Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Data and Sample Collection
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. First Week of Life
3.2. Second Week of Life
3.3. Third Week of Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Schrödl, W.; Büchler, R.; Wendler, S.; Reinhold, P.; Muckova, P.; Reindl, J.; Rhode, H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteom. Clin. Appl. 2016, 10, 1077–1092. [Google Scholar] [CrossRef]
- Petersen, H.H.; Nielsen, J.P.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004, 35, 163–187. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Giannetto, C.; Giudice, E.; Fazio, F. Utility of acute phase proteins as biomarkers of transport stress in ewes. Small Rumin. Res. 2012, 107, 167–171. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Gupta, V.K.; Bhanuprakash, A.G.; Mandal, R.S.K.; Dimri, U.; Ajith, Y. Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microb. Pathog. 2018, 116, 33–37. [Google Scholar] [CrossRef]
- Seppä-Lassila, L.; Eerola, U.; Orro, T.; Härtel, H.; Simojoki, H.; Autio, T.; Pelkonen, S.; Soveri, T. Health and growth of Finnish beef calves and the relation to acute phase response. Livest. Sci. 2017, 196, 7–13. [Google Scholar] [CrossRef]
- Seppä-Lassila, L.; Oksanen, J.; Herva, T.; Dorbek-Kolin, E.; Kosunen, H.; Parviainen, L.; Soveri, T.; Orro, T. Associations between group sizes, serum protein levels, calf morbidity and growth in dairy-beef calves in a Finnish calf rearing unit. Prev. Vet. Med. 2018, 161, 100–108. [Google Scholar] [CrossRef]
- Peetsalu, K.; Tummeleht, L.; Kuks, A.; Orro, T. Serum amyloid A and haptoglobin concentrations in relation to growth and colostrum intake in neonatal lambs. Livest. Sci. 2019, 220, 217–220. [Google Scholar] [CrossRef]
- Peetsalu, K.; Niine, T.; Loch, M.; Dorbek-Kolin, E.; Tummeleht, L.; Orro, T. Effect of colostrum on the acute-phase response in neonatal dairy calves. J. Dairy Sci. 2022, 105, 6207–6219. [Google Scholar] [CrossRef]
- Orro, T.; Jacobsen, S.; LePage, J.P.; Niewold, T.; Alasuutari, S.; Soveri, T. Temporal changes in serum concentrations of acute phase proteins in newborn dairy calves. Vet. J. 2008, 176, 182–187. [Google Scholar] [CrossRef]
- Loch, M.; Niine, T.; Dorbek-Kolin, E.; Peetsalu, K.; Orro, T. Associations of neonatal acute phase response with first lactation performance in dairy cows. J. Dairy Sci. 2023, 106, 6353–6364. [Google Scholar] [CrossRef]
- Heravi Moussavi, A.; Danesh Mesgaran, M.; Gilbert, R.O. Effect of mastitis during the first lactation on production and reproduction performance of Holstein cows. Trop. Anim. Health Prod. 2012, 44, 1567–1573. [Google Scholar] [CrossRef]
- Roche, J.R.; Berry, D.P.; Delaby, L.; Dillon, P.G.; Horan, B.; Macdonald, K.A.; Neal, M. Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems. Animal 2018, 12, s350–s362. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.B.; Coppa, M.; Rouel, J.; Martin, B.; Dumont, B.; Ferlay, A.; Espinasse, C.; Blanc, F. Profiles of dairy cows with different productive lifespan emerge from multiple traits assessed at first lactation: The case of a grassland-based dairy system. Livest. Sci. 2021, 246, 104443. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Argüello, A.; Almeida, A.M.; Castro, N.; Bendixen, E. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry. J. Dairy Sci. 2015, 98, 135–147. [Google Scholar] [CrossRef]
- Dinler, C.; Tuna, G.E.; Ay, E.; Ulutas, B.; Voyvoda, H.; Ulutas, P.A. Reference intervals for serum amyloid A, haptoglobin, ceruloplasmin, and fibrinogen in apparently healthy neonatal lambs. Vet. Clin. Pathol. 2020, 49, 484–490. [Google Scholar] [CrossRef]
- Enav, H.; Bäckhed, F.; Ley, R.E. The developing infant gut microbiome: A strain-level view. Cell Host Microbe 2022, 30, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, L.J.; Bordenstein, S.R. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013, 11, e1001631. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.G.; Ericsson, A.C.; Poock, S.E.; Melendez, P.; Lucy, M.C. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J. Dairy Sci. 2017, 100, 4953–4960. [Google Scholar] [CrossRef] [PubMed]
- de Goffau, M.C.; Lager, S.; Sovio, U.; Gaccioli, F.; Cook, E.; Peacock, S.J.; Parkhill, J.; Charnock-Jones, D.S.; Smith, G.C.S. Human placenta has no microbiome but can contain potential pathogens. Nature 2019, 572, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Lietaer, L.; Bogado Pascottini, O.; Hernandez-Sanabria, E.; Kerckhof, F.-M.; Lacoere, T.; Boon, N.; Vlaminck, L.; Opsomer, G.; Van de Wiele, T. Low microbial biomass within the reproductive tract of mid-lactation dairy cows: A study approach. J. Dairy Sci. 2021, 104, 6159–6174. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Stiemsma, L.T.; Amenyogbe, N.; Brown, E.; Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 2014, 5, 427. [Google Scholar] [CrossRef]
- Guzman, C.E.; Bereza-Malcolm, L.T.; de Groef, B.; Franks, A.E. Uptake of milk with and without solid feed during the monogastric phase: Effect on fibrolytic and methanogenic microorganisms in the gastrointestinal tract of calves. Anim. Sci. J. 2016, 87, 378–388. [Google Scholar] [CrossRef]
- Sultana, R.; McBain, A.J.; O’Neill, C.A. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl. Environ. Microbiol. 2013, 79, 4887–4894. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynönen, U.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 2018, 8, 10437. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.E.; Galvão, K.N.; Rodriguez-Lecompte, J.C.; Costa, M.C. The cattle microbiota and the immune system: An evolving field. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Smits, H.H.; Engering, A.; van der Kleij, D.; de Jong, E.C.; Schipper, K.; van Capel, T.M.; Zaat, B.A.; Yazdanbakhsh, M.; Wierenga, E.A.; van Kooyk, Y.; et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 2005, 115, 1260–1267. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Diaz, H.; Meddings, L.; Diederichs, B.; Dmytrash, A.; Backer, J.; Looijer-van Langen, M.; Madsen, K.L. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Liver Physiol. 2008, 295, G1025–G1034. [Google Scholar] [CrossRef]
- Huhta, H.; Helminen, O.; Kauppila, J.H.; Salo, T.; Porvari, K.; Saarnio, J.; Lehenkari, P.P.; Karttunen, T.J. The expression of toll-like receptors in normal human and murine gastrointestinal organs and the effect of microbiome and cancer. J. Histochem. Cytochem. 2016, 64, 470–482. [Google Scholar] [CrossRef]
- Szentkuti, L.; Riedesel, H.; Enss, M.-L.; Gaertner, K.; von Engelhardt, W. Pre-epithelial mucus layer in the colon of conventional and germ-free rats. Histochem. J. 1990, 22, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.-J.M.; Wells, J.M. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Liver Physiol. 2010, 298, G851–G859. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, M.; Makki, K.; Storelli, G.; Machuca-Gayet, I.; Srutkova, D.; Hermanova, P.; Martino, M.E.; Balmand, S.; Hudcovic, T.; Heddi, A.; et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016, 351, 854–857. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Li, M.; Fries, P.; Griebel, P.J.; Guan, L.L. Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves. Vet. Immunol. Immunopathol. 2012, 146, 18–26. [Google Scholar] [CrossRef]
- Kelly, D.; King, T.; Aminov, R.; Ma, T.; O’Hara, E.; Song, Y.; Fischer, A.J.; He, Z.; Steele, M.A.; Guan, L.L.; et al. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. Mol. Mech. Mutagen. 2007, 622, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Kanther, M.; Tomkovich, S.; Xiaolun, S.; Grosser, M.R.; Koo, J.; Flynn, E.J.; Jobin, C.; Rawls, J.F. Commensal microbiota stimulate systemic neutrophil migration through induction of serum amyloid A. Cell. Microbiol. 2014, 16, 1053–1067. [Google Scholar] [CrossRef]
- Murdoch, C.C.; Espenschied, S.T.; Matty, M.A.; Mueller, O.; Tobin, D.M.; Rawls, J.F. Intestinal serum amyloid a suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathog. 2019, 15, e1007381. [Google Scholar] [CrossRef]
- Husso, A.; Pessa-Morikawa, T.; Koistinen, V.M.; Kärkkäinen, O.; Kwon, H.N.; Lahti, L.; Iivanainen, A.; Hanhineva, K.; Niku, M. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol. 2023, 21, 207. [Google Scholar] [CrossRef]
- Dorbek-Kolin, E.; Husso, A.; Niku, M.; Loch, M.; Pessa-Morikawa, T.; Niine, T.; Kaart, T.; Iivanainen, A.; Orro, T. Faecal microbiota in two-week-old female dairy calves during acute cryptosporidiosis outbreak—Association with systemic inflammatory response. Res. Vet. Sci. 2022, 151, 116–127. [Google Scholar] [CrossRef]
- Niine, T.; Dorbek-Kolin, E.; Lassen, B.; Orro, T. Cryptosporidium outbreak in calves on a large dairy farm: Effect of treatment and the association with the inflammatory response and short-term weight gain. Res. Vet. Sci. 2018, 117, 200–208. [Google Scholar] [CrossRef]
- Eesti Põllumajandusloomade Jõudluskontrolli. Results of Animal Recording in Estonia 2015; Estonian Livestock Performance Recording Ltd.: Tartu, Estonia, 2016; Available online: https://www.epj.ee/assets/tekstid/aastaraamatud/aastaraamat_2015.pdf (accessed on 7 August 2022)(In Estonian with English Summary).
- Makimura, S.; Suzuki, N. Quantitative determination of bovine serum haptoglobin and its elevation in some inflammatory diseases. Jpn. J. Vet. Sci. 1982, 44, 15–21. [Google Scholar] [CrossRef]
- Alsemgeest, S.P.; Kalsbeek, H.C.; Wensing, T.; Koeman, J.P.; van Ederen, A.M.; Gruys, E. Concentrations of serum amyloid-A (SAA) and haptoglobin (HP) as parameters of inflammatory diseases in cattle. Vet. Q. 1994, 16, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Husso, A.; Jalanka, J.; Alipour, M.J.; Huhti, P.; Kareskoski, M.; Pessa-Morikawa, T.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in horse. Sci. Rep. 2020, 10, 441. [Google Scholar] [CrossRef]
- Custer, G.F.; Gans, M.; van Diepen, L.T.A.; Dini-Andreote, F.; Buerkle, C.A. Comparative analysis of core microbiome assignments: Implications for ecological synthesis. mSystems 2023, 8, e01066-22. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Dill-McFarland, K.A.; Breaker, J.D.; Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 2017, 7, 40864. [Google Scholar] [CrossRef] [PubMed]
- Claus-Walker, R.A.; Slanzon, G.S.; Elder, L.A.; Hinnant, H.R.; Mandella, C.M.; Parrish, L.M.; Trombetta, S.C.; McConnel, C.S. Characterization of the preweaned Holstein calf fecal microbiota prior to, during, and following resolution of uncomplicated gastrointestinal disease. Front. Microbiol. 2024, 15, 1388489. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; O’Hara, E.; Song, Y.; Fischer, A.J.; He, Z.; Steele, M.A.; Guan, L.L. Altered mucosa-associated microbiota in the ileum and colon of neonatal calves in response to delayed first colostrum feeding. J. Dairy Sci. 2019, 102, 7073–7086. [Google Scholar] [CrossRef]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef]
- Smole, U.; Gour, N.; Phelan, J.; Hofer, G.; Köhler, C.; Kratzer, B.; Tauber, P.A.; Xiao, X.; Yao, N.; Dvorak, J.; et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat. Immunol. 2020, 21, 756–765. [Google Scholar] [CrossRef]
- Xu, L.; Badolato, R.; Murphy, W.J.; Longo, D.L.; Anver, M.; Hale, S.; Oppenheim, J.J.; Wang, J.M. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J. Immunol. 1995, 155, 1184–1190. [Google Scholar] [PubMed]
- Zaghouani, H.; Hoeman, C.M.; Adkins, B. Neonatal immunity: Faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol. 2009, 30, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, K.; Shirai, T.; Suda, T.; Chida, K. Inflammatory markers in active pulmonary tuberculosis: Association with Th1/Th2 and Tc1/Tc2 balance. Kekkaku 2012, 87, 1–7. [Google Scholar] [PubMed]
- Schulte, S.; Sukhova, G.K.; Libby, P. Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am. J. Pathol. 2008, 172, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Bazar, K.A.; Yun, A.J.; Lee, P.Y. “Starve a fever and feed a cold”: Feeding and anorexia may be adaptive behavioral modulators of autonomic and T helper balance. Med. Hypotheses 2005, 64, 1080–1084. [Google Scholar] [CrossRef]
- Ogita, T.; Yamamoto, Y.; Mikami, A.; Shigemori, S.; Sato, T.; Shimosato, T. Oral administration of Flavonifractor plautii strongly suppresses Th2 immune responses in mice. Front. Immunol. 2020, 11, 379. [Google Scholar] [CrossRef]
- Wu, Y.; Chi, X.; Zhang, Q.; Chen, F.; Deng, X. Characterization of the salivary microbiome in people with obesity. PeerJ 2018, 6, e4458. [Google Scholar] [CrossRef]
- Scully, S.; Earley, B.; Smith, P.E.; McAloon, C.; Waters, S.M. Health-associated changes of the fecal microbiota in dairy heifer calves during the pre-weaning period. Front. Microbiol. 2024, 15, 1359611. [Google Scholar] [CrossRef]
- Dogra, S.; Sakwinska, O.; Soh, S.E.; Ngom-Bru, C.; Brück, W.M.; Berger, B.; Brüssow, H.; Lee, Y.S.; Yap, F.; Chong, Y.S.; et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 2015, 6, e02419-14. [Google Scholar] [CrossRef]
- Krpálková, L.; Cabrera, V.E.; Kvapilík, J.; Burdych, J.; Crump, P. Associations between age at first calving, rearing average daily weight gain, herd milk yield and dairy herd production, reproduction, and profitability. J. Dairy Sci. 2014, 97, 6573–6582. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Baruselli, P.S.; Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019, 125, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.J.; Gomez, A.; White, B.A.; Mangian, H.J.; Loften, J.R.; Drackley, J.K. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 2016, 99, 9682–9702. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ma, Y.; Yang, S.; Zhang, S.; Liu, S.; Xiao, J.; Wang, Y.; Wang, W.; Yang, H.; Li, S.; et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome 2022, 10, 79. [Google Scholar] [CrossRef]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef] [PubMed]
- Foditsch, C.; Santos, T.M.A.; Teixeira, A.G.V.; Pereira, R.V.V.; Dias, J.M.; Gaeta, N.; Bicalho, R.C. Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS ONE 2014, 9, e116465. [Google Scholar] [CrossRef]
- Christensen, H.; Bisgaard, M.; Bojesen, A.M.; Mutters, R.; Olsen, J.E. Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov.; comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 275–287. [Google Scholar] [CrossRef]
- Wang, C.; Robles, F.; Ramirez, S.; Riber, A.B.; Bojesen, A.M. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR. Avian Pathol. 2016, 45, 538–544. [Google Scholar] [CrossRef]
- Gomez, D.E.; Li, L.; Goetz, H.; MacNicol, J.; Gamsjaeger, L.; Renaud, D.L. Calf diarrhea is associated with a shift from obligated to facultative anaerobes and expansion of lactate-producing bacteria. Front. Vet. Sci. 2022, 9, 846383. [Google Scholar] [CrossRef]
- Van Driessche, L.; Vanneste, K.; Bogaerts, B.; De Keersmaecker, S.C.J.; Roosens, N.H.; Haesebrouck, F.; de Cremer, L.; Deprez, P.; Pardon, B.; Boyen, F. Isolation of drug-resistant Gallibacterium anatis from calves with unresponsive bronchopneumonia, Belgium. Emerg. Infect. Dis. 2020, 26, 721–730. [Google Scholar] [CrossRef]
- Dias, J.; Marcondes, M.I.; de Souza, S.M.; da Mata e Silva, B.C.; Noronha, M.F.; Resende, R.T.; Machado, F.S.; Mantovani, H.C.; Dill-McFarland, K.A.; Suen, G. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Appl. Environ. Microbiol. 2018, 84, e02675-17. [Google Scholar] [CrossRef]
- Virgínio Júnior, G.F.; Bittar, C.M.M. Microbial colonization of the gastrointestinal tract of dairy calves—A review of its importance and relationship to health and performance. Anim. Health Res. Rev. 2021, 22, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.E.; Shi, H.N.; Walker, W.A. The long-term health effects of neonatal microbial flora. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 197–201. [Google Scholar] [CrossRef]
- Kalliomaki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Orro, T.; Nieminen, M.; Tamminen, T.; Sukura, A.; Sankari, S.; Soveri, T. Temporal changes in concentrations of serum amyloid-A and haptoglobin and their associations with weight gain in neonatal reindeer calves. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 79–88. [Google Scholar] [CrossRef]
- Goetz, H.M.; Kelton, D.F.; Costa, J.H.C.; Winder, C.B.; Renaud, D.L. Identification of biomarkers measured upon arrival associated with morbidity, mortality, and average daily gain in grain-fed veal calves. J. Dairy Sci. 2021, 104, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, J.; Qin, H.; Wang, L.; Li, J.; Zhang, L. Cryptosporidium parvum and gp60 genotype prevalence in dairy calves worldwide: A systematic review and meta-analysis. Acta Trop. 2023, 240, 106843. [Google Scholar] [CrossRef]
- Seale, J.; Swain, J.; Booth, R.; Blake, D.P. A Cryptosporidium parvum genotype shift between week old and two week old calves following administration of a prophylactic antiprotozoal. Vet. Parasitol. 2019, 273, 32–35. [Google Scholar] [CrossRef]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef]
Week Groups | 12 Month ADWG | AFC | 305-Day-Milk Yield | 1st Lactation Calving–Conception Interval | Number of Reproductive Issues 1 |
---|---|---|---|---|---|
W1 | 67 | 64 | 64 | 64 | 67 |
W2 | 95 | 91 | 86 | 82 | 95 |
W3 | 83 | 79 | 73 | 72 | 83 |
W1 (ns = 67) | W2 (ns = 95) | W3 (ns = 83) | ||
---|---|---|---|---|
SAA (mg/L) | Low | 55.2–112.6 (22) | 34.0–101.2 (31) | 13.2–59.1 (28) |
Moderate | 113.0–159.1 (22) | 102.1–154.3 (32) | 60.4–103.1 (28) | |
High | 164.3–347.7 (23) | 156.5–487.9 (32) | 103.8–316.7 (27) | |
Hp (mg/L) | Low | 97–168 (23) | 119–196 (31) | 85–164 (28) |
Moderate | 170–260 (22) | 199–716 (32) | 165–400 (28) | |
High | 262–1899 (22) | 732–2830 (32) | 403–2416 (27) | |
IL-6 (ng/L) | Low | 2.5–6.4 (23) | 2.5–4.2 (32) | 2.5–6.3 (29) |
Moderate | 6.6–14.6 (22) | 4.3–9.4 (32) | 6.6–10.8 (27) | |
High | 16.2–82.2 (22) | 9.7–130.7 (31) | 10.9–43.6 (27) | |
TNF-α (ng/L) | Low | 70–310 (22) | 50–210 (32) | 50–110 (29) |
Moderate | 330–660 (22) | 220–380 (31) | 120–220 (26) | |
High | 670–2800 (23) | 390–4200 (32) | 230–910 (28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loch, M.; Dorbek-Sundström, E.; Husso, A.; Pessa-Morikawa, T.; Niine, T.; Kaart, T.; Mõtus, K.; Niku, M.; Orro, T. Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance. Animals 2024, 14, 2533. https://doi.org/10.3390/ani14172533
Loch M, Dorbek-Sundström E, Husso A, Pessa-Morikawa T, Niine T, Kaart T, Mõtus K, Niku M, Orro T. Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance. Animals. 2024; 14(17):2533. https://doi.org/10.3390/ani14172533
Chicago/Turabian StyleLoch, Marina, Elisabeth Dorbek-Sundström, Aleksi Husso, Tiina Pessa-Morikawa, Tarmo Niine, Tanel Kaart, Kerli Mõtus, Mikael Niku, and Toomas Orro. 2024. "Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance" Animals 14, no. 17: 2533. https://doi.org/10.3390/ani14172533