.P.; Baxter-Smith, K.; Burr, P. Retrospective study of the relative frequency of cattle respiratory disease pathogens in clinical laboratory samples submitted by UK veterinary practices. Vet. Rec. 2024, 195, e4434. [Google Scholar] [CrossRef] [PubMed]
- Freeman, C.N.; Herman, E.K.; Abi Younes, J.; Ramsay, D.E.; Erikson, N.; Stothard, P.; Links, M.G.; Otto, S.J.G.; Waldner, C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet. Res. 2022, 18, 211. [Google Scholar] [CrossRef]
- Kudirkiene, E.; Aagaard, A.K.; Schmidt, L.M.B.; Pansri, P.; Krogh, K.M.; Olsen, J.E. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease. Vet. Microbiol. 2021, 259, 109135. [Google Scholar] [CrossRef] [PubMed]
- het Lam, J.; Derkman, T.H.J.; van Garderen, E.; Dijkman, R.; van Engelen, E. Distinct Mannheimia haemolytica serotypes isolated from fatal infections in veal calves and dairy cows. Vet. J. 2023, 292, 105940. [Google Scholar] [CrossRef]
- Lo, R.Y. Genetic analysis of virulence factors of Mannheimia (Pasteurella) haemolytica A1. Vet. Microbiol. 2001, 83, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Morgan Bustamante, B.L.; Chigerwe, M.; Martínez-López, B.; Aly, S.S.; McArthur, G.; ElAshmawy, W.R.; Fritz, H.; Williams, D.R.; Wenz, J.; Depenbrock, S. Antimicrobial Susceptibility in Respiratory Pathogens and Farm and Animal Variables in Weaned California Dairy Heifers: Logistic Regression and Bayesian Network Analyses. Antibiotics 2024, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Kupczyński, R.; Bednarski, M.; Sokołowski, M.; Kowalkowski, W.; Pacyga, K. Comparison of Antibiotic Use and the Frequency of Diseases Depending on the Size of Herd and the Type of Cattle Breeding. Animals 2024, 14, 1889. [Google Scholar] [CrossRef] [PubMed]
- Dargatz, D.A.; Lombard, J.E. Summary of BRD data from the 2011 NAHMS feedlot and dairy heifer studies. Anim. Health Res. Rev. 2014, 15, 123–125. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agenc. Sales of veterinary antimicrobial agents in 31 European countries in 2022: Trends from 2010 to 2022, Thirteenth ESVAC report. Publ. Off. Eur. Union 2023. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.-S.; Ariton, A.-M.; Radu, C.; Porosnicu, I.; Sanduleanu, C.; Amariții, G. From Herd Health to Public Health: Digital Tools for Combating Antibiotic Resistance in Dairy Farms. Antibiotics 2024, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Piorunek, M.; Brajer-Luftmann, B.; Walkowiak, J. Pasteurella multocida Infection in Humans. Pathogens 2023, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.S.A.E.; Eldsouky, S.M.; Roshdy, T.; Said, L.; Thabet, N.; Allam, T.; Mohammed, A.B.A.; Nasr, G.M.; Basiouny, M.S.M.; Akl, B.A.; et al. Virulence Determinants and Antimicrobial Profiles of Pasteurella multocida Isolated from Cattle and Humans in Egypt. Antibiotics 2021, 10, 480. [Google Scholar] [CrossRef]
- Townsend, K.M.; Frost, A.J.; Lee, C.W.; Papadimitriou, J.M.; Dawkins, H.J. Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates. J. Clin. Microbiol. 1998, 36, 1096–1100. [Google Scholar] [CrossRef]
- Townsend, K.M.; Boyce, J.D.; Chung, J.Y.; Frost, A.J.; Adler, B. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 2001, 39, 924–929. [Google Scholar] [CrossRef]
- Harper, M.; John, M.; Turni, C.; Edmunds, M.; St Michael, F.; Adler, B.; Blackall, P.J.; Cox, A.D.; Boyce, J.D. Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus. J. Clin. Microbiol. 2015, 53, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Lübke-Becker, A.; Bethe, A.; Kiebling, S.; Filter, M.; Wieler, L.H. Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Vet. Microbiol. 2006, 114, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Kayal, A.; Nahar, N.; Barker, L.; Tran, T.; Williams, M.; Blackall, P.J.; Turni, C.; Omaleki, L. Molecular identification and characterisation of Mannheimia haemolytica. Vet. Microbiol. 2024, 288, 109930. [Google Scholar] [CrossRef]
- Klima, C.L.; Zaheer, R.; Briggs, R.E.; McAllister, T.A. A multiplex PCR assay for molecular capsular serotyping of Mannheimia haemolytica serotypes 1, 2, and 6. J. Microbiol. Methods 2017, 139, 155–160. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Hendrick, S.; McAllister, T.A. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can. J. Vet. Res. 2014, 78, 38–45. [Google Scholar] [PubMed]
- Klima, C.L.; Zaheer, R.; Cook, S.R.; Booker, C.W.; Hendrick, S.; Alexander, T.W.; McAllister, T.A. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J. Clin. Microbiol. 2014, 52, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. CLSI VET01S™: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 978-1-68440-211-3. [Google Scholar]
- Camilli, G.; Hopkins, K.D. Applicability of chi-square to 2 × 2 contingency tables with small expected cell frequencies. Psychol. Bull. 1978, 85, 163–167. [Google Scholar] [CrossRef]
- Lin, G.; Chai, J.; Yuan, S.; Mai, C.; Cai, L.; Murphy, R.W.; Zhou, W.; Luo, J. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLoS ONE 2016, 11, e0154315. [Google Scholar] [CrossRef] [PubMed]
- Kędrak-Jabłońska, A.; Borkowska-Opacka, B. Electrophoretic profiles of the outer membrane proteins of Pasteurella multocida serotype A3 in the etiopathogenesis of respiratory syndrome in beef cattle. Bull. Vet. Inst. Pulawy 2006, 50, 451–454. [Google Scholar]
- Calderón Bernal, J.M.; Fernández, A.; Arnal, J.L.; Sanz Tejero, C.; Fernández-Garayzábal, J.F.; Vela, A.I.; Cid, D. Molecular Epidemiology of Pasteurella multocida Associated with Bovine Respiratory Disease Outbreaks. Animals 2022, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liang, W.; Wang, F.; Xu, Z.; Xie, Z.; Lian, Z.; Hua, L.; Zhou, R.; Chen, H.; Wu, B. Genetic and Phylogenetic Characteristics of Pasteurella multocida Isolates From Different Host Species. Front. Microbiol. 2018, 9, 1408. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Rezagholipour, M.; Fallah, S.; Dadrasnia, A.; Chelliah, S.; Velappan, R.D.; Wei, K.S.C.; Ismail, S. Prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from bovine respiratory infection. Vet. J. 2014, 202, 381–383. [Google Scholar] [CrossRef]
- Katsuda, K.; Hoshinoo, K.; Ueno, Y.; Kohmoto, M.; Mikami, O. Virulence genes and antimicrobial susceptibility in Pasteurella multocida isolates from calves. Vet. Microbiol. 2013, 167, 737–741. [Google Scholar] [CrossRef]
- Turni, C.; Dayao, D.; Aduriz, G.; Cortabarria, N.; Tejero, C.; Ibabe, J.C.; Singh, R.; Blackall, P. A Pasteurella multocida strain affecting nulliparous heifers and calves in different ways. Vet. Microbiol. 2016, 195, 17–21. [Google Scholar] [CrossRef]
- Gharibi, D.; Hajikolaei, M.R.H.; Ghorbanpour, M.; Barzegar, S.K. Virulence gene profiles of Pasteurella multocida strains isolated from cattle and buffalo. Vet. Arh. 2017, 87, 677–690. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Read, R.R.; Gow, S.P.; Booker, C.W.; Hannon, S.; Sheedy, C.; McAllister, T.A.; Selinger, L.B. Genetic characterization and antimicrobial susceptibility of Mannheimia haemolytica isolated from the nasopharynx of feedlot cattle. Vet. Microbiol. 2011, 149, 390–398. [Google Scholar] [CrossRef]
- Mason, C.; Errington, J.; Foster, G.; Thacker, J.; Grace, O.; Baxter-Smith, K. Mannheimia haemolytica serovars associated with respiratory disease in cattle in Great Britain. BMC Vet. Res. 2022, 18, 5. [Google Scholar] [CrossRef]
- Abed, A.H.; El-Seedy, F.R.; Hassan, H.M.; Nabih, A.M.; Khalifa, E.; Salem, S.E.; Wareth, G.; Menshawy, A.M.S. Serotyping, Genotyping and Virulence Genes Characterization of Pasteurella multocida and Mannheimia haemolytica Isolates Recovered from Pneumonic Cattle Calves in North Upper Egypt. Vet. Sci. 2020, 7, 174. [Google Scholar] [CrossRef]
- Dokmak, M.; Ebied, S. Genetic Diversity of Mannheimia haemolytica strains. AJVS 2015, 47, 166. [Google Scholar] [CrossRef]
- European Medicines Agency. Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-and-animal-health (accessed on 23 September 2024).
- Depenbrock, S.; Aly, S.; Wenz, J.; Williams, D.; ElAshmawy, W.; Clothier, K.; Fritz, H.; McArthur, G.; Heller, M.; Chigerwe, M. In-vitro antibiotic resistance phenotypes of respiratory and enteric bacterial isolates from weaned dairy heifers in California. PLoS ONE 2021, 16, e0260292. [Google Scholar] [CrossRef] [PubMed]
- Schönecker, L.; Schnyder, P.; Schüpbach-Regula, G.; Meylan, M.; Overesch, G. Prevalence and antimicrobial resistance of opportunistic pathogens associated with bovine respiratory disease isolated from nasopharyngeal swabs of veal calves in Switzerland. Prev. Vet. Med. 2020, 185, 105182. [Google Scholar] [CrossRef]
- Klima, C.L.; Holman, D.B.; Cook, S.R.; Conrad, C.C.; Ralston, B.J.; Allan, N.; Anholt, R.M.; Niu, Y.D.; Stanford, K.; Hannon, S.J.; et al. Multidrug Resistance in Pasteurellaceae Associated With Bovine Respiratory Disease Mortalities in North America from 2011 to 2016. Front. Microbiol. 2020, 11, 606438. [Google Scholar] [CrossRef]
- Bahr, A.D.; Salib, F.A.; Soliman, Y.A.; Amin, M.M. Multi-Drug Resistant Pasteurella multocida and Mannheimia haemolytica Strains Isolated from Different Hosts Affected by Pneumonic Pasteurellosis in Egypt. Adv. Anim. Vet. Sci. 2020, 9, 356–364. [Google Scholar] [CrossRef]
- Dutta, E.; Loy, J.D.; Deal, C.A.; Wynn, E.L.; Clawson, M.L.; Clarke, J.; Wang, B. Development of a Multiplex Real-Time PCR Assay for Predicting Macrolide and Tetracycline Resistance Associated with Bacterial Pathogens of Bovine Respiratory Disease. Pathogens 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.; Credille, B.; Berghaus, R.; Giguère, S. Prevalence of multi drug antimicrobial resistance in isolated from high-risk stocker cattle at arrival and two weeks after processing. J. Anim. Sci. 2017, 95, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Katsuda, K.; Kohmoto, M.; Mikami, O. Relationship between serotype and the antimicrobial susceptibility of Mannheimia haemolytica isolates collected between 1991 and 2010. Res. Vet. Sci. 2013, 94, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Chaslus-Dancla, E.; Lesage-Descauses, M.C.; Leroy-Sétrin, S.; Martel, J.L.; Lafont, J.P. Tetracycline resistance determinants, Tet B and Tet M, detected in Pasteurella haemolytica and Pasteurella multocida from bovine herds. J. Antimicrob. Chemother. 1995, 36, 815–819. [Google Scholar] [CrossRef]
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; Schwarz, S., Cavaco, L.M., Shen, J., Aarestrup, F.M., Eds.; ASM Press: Washington, DC, USA, 2018; pp. 331–363. ISBN 9781683670520. [Google Scholar]
- Kehrenberg, C.; Salmon, S.A.; Watts, J.L.; Schwarz, S. Tetracycline resistance genes in isolates of Pasteurella multocida, Mannheimia haemolytica, Mannheimia glucosida and Mannheimia varigena from bovine and swine respiratory disease: Intergeneric spread of the tet(H) plasmid pMHT1. J. Antimicrob. Chemother. 2001, 48, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Catry, B.; Haesebrouck, F.; de Kruif, A.; Schwarz, S. tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J. Antimicrob. Chemother. 2005, 56, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.M.; Blanchard, P.C.; Hirsh, D.C. Distribution of tet(H) among Pasteurella isolates from the United States and Canada. Antimicrob. Agents Chemother. 1996, 40, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
PCR Details for Detected Genes | |||||
---|---|---|---|---|---|
PCR Target/Gene | Primer Name | PCR Primer Sequence 5′→3′ | Amplicon Size (bp) | Annealing Temperature (°C) | Primer Reference |
Pasteurella multocida | |||||
Bacteria species confirmation, KMT1 | KMT1T7 | ATCCGCTATTTACCCAGTGG | 460 | 55 | [30] |
KMT1SP6 | GCTGTAAACGAACTCGCCAC | ||||
Capsular type A | CAPA | TGCCAAAATCGCAGTCAG | 1044 | 55 | [31] |
TTGCCATCATTGTCAGTG | |||||
LPS genotype 3 | BAP7214 | CAAAGATTGGTTCCAAATCTGAATGGA | 474 | 52 | [32] |
BAP7213 | TGCAGGCGAGAGTTGATAAACCATC | ||||
Virulence | |||||
B hemoglobin-binding | hgbB | ACCGCGTTGGAATTATGATTG | 788 | 54 | [33] |
protein | CATTGAGTACGGCTTGACAT | ||||
Superoxide | sodA | TACCAGAATTAGGCTACGC | 361 | 55 | [33] |
dismutase A | GAAACGGGTTGCTGCCGCT | ||||
Outer-membrane | ompH | CGCGTATGAAGGTTTAGGT | 438 | 57 | [33] |
protein H | TTTAGATTGTGCGTAGTCAAC | ||||
Mannheimia haemolytica | |||||
Bacteria species confirmation | MropB | AACACATAAACGCCGTATCTCG | 136 | 55 | [34] |
GATATTCGGGCCTTCAGGA | |||||
Serotype A1 | hyp | CATTTCCTTAGGTTCAGC | 306 | 55 | [35] |
CAAGTCATCGTAATGCCT | |||||
Serotype A2 | Core2 | GGCATATCCTAAAGCCGT | 160 | 55 | [35] |
AGAATCCACTATTGGGCACC | |||||
Virulence | |||||
Outer-membrane lipoprotein | gs60 | GCACATTATATTCTATTGAG | 429 | 55 | [36] |
AGGCATACTCTAACTTTTGC | |||||
o-sialoglycoproteinase | gcp | CGCCCCTTTTGGTTTTCTAA | 420 | 58 | [36] |
GTAAATGCCCTTCCATATGG | |||||
Leukotoxin | lkt | GTCCCTGTGTTTTCATTATAAG | 385 | 58 | [35] |
CACTCGATAATTATTCTAAATTAG | |||||
Antimicrobial resistance phenotype | |||||
CTET, OXY | tetR | CGGCTTGGGTTAATAATGGCG | 425 | 58 | [37] |
ATAACGCGAAAAGCTTCCGC | |||||
tetH | ATACTGCTGATCACCGT | 1076 | 60 | [37] | |
TCCCAATAAGCGACGCT | |||||
TIL, TUL | msrE | ACCAGCCACCTTGATCTCAATG | 620 | 60 | [37] |
GTTCCATTCGATCCAGTTATAGCG | |||||
mphE | TCTGTAGCGGGTTTCCAATTGC | 401 | 60 | [37] | |
AATGGTTGCTGCGTATTCCTCG |
Antimicrobial Susceptibility | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | Pasteurella multocida | Mannheimia haemolytica | ||||||||||
S | I | R | S | I | R | |||||||
n/N | % | n/N | % | n/N | % | n/N | % | n/N | % | n/N | % | |
CTET | 9/48 | 18.8% | 1/48 | 2.1% | 38/48 | 79.2% | 10/22 | 45.5% | 2/22 | 9.1% | 10/22 | 45.5% |
OXY | 9/48 | 18.8% | 0/48 | 0.0% | 39/48 | 81.3% | 11/22 | 50.0% | 1/22 | 4.5% | 10/22 | 45.5% |
TUL | 37/48 | 77.1% | 0/48 | 0.0% | 11/48 | 22.9% | 9/22 | 40.9% | 1/22 | 4.5% | 12/22 | 54.5% |
TIL | 34/48 | 70.8% | 2/48 | 4.2% | 12/48 | 25.0% | 7/22 | 31.8% | 1/22 | 4.5% | 14/22 | 63.6% |
PEN | 36/48 | 75.0% | 3/48 | 6.3% | 9/48 | 18.8% | 3/22 | 13.6% | 5/22 | 22.7% | 14/22 | 63.6% |
ENRO | 44/48 | 91.7% | 3/48 | 6.3% | 1/48 | 2.1% | 17/22 | 77.3% | 4/22 | 18.2% | 1/22 | 4.5% |
DANO | 42/48 | 87.5% | 4/48 | 8.3% | 2/48 | 4.2% | 17/22 | 77.3% | 2/22 | 9.1% | 3/22 | 13.6% |
XNL | 36/48 | 75.0% | 5/48 | 10.4% | 7/48 | 14.6% | 14/22 | 63.6% | 1/22 | 4.5% | 7/22 | 31.8% |
FFN | 38/48 | 79.2% | 9/48 | 18.8% | 1/48 | 2.1% | 9/22 | 40.9% | 11/22 | 50.0% | 2/22 | 9.1% |
SPE | 29/48 | 60.4% | 7/48 | 14.6% | 12/48 | 25.0% | 10/22 | 45.5% | 11/22 | 50.0% | 1/22 | 4.5% |
Phenotypic Resistance Pattern | |||||||
---|---|---|---|---|---|---|---|
No. of Antimicrobial in Pattern | Antimicrobial Names | P. multocida | M. haemolytica | All | |||
n/N | % | n/N | % | n/N | % | ||
1 | PEN | 1/48 | 2.1% | 3/22 | 13.6% | 4/70 | 5.7% |
SPE | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
2 | XNL, PEN | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% |
PEN, TIL | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% | |
OXY, SPE | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
CTET, OXY | 18/48 | 37.5% | 0/22 | 0.0% | 18/70 | 25.7% | |
3 | PEN, TIL, TUL | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% |
XNL, CTET, OXY | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
OXY, PEN, TIL * | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% | |
CTET, TIL, TUL | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% | |
CTET, OXY, SPE | 5/48 | 10.4% | 0/22 | 0.0% | 5/70 | 7.1% | |
4 | XNL, CTET, OXY, SPE * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% |
XNL, PEN, TIL, TUL * | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% | |
CTET, OXY, PEN, SPE * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
CTET, OXY, TIL, TUL | 1/48 | 2.1% | 2/22 | 9.1% | 3/70 | 4.3% | |
5 | XNL, CTET, OXY, TIL, ENRO * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% |
XNL, CTET, OXY, TIL, TUL * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
CTET, OXY, PEN, TIL, TUL * | 4/48 | 8.3% | 0/22 | 0.0% | 4/70 | 5.7% | |
CTET, OXY, SPE, TIL, TUL * | 2/48 | 4.2% | 0/22 | 0.0% | 2/70 | 2.9% | |
6 | CTET, OXY, PEN, TIL, TUL, DANO * | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% |
XNL, CTET, OXY, PEN, TIL, TUL * | 1/48 | 2.1% | 4/22 | 18.2% | 5/70 | 7.1% | |
7 | CTET, OXY, FFN, PEN, TIL, TUL, DANO * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% |
XNL, CTET, OXY, TIL, TUL, DANO, SPE * | 1/48 | 2.1% | 0/22 | 0.0% | 1/70 | 1.4% | |
8 | XNL, CTET, OXY, FFN, PEN, TIL, TUL, DANO * | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% |
9 | not detected | - | - | - | |||
10 | XNL, CTET, OXY, FFN, PEN, TIL, TUL, DANO, ENRO, SPE * | 0/48 | 0.0% | 1/22 | 4.5% | 1/70 | 1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz-Wolak, A.; Chmielina, A.; Przychodniak, I.; Karwańska, M.; Siedlecka, M.; Klimowicz-Bodys, M.; Dyba, K.; Rypuła, K. Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease. Microorganisms 2025, 13, 491. https://doi.org/10.3390/microorganisms13030491
Lachowicz-Wolak A, Chmielina A, Przychodniak I, Karwańska M, Siedlecka M, Klimowicz-Bodys M, Dyba K, Rypuła K. Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease. Microorganisms. 2025; 13(3):491. https://doi.org/10.3390/microorganisms13030491
Chicago/Turabian StyleLachowicz-Wolak, Agnieszka, Aleksandra Chmielina, Iwona Przychodniak, Magdalena Karwańska, Magdalena Siedlecka, Małgorzata Klimowicz-Bodys, Kamil Dyba, and Krzysztof Rypuła. 2025. "Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease" Microorganisms 13, no. 3: 491. https://doi.org/10.3390/microorganisms13030491
APA StyleLachowicz-Wolak, A., Chmielina, A., Przychodniak, I., Karwańska, M., Siedlecka, M., Klimowicz-Bodys, M., Dyba, K., & Rypuła, K. (2025). Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease. Microorganisms, 13(3), 491. https://doi.org/10.3390/microorganisms13030491