A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
Abstract
:1. Introduction
2. Production Process for CAC-717
2.1. Preparation of Suspension (A)
2.2. Preparation of Suspension (B)
- Material (B1): A mixture of 70% (w/w) limestone, 15% (w/w) fossil coral, and 15% (w/w) shell.
- Material (B2): A mixture of 40% (w/w) limestone, 15% (w/w) fossil coral, 40% (w/w) shell, and 5% (w/w) activated carbon.
- Material (B3): A mixture of 80% (w/w) limestone, 15% (w/w) fossil coral, and 5% (w/w) shell.
- Material (B4): A blend of 90% (w/w) limestone, 5% (w/w) fossil coral, and 5% (w/w) shell.
- Material (B5): A blend of 80% (w/w) limestone, 10% (w/w) fossil coral, and 10% (w/w) shell.
- Material (B6): A mixture of 60% (w/w) limestone, 30% (w/w) fossil coral, and 10% (w/w) shell.
2.3. Synthesis of CAC-717
3. Inactivation of Bacteria by CAC-717
3.1. Inactivation of Salmonella by CAC-717
3.2. Inactivation of Escherichia coli by CAC-717
3.3. Inactivation of Xanthomonas campestris pv. Campestris (Xcc) by CAC-717
4. Inactivation of Viruses by CAC-717
4.1. Inactivation of Influenza Viruses by CAC-717
4.2. Inactivation of Feline Calicivirus by CAC-717
4.3. Inactivation of Noroviruses by CAC-717
4.4. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 and Other Viruses by CAC-717
5. Inactivation of Prions by CAC-717
6. Hypothetical Disinfection Mechanisms of CAC-717
7. Practical Considerations and Applications of CAC-717
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonnell, G. Block’s Disinfection, Sterilization, and Preservation, 6th ed.; Wolters Kluwer Health: Waltham, MA, USA, 2020. [Google Scholar]
- Cozad, A.; Jones, R.D. Disinfection and the prevention of infectious disease. Am. J. Infect. Control 2003, 31, 243–254. [Google Scholar] [CrossRef]
- Yemiş, F.; Harmancı, N.Y. Classification, Uses and Environmental Implications of Disinfectants. Pak. J. Anal. Environ. Chem. 2020, 21, 179–192. [Google Scholar] [CrossRef]
- Sopyan, I.; Ks, I.S.; Nhs, C.I.; YasriHusaironi, M. A review: Disinfectant, antiseptic, and its use for infection. Int. J. Res. Pharm. Sci. 2020, 11, 1507–1516. [Google Scholar] [CrossRef]
- Dhama, K.; Patel, S.K.; Kumar, R.; Masand, R.; Rana, J.; Yatoo, M.I.; Tiwari, R.; Sharun, K.; Mohapatra, R.K.; Natesan, S.; et al. The role of disinfectants and sanitizers during COVID-19 pandemic: Advantages and deleterious effects on humans and the environment. Environ. Sci. Pollut. Res. Int. 2021, 28, 34211–34228. [Google Scholar] [CrossRef]
- Gülnur, T. What Is Importance of Nanotechnology in Disinfection Applications: A Mini Review. Adv. Biotechnol. Microbiol. 2018, 9, 555766. [Google Scholar]
- Zhang, G.; Li, W.; Chen, S.; Zhou, W.; Chen, J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. Chemosphere 2020, 254, 126831. [Google Scholar] [CrossRef]
- Tong, C.; Hu, H.; Chen, G.; Li, Z.; Li, A.; Zhang, J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environ. Res. 2021, 195, 110897. [Google Scholar] [CrossRef]
- Jefri, U.; Khan, A.; Lim, Y.C.; Lee, K.S.; Liew, K.B.; Kassab, Y.W.; Choo, C.Y.; Al-Worafi, Y.M.; Ming, L.C.; Kalusalingam, A. A systematic review on chlorine dioxide as a disinfectant. J. Med. Life 2022, 15, 313–318. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dutta, H. Use of nature-derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J. Food Process. Preserv. 2022, 46, e15999. [Google Scholar] [CrossRef]
- Lin, Q.; Lim, J.Y.C.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing agents for virus inactivation and disinfection. VIEW 2020, 1, e16. [Google Scholar] [CrossRef]
- Dettenkofer, M.; Block, C. Hospital disinfection: Efficacy and safety issues. Curr. Opin. Infect. Dis. 2005, 18, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Bowler, P. Infection, Infection Control, and Disinfectants in a Challenging Infection Era. Int. J. Infect. Control 2021, 17, 21564. [Google Scholar] [CrossRef]
- Santhakumar, K.; Viswanath, V. Novel Methods for Efficacy Testing of Disinfectants—Part I. Tenside Surfactants Deterg. 2019, 56, 14–24. [Google Scholar] [CrossRef]
- Patience, O.E. The Importance of Using Natural Product Compounds as an Alternative to Chemically Based Disinfectants and Germicides. Biomed. J. Sci. Tech. Res. 2023, 51, 42669–42677. [Google Scholar]
- Nakashima, R.; Kawamoto, M.; Miyazaki, S.; Onishi, R.; Furusaki, K.; Osaki, M.; Kirisawa, R.; Sakudo, A.; Onodera, T. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses. J. Vet. Med. Sci. 2017, 79, 939–942. [Google Scholar] [CrossRef]
- Sakudo, A.; Haritani, M.; Furusaki, K.; Onishi, R.; Onodera, T. Electrically Charged Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals as a Potential Measure to Control Xanthomonas campestris pv. campestris on Cabbage Seeds. Microorganisms 2020, 8, 1606. [Google Scholar] [CrossRef]
- Furusaki, K. Mineral Functional Water and Method for Controlling Single Cell Organisms. JP5778328B1, 16 September 2015. Available online: https://patents.google.com/patent/JP5778328B1/en?oq=JP+5778328 (accessed on 1 February 2025).
- Sakudo, A.; Yamashiro, R.; Haritani, M.; Furusaki, K.; Onishi, R.; Onodera, T. Inactivation of Non-Enveloped Viruses and Bacteria by an Electrically Charged Disinfectant Containing Meso-Structure Nanoparticles via Modification of the Genome. Int. J. Nanomed. 2020, 15, 1387–1395. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A.; Knabel, S.J.; Patterson, P.H.; Puri, V.M. Efficacy of electrolyzed oxidizing water for the microbial safety and quality of eggs. Poult. Sci. 2004, 83, 2071–2078. [Google Scholar] [CrossRef]
- Namata, H.; Méroc, E.; Aerts, M.; Faes, C.; Abrahantes, J.C.; Imberechts, H.; Mintiens, K. Salmonella in Belgian laying hens: An identification of risk factors. Prev. Vet. Med. 2008, 83, 323–336. [Google Scholar] [CrossRef]
- Upadhyaya, I.; Upadhyay, A.; Kollanoor-Johny, A.; Darre, M.J.; Venkitanarayanan, K. Effect of Plant Derived Antimicrobials on Salmonella enteritidis Adhesion to and Invasion of Primary Chicken Oviduct Epithelial Cells in vitro and Virulence Gene Expression. Int. J. Mol. Sci. 2013, 14, 10608–10625. [Google Scholar] [CrossRef]
- Hines, J.D.; McKelvey, P.J.; Bodnaruk, P.W. Inappropriate use of D-values for determining biocidal activity of various antimicrobials. J. Food Sci. 2011, 76, M8–M11. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. Official Method 960.09, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Alhadlaq, M.A.; Aljurayyad, O.I.; Almansour, A.; Al-Akeel, S.I.; Alzahrani, K.O.; Alsalman, S.A.; Yahya, R.; Al-Hindi, R.R.; Hakami, M.A.; Alshahrani, S.D.; et al. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982–2024) and food safety criteria. Gut Pathog. 2024, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Dubrow, Z.E.; Bogdanove, A.J. Genomic insights advance the fight against black rot of crucifers. J. Gen. Plant. Pathol. 2021, 87, 127–136. [Google Scholar] [CrossRef]
- Vicente, J.G.; Holub, E.B. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant. Pathol. 2013, 14, 2–18. [Google Scholar]
- Bila, J.; Mortensen, C.N.; Andresen, M.; Vicente, J.G.; Wulff, E.G. Xanthomonas campestris pv. campestris race 1 is the main causal agent of black rot of Brassicas in Southern Mozambique. Afr. J. Biotechnol. 2013, 12, 602–610. [Google Scholar]
- US Department of Health and Human Services, Food and Drug Administration Center for Food Safety and Applied Nutrition. Guidance for Industry: Standards for the Growing, Harvesting, Packing, and Holding of Sprouts for Human Consumption. Available online: https://www.fda.gov/media/102430/download (accessed on 1 February 2025).
- Singh, S.; Singh, H.K.; Bharat, N. Hot Water Seed Treatment: A Review. In Capsicum; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Kim, M.; Shim, C.; Lee, J.; Wangchuk, C. Hot Water Treatment as Seed Disinfection Techniques for Organic and Eco-Friendly Environmental Agricultural Crop Cultivation. Agriculture 2022, 12, 1081. [Google Scholar] [CrossRef]
- Ombuna, J.G.; Nyangeri, J.; Maobe, S. The efficacy of hot water seed treatment against Xanthomonas campestris pv. campestris in the control of black rot disease of cabbage under field conditions. J. New Biol. Rep. 2019, 8, 125–133. [Google Scholar]
- Shimakura, H.; Gen-Nagata, F.; Haritani, M.; Furusaki, K.; Kato, Y.; Yamashita-Kawanishi, N.; Le, D.T.; Tsuzuki, M.; Tohya, Y.; Kyuwa, S.; et al. Inactivation of human norovirus and its surrogate by the disinfectant consisting of calcium hydrogen carbonate mesoscopic crystals. FEMS Microbiol. Lett. 2019, 366, fnz235. [Google Scholar] [CrossRef]
- Yokoyama, T.; Nishimura, T.; Uwamino, Y.; Kosaki, K.; Furusaki, K.; Onishi, R.; Onodera, T.; Haritani, M.; Sugiura, K.; Kirisawa, R.; et al. Virucidal Effect of the Mesoscopic Structure of CAC-717 on Severe Acute Respiratory Syndrome Coronavirus-2. Microorganisms 2021, 9, 2096. [Google Scholar] [CrossRef]
- Kirisawa, R.; Kato, R.; Furusaki, K.; Onodera, T. Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant. Microorganisms 2022, 10, 262. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Z.; Zhao, S.; Gao, R. A Comparison of Etiology, Pathogenesis, Vaccinal and Antiviral Drug Development between Influenza and COVID-19. Int. J. Mol. Sci. 2023, 24, 6369. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Predmore, A.; Divers, E.; Lou, F. New interventions against human norovirus: Progress, opportunities, and challenges. Annu. Rev. Food Sci. Technol. 2012, 3, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.L.; Papafragkou, E.; Park, G.W.; Osborne, J.; Jaykus, L.A.; Vinjé, J. Surrogates for the study of norovirus stability and inactivation in the environment: A comparison of murine norovirus and feline calicivirus. J. Food Prot. 2006, 69, 2761–2765. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G. Antisepsis, Disinfection, and Sterilization; ASM Press: Washington, DC, USA, 2007. [Google Scholar]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Rastogi, M.; Pandey, N.; Shukla, A.; Singh, S.K. SARS coronavirus 2: From genome to infectome. Respir. Res. 2020, 21, 318. [Google Scholar] [CrossRef]
- Wong, N.A.; Saier, M.H., Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 1308. [Google Scholar] [CrossRef]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Sehr, K.; Eichhorn, U.; Reimer, K.; Wutzler, P. Inactivation of human adenovirus genome by different groups of disinfectants. J. Hosp. Infect. 2004, 57, 67–72. [Google Scholar] [CrossRef]
- Frost, L.; Tully, M.; Dixon, L.; Hicks, H.M.; Bennett, J.; Stokes, I.; Marsella, L.; Gubbins, S.; Batten, C. Evaluation of the Efficacy of Commercial Disinfectants against African Swine Fever Virus. Pathogens 2023, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- CDC (The US Centers for Disease Control and Prevention). Chemical Disinfectants, Guideline for Disinfection and Sterilization in Healthcare Facilities (2008). Available online: https://www.cdc.gov/infection-control/hcp/disinfection-sterilization/chemical-disinfectants.html (accessed on 4 February 2025).
- US Environmental Protection Agency (USEPA), Registration Division Office of Pesticide Program, Criteria and Standards Division Office of Drinking Water. Guide Standard and Protocol for Testing Microbiological Water Purifiers; US Environmental Protection Agency: Washington, DC, USA, 1987.
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, J.D.; Collinge, J. Molecular pathology of human prion disease. Acta Neuropathol. 2011, 121, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, A.; Falsig, J. Prion propagation, toxicity and degradation. Nat. Neurosci. 2012, 15, 936–939. [Google Scholar] [CrossRef]
- Mead, S. Prion disease genetics. Eur. J. Hum. Genet. 2006, 14, 273–281. [Google Scholar] [CrossRef]
- Sakudo, A.; Ikuta, K. Prion protein functions and dysfunction in prion diseases. Curr. Med. Chem. 2009, 16, 380–389. [Google Scholar] [CrossRef]
- Sakudo, A.; Ikuta, K. Fundamentals of prion diseases and their involvement in the loss of function of cellular prion protein. Protein Pept. Lett. 2009, 16, 217–229. [Google Scholar] [CrossRef]
- Sakudo, A. Inactivation Methods for Prions. Curr. Issues Mol. Biol. 2020, 36, 23–32. [Google Scholar] [CrossRef]
- Sakudo, A.; Yamashiro, R.; Onodera, T. Recent Advances in Prion Inactivation by Plasma Sterilizer. Int. J. Mol. Sci. 2022, 23, 10241. [Google Scholar] [CrossRef]
- Sakudo, A.; Iwamaru, Y.; Furusaki, K.; Haritani, M.; Onishi, R.; Imamura, M.; Yokoyama, T.; Yoshikawa, Y.; Onodera, T. Inactivation of Scrapie Prions by the Electrically Charged Disinfectant CAC-717. Pathogens 2020, 9, 536. [Google Scholar] [CrossRef]
- Iwamaru, Y.; Furusaki, K.; Sugiura, K.; Haritani, M.; Onodera, T. Ceramic absorbed with calcium bicarbonate mesoscopic crystals partially inactivate scrapie prions. Microbiol. Immunol. 2023, 67, 447–455. [Google Scholar] [CrossRef]
- Fischer, M.; Rülicke, T.; Raeber, A.; Sailer, A.; Moser, M.; Oesch, B.; Brandner, S.; Aguzzi, A.; Weissmann, C. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 1996, 15, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, R.; Kascsak, R.J.; Papini, M.; Kascsak, R.; Carp, R.I.; LaFauci, G.; Meloen, R.; Langeveld, J. Immune surveillance and antigen conformation determines humoral immune response to the prion protein immunogen. J. Neurovirol. 1999, 5, 401–413. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L.; Peng, R.Y. Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Wallace, V.P.; Cole, B.C.; Woodward, R.M.; Pye, R.J.; Arnone, D.A. Biomedical applications of terahertz technology. In Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Glasgow, UK, 10–14 November 2002; Volume 1, pp. 308–309. [Google Scholar]
- Hewitt, C.J.; Bellara, S.T.; Andreani, A.; Nebe-von-Caron, G.; Mcfarlane, C.M. An evaluation of the antibacterial action of ceramic powder slurries using multiparameter flow cytometry. Biotechnol. Lett. 2001, 23, 667–675. [Google Scholar] [CrossRef]
- Sato, Y.; Ohata, H.; Inoue, A.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Takayama, T.; Murakami, K.; Hiruma, S.; Yokoe, H. Application of Colloidal Dispersions of Bioshell Calcium Oxide (BiSCaO) for Disinfection. Polymers 2019, 11, 1991. [Google Scholar] [CrossRef]
- Liang, X.; Dai, R.; Chang, S.; Wei, Y.; Zhang, B. Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129446. [Google Scholar] [CrossRef]
- Sawai, J. Antimicrobial characteristics of heated scallop shell powder and its application. Biocontrol Sci. 2011, 16, 95–102. [Google Scholar] [CrossRef]
- Fukuda, K.; Sato, Y.; Ishihara, M.; Nakamura, S.; Takayama, T.; Murakami, K.; Fujita, M.; Yokoe, H. Skin Cleansing Technique with Disinfectant using Improved High-Velocity Steam-Air Micromist Jet Spray. Biocontrol Sci. 2020, 25, 35–39. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Pecson, B.M.; Sigstam, T.; Bosshard, F.; Kohn, T. Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity. Environ. Sci. Technol. 2012, 46, 12069–12078. [Google Scholar] [CrossRef]
- Murray, B.K.; Ohmine, S.; Tomer, D.P.; Jensen, K.J.; Johnson, F.B.; Kirsi, J.J.; Robison, R.A.; O’Neill, K.L. Virion disruption by ozone-mediated reactive oxygen species. J. Virol. Methods 2008, 153, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Jo, S.K.; Kim, H.M.; Lee, C.J.; Lee, J.S. Inactivation of Avian Influenza Viruses by Alkaline Disinfectant Solution. J. Life Sci. 2007, 17, 340–344. [Google Scholar]
- Darnell, M.E.; Subbarao, K.; Feinstone, S.M.; Taylor, D.R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.J.; Lichtenberg, S.S.; Chappell, R.J.; Pedersen, J.A. Chemical Inactivation of Prions Is Altered by Binding to the Soil Mineral Montmorillonite. ACS Infect. Dis. 2021, 7, 859–870. [Google Scholar] [CrossRef]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ Sci. Pollut. Res. Int. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Suetens, C.; Hopkins, S.; Kolman, J.; Högberg, D. Point Prevalence Survey of Healthcare Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2013. [Google Scholar]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control 2007, 35, S65–S164. [Google Scholar]
- Rutala, W.A.; Weber, D.J. Disinfection and sterilization in health care facilities: What clinicians need to know. Clin. Infect. Dis. 2004, 39, 702–709. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection and sterilization in health care facilities: An overview and current issues. Infect. Dis. Clin. N. Am. 2021, 35, 575–607. [Google Scholar] [CrossRef]
- Eames, I.; Tang, J.W.; Li, Y.; Wilson, P. Airborne transmission of disease in hospitals. J. R. Soc. Interface 2009, 6, S697–S702. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Rogak, S.N.; Bartlett, K.H.; Green, S.I. Preventing airborne disease transmission: Review of methods for ventilation design in health care facilities. Adv. Prev. Med. 2011, 2011, 124064. [Google Scholar] [CrossRef]
- Nasr, G.; Whitehead, A.; Yule, A.J. Fine Sprays for Disinfection within Healthcare. Int. J. Multiphys. 2012, 6, 149–166. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; Perl, T.M.; Barbut, F.; French, G.L. The role of ‘no-touch’ automated room disinfection systems in infection prevention and control. J. Hosp. Infect. 2013, 83, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Duan, H.; Zhang, B.; Wang, J.; Ji, J.S.; Wang, J.; Pan, L.; Wang, X.; Zhao, K.; Ying, B.; et al. Prevention and control of COVID-19 in public transportation: Experience from China. Environ. Pollut. 2020, 266, 115291. [Google Scholar] [CrossRef] [PubMed]
- Portner, J.A.; Johnson, J.A. Guidelines for reducing pathogens in veterinary hospitals: Disinfectant selection, cleaning protocols, and hand hygiene. Compend. Contin. Educ. Vet. 2010, 32, E1–E11. [Google Scholar] [PubMed]
- Murphy, C.P.; Reid-Smith, R.J.; Boerlin, P.; Weese, J.S.; Prescott, J.F.; Janecko, N.; Hassard, L.; McEwen, S.A. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can. Vet. J. 2010, 51, 963–972. [Google Scholar]
- Robertson, I.D. Disease Control, Prevention and On-Farm Biosecurity: The Role of Veterinary Epidemiology. Engineering 2020, 6, 20–25. [Google Scholar] [CrossRef]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef]
- Leggett, M.J.; McDonnell, G.; Denyer, S.P.; Setlow, P.; Maillard, J.Y. Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol. 2012, 113, 485–498. [Google Scholar] [CrossRef]
- Setlow, P. Observations on research with spores of Bacillales and Clostridiales species. J. Appl. Microbiol. 2019, 126, 348–358. [Google Scholar] [CrossRef]
- Salgar, J.B.; Bais, S.K.; Mule, R.A. Review on Biological Indicator. Int. J. Adv. Res. Sci. Commun. Tech. 2023, 3, 22–43. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Antimicrobial Resistance. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 1 February 2025).
- CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). Available online: https://www.cdc.gov/narms/about/index.html (accessed on 1 February 2025).
- Krauland, M.G.; Marsh, J.W.; Paterson, D.L.; Harrison, L.H. Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Emerg. Infect. Dis. 2009, 15, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Head, M.W.; Ironside, J.W. Review: Creutzfeldt-Jakob disease: Prion protein type, disease phenotype and agent strain. Neuropathol. Appl. Neurobiol. 2012, 38, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.T.; Will, R.G.; Manson, J.C. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc. Natl. Acad. Sci. USA 2010, 107, 12005–12010. [Google Scholar] [CrossRef] [PubMed]
- Parchi, P.; Cescatti, M.; Notari, S.; Schulz-Schaeffer, W.J.; Capellari, S.; Giese, A.; Zou, W.Q.; Kretzschmar, H.; Ghetti, B.; Brown, P. Agent strain variation in human prion disease: Insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease. Brain 2010, 133, 3030–3042. [Google Scholar] [CrossRef]
- Peretz, D.; Supattapone, S.; Giles, K.; Vergara, J.; Freyman, Y.; Lessard, P.; Safar, J.G.; Glidden, D.V.; McCulloch, C.; Nguyen, H.O.; et al. Inactivation of prions by acidic sodium dodecyl sulfate. J. Virol. 2006, 80, 322–331. [Google Scholar] [CrossRef]
- Giles, K.; Glidden, D.V.; Beckwith, R.; Seoanes, R.; Peretz, D.; DeArmond, S.J.; Prusiner, S.B. Resistance of bovine spongiform encephalopathy (BSE) prions to inactivation. PLoS Pathog. 2008, 4, e1000206. [Google Scholar] [CrossRef]
- Jucker, M.; Walker, L.C. Evidence for iatrogenic transmission of Alzheimer’s disease. Nat. Med. 2024, 30, 344–345. [Google Scholar] [CrossRef]
- Catania, M.; Di Fede, G. One or more beta-amyloid(s)? New insights into the prion-like nature of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2020, 175, 213–237. [Google Scholar]
- Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 2013, 47, 601–623. [Google Scholar] [CrossRef]
- Ayers, J.I.; Paras, N.A.; Prusiner, S.B. Expanding spectrum of prion diseases. Emerg. Top. Life. Sci. 2020, 4, 155–167. [Google Scholar]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Callegari, K.; Soto, C. Prion-like features of misfolded Aβ and tau aggregates. Virus Res. 2015, 207, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.H.; Tan, L.; Jiang, T.; Yu, J.T. Prion-like Mechanisms in Alzheimer’s Disease. Curr. Alzheimer. Res. 2014, 11, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Vaquer-Alicea, J.; Diamond, M.I. Propagation of Protein Aggregation in Neurodegenerative Diseases. Annu. Rev. Biochem. 2019, 88, 785–810. [Google Scholar] [CrossRef]
- Iwaya, N.; Sakudo, A.; Kanda, T.; Furusaki, K.; Onishi, R.; Onodera, T.; Yoshikawa, Y. Degradation and/or Dissociation of Neurodegenerative Disease-Related Factor Amyloid-β by a Suspension Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Int. J. Mol. Sci. 2024, 25, 12761. [Google Scholar] [CrossRef]
- Onodera, T.; Sakudo, A.; Iwamaru, Y.; Yokoyama, T.; Haritani, M.; Sugiura, K.; Shimakura, H.; Haga, T.; Onishi, R.; Furusaki, K. Calcium bicarbonate as an antimicrobial, antiviral, and prion-inhibiting agent. Biomed. Rep. 2022, 17, 57. [Google Scholar] [CrossRef]
- Cruz, J.V.; Magalhães, W.L.; Cademartori, P.H.; Dorta, D.J.; de Oliveira, D.P.; Leme, D.M. Environmental concerns about the massive use of disinfectants during COVID-19 pandemic: An overview on aquatic toxicity. Ecotoxicol. Environ. Contam. 2021, 16, 107–117. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareeka, V.K.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270–14288. [Google Scholar] [CrossRef]
- Fadia, P.; Tyagi, S.; Bhagat, S.; Nair, A.; Panchal, P.; Dave, H.; Dang, S.; Singh, S. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications. 3 Biotech 2021, 11, 457. [Google Scholar] [CrossRef]
- Ataee, R.A.; Derakhshanpour, J.; Mehrabi Tavana, A. Antibacterial effect of calcium carbonate nanoparticles on Agrobacterium tumefaciens. Iran. J. Mil. Med. 2011, 13, 65–70. [Google Scholar]
- Ferreira, A.M.; Vikulina, A.S.; Volodkin, D. CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. J. Control Release 2020, 328, 470–489. [Google Scholar] [CrossRef]
Microorganism (Strain or Type) | Classification | Sample Type | Reaction Volume Ratio (Sample: CAC-717), Exposure Time | Inactivation Effect | Evaluation Method | References |
---|---|---|---|---|---|---|
Salmonella enterica subsp. enterica serovar Abony (NCTC6017) | Gram-negative bacteria/animal pathogen | Bacterial suspension | 1:1, 1 min | 2-log reduction | Colony count assay | [19] |
Escherichia coli (HST04 strain) | Gram-negative bacteria/non-pathogenic microorganism | Bacterial suspension | 1:1, 2 min | 2-log reduction | Colony count assay | [19] |
Xanthomonas campestris pv. campestris (NGM120310-14) | Gram-negative bacteria/plant pathogen | Bacterial suspension | 1:1, 1 min | 3-log reduction | Colony count assay | [17] |
Microorganism (Strain or Type) | Classification | Sample Type | Reaction Volume Ratio (Sample: CAC-717), Exposure Time | Inactivation Effect | Evaluation Method | References |
---|---|---|---|---|---|---|
Human influenza A virus (A/Aichi/2/68 (H3N2)) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:9, 1 min | 4-log reduction | TCID50 assay | [16] |
Swine influenza A virus (A/Swine/Wadayama/5/69 (H3N2)) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:9, 1 min | 3-log reduction | TCID50 assay | [16] |
Feline calicivirus (F9) | Non-enveloped ss-RNA virus/animal pathogen | Virus-infected cell lysate | 1:1, 1 min | 3-log reduction | TCID50 assay | [19] |
Mouse norovirus (S7) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 1 min | 4-log reduction | TCID50 assay | [33] |
Human norovirus (derived from patients: GII.4 Sydney 2012) | Non-enveloped ss-RNA virus/human pathogen | Virus suspension | 1:1, 30 min | 3-log reduction | RT-qPCR combined with PMA binding assay | [33] |
SARS-CoV-2 (hCoV-19/Japan/QK002/2020) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 3-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (hCoV-19/Japan/TY7-501/2021) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 3-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (hCoV-19/Japan/TY8-612/2021) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 4-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (SARS-CoV-2/KH-1/2021) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 4-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (SARS-CoV-2/KH-25/2021) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 4-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (SARS-CoV-2/WK-521) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:9, 15 s | 4-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (SARS-CoV-2/WK-521) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 15 s | 4-log reduction | TCID50 assay | [34] |
SARS-CoV-2 (SARS-CoV-2/WK-521) | Enveloped ss-RNA virus/human pathogen | Virus-infected cell culture suspension | 1:49, 5 min | 4-log reduction | TCID50 assay | [34] |
Infectious bovine rhinotracheitis virus (Los Angeles) | Enveloped ds-DNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Pseudorabies virus (MY-1) | Enveloped ds-DNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Canine herpesvirus 1 (GCH-1) | Enveloped ds-DNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 3-log reduction | TCID50 assay | [35] |
Equine herpesvirus 1 (HH1) | Enveloped ds-DNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Bovine adenovirus 7 (Fukuroi) | Non-enveloped ds-DNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Canine parvovirus 2 (97-008) | Non-enveloped ss-DNA virus/animal pathogen | Virus suspension | 1:9, 10 s | 3-log reduction | TCID50 assay | [35] |
Bovine parainfluenza virus 3 (BN-1) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Bovine respiratory syncytial virus (rs-52) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 3-log reduction | TCID50 assay | [35] |
Canine distemper virus (KDK-1) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 3-log reduction | TCID50 assay | [35] |
Newcastle disease virus (Miyadera) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 15 min | 3-log reduction | TCID50 assay | [35] |
Vesicular stomatitis virus (New Jersey) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 15 min | 4-log reduction | TCID50 assay | [35] |
SARS-CoV-2 (JPN/TY/WK-521) | Enveloped ss-RNA virus/human pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Bovine coronavirus (Kakegawa) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Swine influenza A virus (A/Swine/Ibaraki/46/2010 (H1N1)) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 10 s | 4-log reduction | TCID50 assay | [35] |
Equine influenza virus (A/Equine/Hayakita/1/2007 (H3N8)) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 30 s | 3-log reduction | TCID50 assay | [35] |
Bovine viral diarrhea virus I (Nose) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 30 min | 4-log reduction | TCID50 assay | [35] |
Bovine viral diarrhea virus II (KZ-91CP) | Enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 30 min | 4-log reduction | TCID50 assay | [35] |
Foot-and-mouth disease virus (type A) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 60 min | 4-log reduction | TCID50 assay | [35] |
Foot-and-mouth disease virus (type O) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 60 min | 3-log reduction | TCID50 assay | [35] |
Foot-and-mouth disease virus (type Asia 1) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 60 min | 4-log reduction | TCID50 assay | [35] |
Bovine rhinitis B virus (EC11) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Feline calicivirus (F9) | Non-enveloped ss-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Bovine rotavirus (22R) | Non-enveloped ds-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 4-log reduction | TCID50 assay | [35] |
Bulbul orthoreovirus (Pycno-1) | Non-enveloped ds-RNA virus/animal pathogen | Virus suspension | 1:9, 2 s | 3-log reduction | TCID50 assay | [35] |
Microorganism (Strain or Type) | Classification | Sample Type | Reaction Volume Ratio (Sample: CAC-717), Exposure Time | Inactivation Effect | Evaluation Method | References |
---|---|---|---|---|---|---|
Prion (Chandler) | Scrapie prion/animal pathogen | Prion-infected cell lysate (ScN2a) | 1:1, 1 h | 4-log reduction | PMCA | [58] |
Prion (Chandler) | Scrapie prion/animal pathogen | Brain homogenate | 30% (w/v) of CAC-717 ceramic, 30 min | 3-log reduction | PMCA | [59] |
Prion (Chandler) | Scrapie prion/animal pathogen | Brain homogenate | 30% (w/v) of CAC-717 ceramic containing 4% SDS, 30 min | 6-log reduction | PMCA | [59] |
Prion (Chandler) | Scrapie prion/animal pathogen | Brain homogenate | double treatment with 30% (w/v) of CAC-717 ceramic, 30 min X 2 | 4-log reduction | PMCA | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakudo, A.; Furusaki, K.; Onishi, R.; Onodera, T.; Yoshikawa, Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025, 13, 507. https://doi.org/10.3390/microorganisms13030507
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms. 2025; 13(3):507. https://doi.org/10.3390/microorganisms13030507
Chicago/Turabian StyleSakudo, Akikazu, Koichi Furusaki, Rumiko Onishi, Takashi Onodera, and Yasuhiro Yoshikawa. 2025. "A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals" Microorganisms 13, no. 3: 507. https://doi.org/10.3390/microorganisms13030507
APA StyleSakudo, A., Furusaki, K., Onishi, R., Onodera, T., & Yoshikawa, Y. (2025). A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms, 13(3), 507. https://doi.org/10.3390/microorganisms13030507