Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Extraction of Serum Samples
2.3. Ultra-High-Performance Liquid Chromatography–Mass Spectrometry Analysis
2.3.1. Chromatographic Conditions
2.3.2. Quadrupole Time-of-Flight Mass Spectrometry (Q-TOF-MS) Conditions
2.3.3. Analysis of Metabolome Data
2.4. Statistical Analysis
3. Results
3.1. Body Weights of Chickens at 160 Days of Age
3.2. Serum Metabolome Profile of Wumeng Black-Bone Chickens
3.3. Differential Serum Metabolites between High- and Low-Body-Weight Groups
3.4. Enrichment Analysis of Metabolic Pathways of Differential Serum Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilbert, M.; Conchedda, G.; Van Boeckel, T.P.; Cinardi, G.; Linard, C.; Nicolas, G.; Thanapongtharm, W.; D’Aietti, L.; Wint, W.; Newman, S.H.; et al. Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLoS ONE 2015, 10, e0133381. [Google Scholar] [CrossRef] [PubMed]
- Mahoro, J.; Muasya, T.K.; Mbuza, F.; Mbuthia, J.; Kahi, A.K. Farmers’breeding practices and traits of economic importance for indigenous chicken in RWANDA. Trop. Anim. Health Prod. 2018, 50, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Cai, B.; Li, X.; Zhou, Z.; Fang, X.; Yang, X.; Cai, D.; Luo, X.; Guo, S.; Nie, Q. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult. Sci. 2024, 103, 103626. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, T.; Deng, W.; Yan, G.; Qiu, H.; Huang, Y.; Ke, S.; Hou, Y.; Zhang, Y.; Zhang, Z.; et al. Genome-wide association studies identify susceptibility loci affecting respiratory disease in Chinese Erhualian pigs under natural conditions. Anim. Genet. 2017, 48, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Luo, C.; Zhang, C.; Zhang, R.; Tang, J.; Nie, Q.; Ma, L.; Hu, X.; Li, N.; Da, Y.; et al. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS ONE 2012, 7, e30910. [Google Scholar] [CrossRef]
- Xu, Z.; Nie, Q.; Zhang, X. Overview of Genomic insights into chicken growth traits based on genome-wide association study and microrna regulation. Curr. Genom. 2013, 14, 137–146. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Luo, C.; Sheng, Z.; Zhang, C.; Bian, C.; Feng, C.; Li, J.; Gao, F.; Zhao, Y.; et al. Multiple ancestral haplotypes harboring regulatory mutations cumulatively contribute to a QTL affecting chicken growth traits. Commun. Biol. 2020, 3, 472. [Google Scholar] [CrossRef]
- Venturini, G.C.; Stafuzza, N.B.; Cardoso, D.F.; Baldi, F.; Ledur, M.C.; Peixoto, J.O.; El, F.L.; Munari, D.P. Association between ACTA1 candidate gene and performance, organs and carcass traits in broilers. Poult. Sci. 2016, 95, 1221. [Google Scholar] [CrossRef]
- Dou, D.; Shen, L.; Zhou, J.; Cao, Z.; Luan, P.; Li, Y.; Xiao, F.; Guo, H.; Li, H.; Zhang, H. Genome-wide association studies for growth traits in broilers. BMC Genom. Data 2022, 23, 1. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Vernerova, K.; Kizek, R.; Bozzi, R.; Kadlec, J.; Curn, V.; Kouba, F.; Fernandez, C.; Machander, V.; Horna, H. Associations between IGF1, IGFBP2 and TGFss3 genes polymorphisms and growth performance of broiler chicken lines. Animals 2020, 10, 800. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, Y.; Wu, J.; Wang, X.; Bian, C.; Tian, Y.; Sun, G.; Han, R.; Liu, X.; et al. Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F(2) chicken population. Heredity 2021, 126, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Antonio, G.A.; Ander, A.A.; Javier, N.G.F.; Sergio, N.B.; Vicente, D.B.J.; Esperanza, C.V.M. The study of growth and performance in local chicken breeds and varieties: A review of methods and scientific transference. Animals 2021, 11, 2492. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhang, X.; Cheng, R.; Ansari, A.R.; Elokil, A.A.; Hu, Y.; Chen, Y.; Nafady, A.A.; Liu, H. Sex differences in growth performance are related to cecal microbiota in chicken. Microb. Pathog. 2021, 150, 104710. [Google Scholar] [CrossRef] [PubMed]
- Memon, F.U.; Yang, Y.; Lv, F.; Soliman, A.M.; Chen, Y.; Sun, J.; Wang, Y.; Zhang, G.; Li, Z.; Xu, B.; et al. Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection. J. Appl. Microbiol. 2021, 131, 425–434. [Google Scholar] [CrossRef]
- Lappalainen, T.; Li, Y.I.; Ramachandran, S.; Gusev, A. Genetic and molecular architecture of complex traits. Cell 2024, 187, 1059–1075. [Google Scholar] [CrossRef]
- Urgessa, O.E.; Woldesemayat, A.A. OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: Implication to breeding. Anim. Biotechnol. 2023, 34, 4147–4166. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Wilson, I.D. Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2003, 2, 668–676. [Google Scholar] [CrossRef]
- Beauclercq, S.; Nadal-Desbarats, L.; Hennequet-Antier, C.; Collin, A.; Tesseraud, S.; Bourin, M.; Le Bihan-Duval, E.; Berri, C. Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. J. Proteome Res. 2016, 15, 1168–1178. [Google Scholar] [CrossRef]
- Jorge-Smeding, E.; Polakof, S.; Bonnet, M.; Durand, S.; Centeno, D.; Petera, M.; Taussat, S.; Cantalapiedra-Hijar, G. Untargeted metabolomics confirms the association between plasma branched chain amino acids and residual feed intake in beef heifers. PLoS ONE 2022, 17, e0277458. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Li, H.; Yang, S.; Chen, X.; Long, S.; Yang, S.; Yang, Y.; Wang, Z. Metabolic and inflammatory linkage of the chicken cecal microbiome to growth performance. Front. Microbiol. 2023, 14, 1060458. [Google Scholar] [CrossRef]
- Guo, Y.; Balasubramanian, B.; Zhao, Z.H.; Liu, W.C. Heat stress alters serum lipid metabolism of Chinese indigenous broiler chickens-a lipidomics study. Environ. Sci. Pollut. Res. Int. 2021, 28, 10707–10717. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Zebeli, B.U.; Magowan, E.; Hollmann, M.; Ball, M.; Molnar, A.; Lawlor, P.G.; Hawken, R.J.; O’Connell, N.E.; Zebeli, Q. Assessing serum metabolite profiles as predictors for feed efficiency in broiler chickens reared at geographically distant locations. Br. Poult. Sci. 2017, 58, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, Y.; Ansari, A.R.; Akhtar, M.; Chen, Y.; Cheng, R.; Cui, L.; Nafady, A.A.; Elokil, A.A.; Abdel-Kafy, E.M.; et al. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microb. Biotechnol. 2022, 15, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Animal Genetic Resources in Guizhou; China Agriculture Press: Beijing, China, 2018; pp. 152–155. [Google Scholar]
- Zhang, M.; Li, D.; Yang, X.; Wei, F.; Wen, Q.; Feng, Y.; Jin, X.; Liu, D.; Guo, Y.; Hu, Y. Integrated multi-omics reveals the roles of cecal microbiota and its derived bacterial consortium in promoting chicken growth. Msystems 2023, 8, e0084423. [Google Scholar] [CrossRef]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima, M.D.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Fiorilla, E.; Birolo, M.; Ala, U.; Xiccato, G.; Trocino, A.; Schiavone, A.; Mugnai, C. Productive Performances of Slow-Growing Chicken Breeds and Their Crosses with a Commercial Strain in Conventional and Free-Range Farming Systems. Animals 2023, 13, 15. [Google Scholar] [CrossRef]
- Olkowski, A.A.; Classen, H.L. The study of riboflavin requirement in broiler chickens. Int. J. Vitam. Nutr. Res. 1998, 68, 316–327. [Google Scholar]
- Leiber, F.; Amsler, Z.; Bieber, A.; Quander-Stoll, N.; Maurer, V.; Lambertz, C.; Fruh, B.; Ayrle, H. Effects of riboflavin supplementation level on health, performance, and fertility of organic broiler parent stock and their chicks. Animal 2022, 16, 100433. [Google Scholar] [CrossRef]
- Deyhim, F.; Belay, T.; Teeter, R.G. An evaluation of dietary riboflavin supplementation on growth rate, feed efficiency, ration metabolizable energy content, and glutathione reductase activity of broilers. Nutr. Res. 1992, 12, 1123–1130. [Google Scholar] [CrossRef]
- Martinez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Udhayabanu, T.; Manole, A.; Rajeshwari, M.; Varalakshmi, P.; Houlden, H.; Ashokkumar, B. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J. Clin. Med. 2017, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Akhtar, M.; Chen, Y.; Ma, Z.; Liang, Y.; Shi, D.; Cheng, R.; Cui, L.; Hu, Y.; Nafady, A.A.; et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome 2022, 10, 107. [Google Scholar]
- Oyesola, O.O.; Tait, W.E. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur. J. Immunol. 2021, 51, 2399–2416. [Google Scholar] [CrossRef]
- Hestad, K.; Alexander, J.; Rootwelt, H.; Aaseth, J.O. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules 2022, 12, 998. [Google Scholar] [CrossRef]
- Brejchova, K.; Balas, L.; Paluchova, V.; Brezinova, M.; Durand, T.; Kuda, O. Understanding FAHFAs: From structure to metabolic regulation. Prog. Lipid Res. 2020, 79, 101053. [Google Scholar] [CrossRef]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef]
- Kuda, O.; Brezinova, M.; Rombaldova, M.; Slavikova, B.; Posta, M.; Beier, P.; Janovska, P.; Veleba, J.; Kopecky, J.J.; Kudova, E.; et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 2016, 65, 2580–2590. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Nie, X.; Yang, K.; Xu, P.; Wang, X.; Liu, M.; Yang, Y.; Chen, Z.; Wang, S. Molecular and structural basis of nucleoside diphosphate kinase-mediated regulation of spore and sclerotia development in the fungus Aspergillus flavus. J. Biol. Chem. 2019, 294, 12415–12431. [Google Scholar] [CrossRef]
- Bakheet, S.A.; Attia, S.M.; Alwetaid, M.Y.; Ansari, M.A.; Zoheir, K.M.; Nadeem, A.; Al-Shabanah, O.A.; Al-Harbi, M.M.; Ahmad, S.F. beta-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sci. 2016, 152, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gulbahce, M.E.; Arslan, E.; Oznurlu, Y.; Ozparlak, H. The effects of aflatoxin B(1) on growth hormone regulated gene-1 and interaction between DNA and aflatoxin B(1) in broiler chickens during hatching. Biotech. Histochem. 2018, 93, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Zabiulla, I.; Malathi, V.; Swamy, H.; Naik, J.; Pineda, L.; Han, Y. The Efficacy of a smectite-based mycotoxin binder in reducing aflatoxin B(1) toxicity on performance, health and histopathology of broiler chickens. Toxins 2021, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Agriesti, F.; Tataranni, T.; Pacelli, C.; Scrima, R.; Laurenzana, I.; Ruggieri, V.; Cela, O.; Mazzoccoli, C.; Salerno, M.; Sessa, F.; et al. Nandrolone induces a stem cell-like phenotype in human hepatocarcinoma-derived cell line inhibiting mitochondrial respiratory activity. Sci. Rep. 2020, 10, 2287. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, Y.; Long, X.; Li, H.; Zhang, F.; Wang, Z. Integrated analysis of the effects of cecal microbiota and serum metabolome on market weights of chinese native chickens. Animals 2023, 13, 19. [Google Scholar] [CrossRef] [PubMed]
Item | 0–6 Weeks | 6–18 Weeks |
---|---|---|
Ingredients, % | ||
Corn | 56.30 | 58.62 |
Soybean meal | 18.52 | 25.00 |
Rapeseed meal | 10.00 | 0.00 |
Corn gluten meal | 6.33 | 3.05 |
Wheat bran | 2.94 | 5.63 |
Soybean oil | 1.63 | 3.34 |
Limestone | 1.18 | 1.18 |
Phytase | 0.04 | 0.00 |
Choline chloride | 0.15 | 0.00 |
Methionine | 0.15 | 0.10 |
Lysine | 0.22 | 0.32 |
NaCl | 0.15 | 0.15 |
CaHPO4 | 1.89 | 1.61 |
Premix 1 | 0.05 | 1.00 |
total | 100.00 | 100.00 |
Nutrients 2, % | ||
CP | 21.18 | 19.05 |
ME, MJ/kg | 12.12 | 12.56 |
Ca | 1.0 | 0.90 |
AP | 0.45 | 0.40 |
Met + Cys | 0.90 | 0.72 |
Lys | 1.06 | 0.90 |
ID | Enriched Groups | Annotated Metabolites | VIP Value |
---|---|---|---|
M377T208 | WH | (-)-riboflavin | 4.6368 |
M122T287 | WH | Benzamide | 4.5404 |
M108T118 | WH | 3-pyridinecarboxaldehyde | 3.435 |
M314T186 | WH | 1-methyl-2-undecylquinolin-4-one | 3.4166 |
M1000T151 | WH | Taurochenodeoxycholic acid | 3.1751 |
M1022T151 | WH | 2-((4r)-4-((3r,5r,6s,9s,10r,13r,14s,17r)-3,6-dihydroxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-17-yl)pentanamido)ethane-1-sulfonic acid | 2.8506 |
M377T39 | WH | 1H-indazole-3-carboxylic acid, 1-(5-fluoropentyl)-, 1-naphthalenyl ester | 2.329 |
M174T415 | WH | Allidochlor | 2.0885 |
M164T23 | WH | 1-deoxynojirimycin | 2.088 |
M632T188 | WL | 2-erahpa [dmed-fahfa] | 4.0043 |
M656T186 | WL | 2-epahsa [dmed-fahfa] | 3.4361 |
M379T119 | WL | Pyridate | 3.1975 |
M400T58 | WL | Demissidine | 3.0447 |
M426T148 | WL | N-[(3s,5s,7s)-adamantan-1-yl]-1-(4-fluorobenzyl)-1h-indazole-3-carboxamide | 2.8085 |
M787T221 | WL | Digitoxin | 2.7568 |
M366T34 | WL | Myriocin | 2.5026 |
M335T163 | WL | Prostaglandin a2 | 2.4657 |
M333T240 | WL | Butamifos | 2.4105 |
M280T227 | WL | Oxamniquine | 2.4038 |
M329T217 | WL | Aflatoxin g1 | 2.3985 |
M630T187 | WL | 2-arahpa [dmed-fahfa] | 2.2664 |
M621T31 | WL | Ginsenoside rh1 | 2.2327 |
M590T190 | WL | 3-alahpda [dmed-fahfa] | 2.2244 |
M390T66 | WL | N-octanoylsphingosine | 2.1401 |
M508T188 | WL | 1-(1z-octadecenyl)-sn-glycero-3-phosphocholine | 2.1151 |
M89T272_2 | WL | Butanoic acid | 2.0747 |
M429T31 | WL | 17beta-nandrolone decanoate | 2.0539 |
M497T110 | WL | Acetamide, 2-[4-[(5,6-diphenyl-2-pyrazinyl)(1-methylethyl)amino]butoxy]-n-(methylsulfonyl)- | 2.0406 |
M608T30 | WL | 1-lignoceroyl-2-hydroxy-sn-glycero-3-phosphocholine | 2.0207 |
M502T89 | WL | N-palmitoylsphingosine | 2.0114 |
ID | Enriched Groups | Annotated Metabolites | VIP Value |
---|---|---|---|
M157T603 | WH | 2isopropylmalic acid | 5.0179 |
M191T574 | WH | Citrate | 2.3865 |
M199T51 | WH | Acetic acid, 2-(4-chloro-2-methylphenoxy)- | 2.2378 |
M195T51 | WH | 3,7-dimethyluric acid | 2.1533 |
M391T154 | WL | Ursodeoxycholic acid | 3.8177 |
M355T118 | WL | Pioglitazone | 3.3302 |
M141T350_2 | WL | Kojic acid | 3.1123 |
M583T30 | WL | Ser-Leu-Ile-Gly-Lys-Val-amide | 2.7844 |
M188T37 | WL | Kynurenic acid | 2.6701 |
M914T185 | WL | Pi 40:4 | 2.4751 |
M341T43 | WL | 17-keto-4(z),7(z),10(z),13(z),15(e),19(z)-docosahexaenoic acid | 2.3905 |
M229T305 | WL | 7-demethylsuberosin | 2.1381 |
M464T180 | WL | Glycocholic acid | 2.0461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yu, X.; Yang, S.; Zhao, M.; Wang, L. Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens. Animals 2024, 14, 2743. https://doi.org/10.3390/ani14182743
Wang Z, Yu X, Yang S, Zhao M, Wang L. Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens. Animals. 2024; 14(18):2743. https://doi.org/10.3390/ani14182743
Chicago/Turabian StyleWang, Zhong, Xuan Yu, Shenghong Yang, Mingming Zhao, and Liqi Wang. 2024. "Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens" Animals 14, no. 18: 2743. https://doi.org/10.3390/ani14182743
APA StyleWang, Z., Yu, X., Yang, S., Zhao, M., & Wang, L. (2024). Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens. Animals, 14(18), 2743. https://doi.org/10.3390/ani14182743