
Citation: Pinto, J.; Comprido, C.;

Moreira, V.; Maccarone, M.T.; Cogoni,

C.; Faustino, R.; Pignatelli, D.; Cera, N.

The Complex Role Played by the

Default Mode Network during Sexual

Stimulation: A Cluster-Based fMRI

Meta-Analysis. Behav. Sci. 2024, 14,

570. https://doi.org/10.3390/

bs14070570

Academic Editor: Giovanni Federico

Received: 5 March 2024

Revised: 14 June 2024

Accepted: 2 July 2024

Published: 5 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

behavioral 
sciences

Systematic Review

The Complex Role Played by the Default Mode Network during
Sexual Stimulation: A Cluster-Based fMRI Meta-Analysis
Joana Pinto 1,2 , Camila Comprido 1, Vanessa Moreira 1, Marica Tina Maccarone 3, Carlotta Cogoni 4 ,
Ricardo Faustino 5, Duarte Pignatelli 2,6 and Nicoletta Cera 1,5,*

1 Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal;
up201707607@up.pt (C.C.)

2 Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
3 AUSL Pescara, “Santo Spirito” Hospital of Pescara, 65124 Pescara, Italy; maricatina.maccarone@asl.pe.it
4 Instituto de Biofísica e Engenharia Biomédica, Faculty of Sciences, University of Lisbon,

1749-016 Lisbon, Portugal; ccogoni@ciencias.ulisboa.pt
5 Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de

Saúde da Cruz Vermelha Portuguesa, 1300-125 Lisbon, Portugal; rfaustino@esscvp.eu
6 Department of Endocrinology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
* Correspondence: cera.nicoletta@fpce.up.pt

Abstract: The default mode network (DMN) is a complex network that plays a significant and active
role during naturalistic stimulation. Previous studies that have used naturalistic stimuli, such as
real-life stories or silent or sonorous films, have found that the information processing involved a
complex hierarchical set of brain regions, including the DMN nodes. The DMN is not involved in
low-level features and is only associated with high-level content-related incoming information. The
human sexual experience involves a complex set of processes related to both external context and
inner processes. Since the DMN plays an active role in the integration of naturalistic stimuli and
aesthetic perception with beliefs, thoughts, and episodic autobiographical memories, we aimed at
quantifying the involvement of the nodes of the DMN during visual sexual stimulation. After a
systematic search in the principal electronic databases, we selected 83 fMRI studies, and an ALE
meta-analysis was calculated. We performed conjunction analyses to assess differences in the DMN
related to stimulus modalities, sex differences, and sexual orientation. The results show that sexual
stimulation alters the topography of the DMN and highlights the DMN’s active role in the integration
of sexual stimuli with sexual schemas and beliefs.

Keywords: DMN; fMRI; human sexual behavior; systematic review; meta-analysis; naturalistic stimuli

1. Introduction

The default mode network (DMN) is a complex brain network that encompasses
several brain regions, including the posterior cingulate cortex (PCC), anterior medial
prefrontal cortex (mPFC), posterior inferior parietal lobule, and several temporal regions,
which are usually active during a resting state and inactive when a subject is involved in a
cognitive task [1–5].

The DMN usually reduces its activity during the performance of a cognitive task when
compared to that during a rest state. However, the DMN is not just an intrinsic system that
is only actively involved in internal or self-related and stimulus-independent processing; it
is also active during specific tasks.

The DMN allows for the integration of three types of processes related to the assess-
ment of incoming sensory input: both recent and active memories, which influence the
present, and a set composed of long-term memories, beliefs, and emotions that peculiarly
characterize a single individual [6]. The DMN has an active and dynamic role in the
modeling of external context-dependent information. Previous studies that have used
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naturalistic stimuli, such as real-life stories and silent or sonorous films, have found that the
information processing involves a complex, hierarchical set of brain regions, including the
DMN nodes [7,8]. In similar cases, the DMN regions were responsible for integrating the
information that accumulates during each scenario into the stimulus in a unique way [9].
This active role is confirmed by evidence that found that the DMN is able to integrate
non-perceptual aspects of aesthetic experiences, confirming a pivotal role for the MPFC [10].

According to D’Argembeau et al. [11,12], the DMN is composed of multiple interacting
systems [13,14]. The PCC and the anterior mPFC (amPFC) comprise the core system,
interacting with the dorsal medial prefrontal cortex (dmPFCsys) and the medial temporal
lobe (MTLsys) systems. The DmPFCsys encompasses the dorsomedial prefrontal cortex and
the lateral temporal cortex to the temporoparietal junction and is implicated in mentalizing,
metacognition, and scene construction [15]. The MLTsys consists of the ventral mPFC
(vmPFC), the posterior inferior parietal cortices, and the retrosplenial cortex. Moreover, the
hippocampal and parahippocampal areas are involved in the MLTsys, which is principally
implicated in prospective memory. The three systems mentioned above show a strong
interaction at different levels.

The hippocampus and the parahippocampal gyri (PHGs) represent the subcortical
components of the DMN. Back projections from the hippocampal system to the parietal
areas are important for memory recall [16]. According to previous findings, the PHG
mediates between the PCC and the hippocampus [17]. Additionally, regions of the DMN
within the MTL have been observed to be relevant in episodic memory processing [18].
Nevertheless, coupling with the hippocampus and the DMN hub occurs only during
episodic memory retrieval processes and not during encoding [19].

The human sexual experience involves a complex set of processes related to both
external contexts and inner processes, such as thoughts, beliefs, and past experiences and
memories. Several functional magnetic resonance imaging (fMRI) studies have highlighted
a complex set of cortical and subcortical brain regions related to sexual arousal or specific
alterations observed in pathological conditions. Sexual arousal can be conceived as a
specific part of general arousal, and it is related to sexual motivation and desire [20–22].
Sexual desire is commonly defined as the presence of sexual thoughts, fantasies, and
motivations to engage in sexual behavior in response to relevant internal and external cues
and is influenced by factors such as mood, health, and attitude. This excitement status
prepares the body for sexual activity and results in a state of arousal. Sexual arousal is
connected to sexual desire and is defined as both subjective and physiological [20]. Most of
the fMRI studies have used visual sexual stimulation designs, in which the stimuli consisted
of erotic or sexually explicit videos or photos. These studies highlighted a complex set of
regions involved in the complex processes and mechanisms that accomplish one of the
initial stages of sexual response, such as sexual arousal. According to the classical vision
from Stoléru [23], this complexity can be neurophenomenologically summarized in four
components that can process the appraisal of the sexual stimulus: the motivation and the
emotional, autonomic, and sexual responses. Considering this, it can be possible to conceive
sexual arousal as a cycle that comes naturally. Indeed, Georgiadis and Kringelbach [24]
suggested that the cycle of sexual response and sexual pleasure may be considered the
center of human sexual behavior. The stages of the human sexual response can be described
as “the sexual pleasure cycle”, which differentiates among distinct phases, inspired by the
approach to other pleasure-seeking behaviors, like eating.

Since the DMN plays an active role in the integration of naturalistic stimuli and
aesthetic perception with beliefs, thoughts, and episodic autobiographical memories, the
present meta-analysis aims to quantify the involvement of the nodes of the DMN during
sexual stimulation. We also aimed to identify the influence of the stimulus type on the DMN
and specific alterations in the DMN’s topological configuration related to pathological
conditions, sexual orientation, and transsexualism.
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2. Materials and Methods
2.1. Systematic Review Protocol, Study Selection, and Study Inclusion

The present meta-analysis followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines and the PICO research-question strat-
egy protocol (Appendix A) [25]. The flowchart in Figure 1 depicts the steps of the
selection process.
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fMRI studies about sexual arousal evoked using visual sexual stimulation published
in English between 2000 and 2024 were systematically searched in PubMed, Web of Science,
and Scopus.

The computer search was based on the PICO approach, combining the keywords
“sexual arousal” and “fMRI” (sexual arousal: “sexual arousal” [MeSH Terms] OR (“sexual”
[All Fields] AND “arousal” [All Fields]) OR “sexual arousal” [All Fields]; fMRI: “magnetic
resonance imaging” [MeSH Terms] OR (“magnetic” [All Fields] AND “resonance” [All
Fields] AND “imaging” [All Fields]) OR “magnetic resonance imaging” [All Fields] OR
“fmri” [All Fields]).

We selected studies that met the following criteria: (1) MNI or Talairach coordinates
that were mentioned in the tables, figure captions, or results section; (2) studies that used vi-
sual, tactile, and olfactory modalities related to sexual behavior (i.e., visual or audio-visual
sexual stimulation; olfactory stimulation; tactile sexual stimulation). First, the presence
of tridimensional (MNI or Talairach) coordinates was checked and retrieved. Then, all
the reported Talairach coordinates were transformed in MNI using the tool “convert foci”
present in GingerALE. The obtained MNI coordinates were thus screened to find those
representing DMN nodes according to those used by Esposito et al. [26]. We included
the following bilateral AAL clusters: “CINGULUM_ANT; FRONTAL_SUP_MED; HIP-
POCAMPUS; PARAHIPPOCAMPAL; TEMPORAL_MID; CINGULUM_POST; ANGULAR;
PRECUNEUS; PARIETAL_INF”. Moreover, we used the AAL atlas implemented in MRI-
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cron (v.1.0.2) to assess the correspondence between the retrieved coordinates and the DMN
nodes [27].

We obtained 83 [28–110] studies after duplicate removal (Figure 1). Subsequently, we
retrieved all the studies and screened them to identify other studies of interest. Similarly,
all the narrative, systematic reviews, and meta-analyses were retrieved and checked to find
relevant studies concordant with our search. Two authors independently performed the
literature search and assessment (Table 1 and Figure 1).

Table 1. Inclusion and exclusion criteria for the study selection.

Inclusion Criteria Exclusion Criteria

Design

Experimental studies Other designs
Systematic reviews/meta-analyses

Population

Men
Women

Animals
Children

Intervention

fMRI
Sexual stimulation

VSS (videos, pictures)

EEG
MEG
fNIRS

Topic

Sexual behavior
Brain activity

Default Mode Network
Sexual dysfunctions

Paraphilia
Sexual offenders

Sexual orientation
Transsexualism

Other brain networks,
different from DMN

No sex-related studies

2.2. ALE fMRI Meta-Analysis

We performed an activation likelihood estimation (ALE) using GingerAle 3.02 (https:
//www.brainmap.org/ale/ accessed on 1 January 2024) [111] on the DMN clusters reported
in the included studies. Since most of the studies reported coordinates resulting from the
contrast analyses, whereas some of the included studies also reported coordinates for each
stimulus category or group, we decided to report both types of results.

ALE is a widely used analytical technique for performing coordinate-based meta-
analyses and determining the convergence of foci, as reported in previous studies. Gin-
gerAle implements the ALE algorithm and calculates the maximum probability of activation
to create modeled activation maps for each experiment. Then, the union of all modeled
activation maps was computed voxel by voxel, and each sample size was taken into con-
sideration. The obtained whole-brain ALE maps were created by comparison with a null
distribution map. The reliability of an ALE map was calculated by applying permutation,
which allowed for the determination of the difference between the true activation foci
convergence and random clustering [112].

To assess the involvement of the DMN during sexual stimulation, an ALE map with
all the DMN-related coordinates was calculated (FDR pN < 0.01 corrected). Moreover,
contrast analyses were performed to assess the following:

(i) Differences between videos and pictures, highlighting the DMN’s involvement in
responses to dynamic and static stimuli.

(ii) Similarly, differences in the DMN nodes between heterosexuals and homosexuals and
between heterosexuals and transsexuals;

(iii) Differences between heterosexual healthy subjects and pedophiles;

https://www.brainmap.org/ale/
https://www.brainmap.org/ale/
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(iv) Differences between heterosexual healthy men and patients affected by sexual dys-
functions, such as psychogenic erectile dysfunction or premature ejaculation.

Due to the number of studies, an FDR correction was applied when the number of
studies was greater than or equal to 35. With < 35 studies, a p < 0.001 was applied.

Contrast analyses were carried out using conjunction analysis. Specifically, conjunction
examines two different sets of foci for statistically significant differences in convergence.
It contrasts and compares two datasets, showing their similarities, by calculating the
voxelwise minimum value of the input ALE images.

We used Mango 4.1 (http://ric.uthscsa.edu/mango/mango.html, accessed on
1 January 2024) [113] to visualize the results by navigating between the volumes of
the image of an MRI template in the MNI space with a 2 × 2 × 2 mm resolution
(https://www.brainmap.org/ale/, accessed on 1 January 2024).

3. Results
3.1. Principal Characteristics of the Included Studies

The results of this meta-analysis are based on data obtained from 2587 participants, of
which 1545 were men (59.72%) and 956 were women (36.95%). Among the male participants,
1220 participants identified as heterosexual (78.96%), 212 as homosexual (13.72%), and 42 as
bisexual (2.72%). The sexual orientation of 71 participants was not mentioned, and they
were merely reported as healthy (4.60%). Among all the male participants, 92 were patients
(5.95%), 76 of whom were heterosexual (82.61%), 12 of whom were homosexual (13.04%),
and 4 of whom were bisexual (4.35%). Moreover, 71 men were reported to have sexual
dysfunction (4.60%), such as psychogenic erectile dysfunction (41–2.65%) and pedophilia
(30–1.94%). Among those in the pedophilia group, 14 were heterosexual (46.67%), 12 were
homosexual (40.00%), and 4 were bisexual (13.33%). Another 10 men were reported to
have major depression disorder (MDD—0.64%), and 11 had infarctions in the right middle
cerebral artery (MCA) territory (0.71%).

Of all the female participants, 671 were heterosexual (70.19%), 90 were homosexual
(9.41%), 24 were bisexual (2.51%), and 171 were healthy individuals (17.89%). Among the
women, only 27 (2.82%) were breast cancer survivors.

This meta-analysis included not only cisgender participants but also transsexual
and nonbinary participants. More specifically, 45 of the participants were transsex-
ual male-to-female (1.74%), 30 were transsexual female-to-male (1.16%), and 11 were
nonbinary (0.43%).

The age range of the participants was between 18 and 56 years, with an average of
30.66 years. The mean age was 31.63 years for the male participants, 25.48 for the female
participants, 36 for the transsexual participants, and 37 for the nonbinary participants.

Most of the studies were from Germany (27.71%), South Korea (19.28%), and the
United States of America (16.87%). The rest were from the Netherlands (6.02%), Italy
(6.02%), Canada (4.82%), China (4.82%), the United Kingdom (4.82%), Switzerland (3.61%),
France (2.41%), Spain (1.20%), Sweden (1.20%), and Austria (1.20%).

Most studies used only pictures (54.22%) or videos (37.35%) as stimuli. Only two studies
used both pictures and videos (2.41%). Moreover, two studies used pictures in combination
with a task, one with an approach-avoidance task (1.20%), and the other with a choice reaction
time task (1.20%). The rest used video games (1.20%), self-induced orgasm (1.20%), or genital
(0.97%) or olfactory stimulation (1.20%).

There was some variation in terms of the magnetic field strength of the scanners used
in the studies. The majority of the studies used 3T MRI scanners (59.04%). The remaining
studies used 1.5 T (37.35%), 7 T (2.41%), and 2 T (1.20%) MRI scanners. A total of 62 studies
performed whole-brain analysis (74.70%), 16 performed ROI-based analysis (19.28%), and
5 performed a combination of both (6.02%).

In four of the studies, the effects of medication were examined (4.82%). Of these, three
had randomized double-blind designs (75.00%), two were placebo-controlled (50.00%),
one was within-subjects (25.00%), one had a crossover design (25.00%), and one compared

http://ric.uthscsa.edu/mango/mango.html
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only two groups of women who were taking or not taking oral contraception during their
menstrual cycle (25.00%). All the studies assessed different medications, such as bupropion
and paroxetine, gamma-hydroxybutyrate (GHB), oral contraception, and kisspeptin.

Furthermore, of all 83 studies, 60 used MNI coordinates (72.29%), and 23 used Talairach
coordinates (27.71%; Figure 2).
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Figure 2. Characteristics of the included studies. (A). Four doughnut charts of the number of
participants for each gender group (men, women, transsexuals, and nonbinary) and each sexual
orientation subgroup for men and women (heterosexual, homosexual, bisexual, or healthy) and for
transsexuals (transsexual male to female and transsexual female to male) (B). Boxplot of the age
distribution of men, women, and both transsexual subgroups (C). Histograms of the age distribution
of the male and female participants (D). Doughnut charts related to the number of types of MRI
machine magnetic field strengths and tasks used in the studies (E). Bar plot of the number of studies
produced by each country. All the graphs were created using MATLAB (vers. 2022b).

3.2. Brain Results

To assess the involvement of the DMN during sexual stimulation in healthy hetero-
sexual participants or in specific populations or pathological conditions, we performed a
series of meta-analyses, followed by conjunction analyses, which allowed for a comparison
of the results. During sexual stimulation, all the principal nodes included in the DMN were
involved. However, more homogeneous clusters, with higher ALE values, were found
in correspondence with the ACC/mPFC and parahippocampal/hippocampi bilaterally
(FDR pN < 0.01; Figure 3).
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Figure 3. ALE map of the resulting DMN nodes during sexual stimulation. Maps are overimposed
on a 2 × 2 × 2 mm MNI template according to neurological convention. The colored bar denotes the
corresponding ALE value ranges indicated on the maps (FDR pN < 0.01).

As mentioned above, most of the studies applied visual sexual stimulation, using silent,
audiovisual stimuli or pictures/photos. To assess topological alterations in the involvement
of DMN nodes during sexual stimulation, we performed a conjunction analysis to compare
the use of video and pictures. This analysis highlighted the involvement of subcortical
components of the DMN (FDR pN < 0.01) during video > pictures in correspondence with
the bilateral parahippocampal and hippocampal regions.

To study the presence of between-sex differences in the DMN, we compared the studies
that investigated sexual arousal in heterosexual men and women (men ∩ women) using
a conjunction analysis, with uncorrected p < 0.001, since 40 studies for men and 13 for
women were included. The results highlight convergent significant clusters corresponding
to the ACC/mPFC and parahippocampal/hippocampi bilaterally and to the left angular
gyrus/IPL (Table 2).

Table 2. Brain clusters resulting from ALE meta-analysis performed for all the studies.

Cluster BA Hemisphere x y z ALE p Z

Anterior cingulate cortex 24 L 0 34 14 0.04148 0.00000 9.389
Middle temporal gyrus 21 R 50 −60 0 0.02803 0.00000 7.215
Posterior cingulate cortex 23 L −2 −54 22 0.01799 0.00000 5.306
Parahippocampal gyrus -- L −30 −8 −22 0.01898 0.00000 5.510
Parahippocampal gyrus -- L −22 −36 −4 0.01617 0.00000 4.917
Posterior cingulate cortex 31 R 6 −56 26 0.01382 0.00001 4.390

Abbreviations: BA = Brodmann area; L = left; R = right.

Similarly, the contrast between heterosexuals (both males and females) and (∩) ho-
mosexuals (both males and females) showed homogenous convergent clusters in the left
parahippocampus and dorsomedial PFC/ACC (Table 3; Figure 4).
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Table 3. Brain clusters resulting from the conjunction analysis between video and picture stimuli,
men and women, and heterosexual and homosexual participants (p < 0.001).

Cluster BA Hemisphere x y z ALE

Videos vs. Pictures (FDR pN < 0.01)

Parahippocampal gyrus 28 R 22 −14 −20 0.01400
Parahippocampal gyrus 34 L −17 −2 −22 0.01210

Men vs. Women (p < 0.001).

Anterior cingulate cortex 32 L −4 42 14 0.00202
Medial frontal gyrus 9 L −4 50 8 0.00192
Parahippocampal gyrus 28 L −18 −4 −20 0.00335
Parahippocampal gyrus 28 R 34 −18 −28 0.00190
Precuneus L −2 −60 50 0.00184

Heterosexuals vs. Homosexuals (p < 0.001).

Anterior cingulate cortex 32 L −12 38 10 0.00230
Anterior cingulate cortex 32 L −12 34 12 0.00228
Inferior parietal lobule 40 L −32 −52 52 0.00229
Parahippocampal gyrus 34 L −18 0 −22 0.00325
Anterior cingulate cortex 32 R 4 42 −2 0.00192

Abbreviations: BA = Brodmann area; L = left; R= right.
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Cluster BA Hemisphere x y z ALE 
Videos vs. Pictures (FDR pN < 0.01) 

Parahippocampal gyrus 28 R 22 −14 −20 0.01400 
Parahippocampal gyrus 34 L −17 −2 −22 0.01210 

Men vs. Women (p < 0.001). 
Anterior cingulate cortex 32 L −4 42 14 0.00202 
Medial frontal gyrus 9 L −4 50 8 0.00192 
Parahippocampal gyrus 28 L −18 −4 −20 0.00335 
Parahippocampal gyrus 28 R 34 −18 −28 0.00190 
Precuneus  L −2 −60 50 0.00184 

Heterosexuals vs. Homosexuals (p < 0.001). 
Anterior cingulate cortex 32 L −12 38 10 0.00230 
Anterior cingulate cortex 32 L −12 34 12 0.00228 
Inferior parietal lobule 40 L −32 −52 52 0.00229 
Parahippocampal gyrus 34 L −18 0 −22 0.00325 
Anterior cingulate cortex 32 R 4 42 −2 0.00192 

Abbreviations: BA = Brodmann area; L = left; R = right. 

4. Discussion 

Figure 4. Conjunction ALE map results. Activation likelihood maps resulting from the contrast
between videos and pictures (TOP), between men and women (bottom left), and between heterosexual
and homosexual subjects (bottom right). The contrast map “video vs. pictures” (FDR pN < 0.01)
showed convergent activity in the ventral parahippocampal regions of the DMN. The two contrast
maps at the bottom (p < 0.001) show the involvement of both subcortical and cortical DMN nodes
in sex differences and sexual preference. The maps are superimposed on an MNI 2 × 2 × 2 mm
template according to neurological convention. The colored bars under each map indicate the ALE
value ranges.

The studies that investigated patients with mood disorders, sexual dysfunctions,
MTF and FTM transsexuals, and pharmacological trials were not included in the contrast
analyses due to the low number of studies (n < 10) and fewer foci.
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4. Discussion

Despite the growing interest in the cerebral underpinnings of human sexual behavior
and sexual arousal, little is known about the role of the DMN in the processing of sexual
stimuli. Most of the information about the role played by the DMN in sexual behavior
is from clinical fMRI studies. In recent years, several fMRI studies have investigated
alterations in the DMN nodes during the resting state, predominantly involving male
participants. According to our systematic search, only 83 of the 103 studies showed specific
results and coordinates corresponding to the DMN nodes and hubs. The global ALE map
showed that during sexual stimulation in all the studies, the topography of the DMN
was preserved, including all the principal cortical and subcortical nodes. Naturalistic,
emotionally arousing stimuli allow for the activation of the DMN. Several studies have
shown that the DMN plays an active role during the processing of audiovisual stimuli,
such as silent movies and listening to stories [114]. Interestingly, our results reveal wider
involvement and more convergent results in the large anterior cluster, which brings together
the ACC and mPFC. The ACC and mPFC together represent one of the hubs of the DMN.
Conversely, we found weaker results corresponding to the hubs, including the PCC and
precuneus. This result can confirm a specific role played by the anterior cingulate and
medial prefrontal cortices during the elaboration of complex naturalistic stimuli and with
the formation and recall of schemas. The formation and recall of specific schemas rely on
regions such as the ventromedial prefrontal cortex, precuneus, bilateral temporoparietal
junction, and hippocampus [115]. Sexual intercourse, as shown in a video, involves a series
of schemas. For instance, several studies have shown that all video stimuli show specific
phases of sexual intercourse, such as petting and vaginal or oral intercourse. Despite this,
sexual self-schema is a part of a broader concept of the self that is believed to be crucial for
intrapersonal and interpersonal sexual relationships [116]. Previous findings have revealed
that positive schematic women and men reported higher levels of sexual self-efficacy and
lower levels of sexual aversion [117,118].

We found that visual stimuli, such as pictures and videos, were the main modality
used to elicit genital or subjective sexual arousal. Among the brain networks, the DMN
was found to be relevant for carrying an internal model of information from narrative
content, and its clusters were found to play an important role in the representation of
event models and schemas [119,120]. The response of the DMN was hypothesized to
be strictly related to the content of the stimuli over long time scales and is invariant to
changes in low-level properties of the stimuli [6]. Moreover, studies that used the same
content presented with different modalities (i.e., audiovisual vs. written content) found no
dramatic changes in the temporal DMN responses [119,121]. However, according to our
findings, different stimulus modalities and paradigms elicited different DMN responses.
Comparisons between dynamic and static stimuli, such as videos and pictures, respectively,
highlighted the role played by subcortical nodes of the DMN. Convergent results were
found in the bilateral parahippocampal regions. Coactivation of the DMN and subcortical
regions, such as the hippocampus, was found during naturalistic movie viewing and was
related to the fluctuation in surprise experienced by the participants [114]. During surprise,
the hippocampal regions included in the DMN integrate three different processes relevant
to the experience of surprise: switching between unexpected external information in input,
episodic memories related to incoming information, and the internal model. However, the
angular gyrus plays a relevant role in this integration process [122]. No involvement of
the angular gyrus was observed for the comparison between videos and pictures in our
study. The involvement of the parahippocampus could also be related to the sensitivity of
the DMN to long-term memories. Sexual activities, as depicted in a video, could induce
the retrieval of long-term content-related memories. In a recent study, an excerpt from the
Twilight Zone was shown to participants. Those who had a background in the plot of the TV
series showed increased connectivity between the DMN nodes and the hippocampus [123].

Most of the studies have investigated the brain correlates of sexual arousal in healthy
heterosexual male participants, representing a great methodological and theoretical lim-
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itation that can indirectly affect our results and their interpretation [124]. We observed
significant sex differences in the DMN, which partially preserved its topography with a
pattern involving the mPFC, parahippocampus, and left precuneus/IPL.

The DMN is highly sensitive to individual differences in the interpretation of external
incoming content. Most of the sexual stimuli used in previous studies were adapted to
a male heterosexual audience. For instance, it is possible to hypothesize that women
inexperienced or unfamiliarized with explicit sexual video clips might feel more discomfort
or be more negatively affected than when viewing erotic or romantic ones. In this way,
Borg et al. [31] demonstrated a similar brain activation pattern to “explicit penetrative”
or sadomasochistic and disgusting stimuli in women. Moreover, only a few studies have
taken into account hormonal cycling shifts that could affect desire, sexual motivation, and
arousal in women. However, as mentioned above, the active DMN integrates incoming
information over a long time scale with schemas, beliefs, and memories. Beliefs play a
crucial triggering role in sexual arousal in men. Similarly, sexual and erotic fantasies can
be a trigger for sexual arousal in women. However, our results seem to confirm that male
sexual arousal is more stimulus-dependent than fantasy-evoked [125].

In recent years, some studies have shown that kisspeptin could play a role in sexual
motivation and desire in both men and women [126,127]. Kisspeptin administration can
negatively affect the role of the dmPFC system in sexual processing in healthy men. This
neuropeptide can improve desire and drive aspects of motivation [128]. In a randomized
clinical trial, Thurston and colleagues [128] reported that the administration of kisspeptin
to premenopausal women with hypoactive sexual desire disorder improved their brain
response to sexual stimuli and attractive faces. Interestingly, they found an association be-
tween kisspeptin and activation of the hippocampus during visual sexual stimulation. The
hippocampus and middle and inferior frontal regions contain a high density of kisspeptin
receptor-1 (KISS1R) [129].

Similar to the contrast observed between men and women, the contrast between het-
erosexual and homosexual participants highlights the interplay between the mPFC/ACC
node and the left parahippocampus. A recent study indicated that 98% of homosexual
men reported having viewed pornography within 30 days, which is more than the 72% of
heterosexual men [130]. Our results not only show an alteration in the DMN pattern but
also confirm a possible role of its previously mentioned nodes in the integration between
schemas and incoming information processing. However, in homosexual women and
men, sexual self-schemas have been less studied, and less is known about their influence
on contextual incoming information processing. Moreover, Lau et al. [131,132] reported
that 42.5% of gay men and 75.6% of lesbian women reported at least one sexual problem
during their lifetime. These sexual problems can be reflected in negative sexual schemas
that are common among homosexuals with mood disorders. Compared to heterosexual
individuals, homosexual individuals tend to activate cognitive schemas of incompetence,
self-depreciation, and helplessness [133].

5. Conclusions and Limitations

The present ALE meta-analysis shows, for the first time, a possible active role of the
DMN during the processing of sexual stimuli. Moreover, our results highlight topographic
changes in men, women, and homosexuals that could underlie differences not only in
the processing of incoming information but also in its integration with schemas, beliefs,
and memories that play a crucial role in human sexual behavior. Intriguingly, the results
shown in this study highlight the importance of sexual stimulation as a tool to discover
specific alterations in the integration between incoming information schemas and beliefs.
This could provide several insights that are helpful for developing new psychotherapy
strategies to treat sexual dysfunctions and sexual perturbation. Following new advances,
the role played by other brain networks also needs to be assessed [134]. Further studies
could assess the intersubject connectivity during sexual stimulation [135] and the relevance
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of the DMN during ecological experiences using different imaging techniques, such as
functional near-infrared spectroscopy (fNIRS) [136].

However, several limitations need to be acknowledged. First, as we stated, we were
not able to perform specific analyses to assess alterations in the DMN activity during
sexual stimulation in transsexuals, pedophiles, or patients. Furthermore, our results did not
consider the differences related to the experimental paradigms used. Similarly, some studies
have indicated the presence of healthy participants without mentioning sexual orientation.
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Appendix A

PICO Worksheet and Search Strategy Protocol
1. Define your question using PICO by identifying the patient/problem, intervention,
comparison group, and outcome:
Patient/Problem: Healthy adults; patients with sexual dysfunction; sexual offenders; pedophiles.
Intervention: fMRI.
Comparison: Studies using different types of sexual stimulation tasks.
Outcome: Topographic alteration of DMN during sexual stimulation.
Write out your question
2. Type of question/problem: Alteration and involvement of DMN subsystems in imaging
studies about human sexual behavior.
Circle one: Therapy/Prevention/Diagnosis/Etiology/Prognosis.
3. Type of studies/publications to include in the search:
Check all that apply:
□ Meta-analysis □ Systematic review
□ Clinical practice guidelines □ Randomized controlled trial
□ Research studies or articles □ Case report or series
□ Research report or other grey literature
4. List main topics and alternate terms from your PICO question that can be used for
your search: “Sexuality”; “Sexual behavior”; “Sexual arousal”
5. Write out your search strategy: sexual arousal: “sexual arousal”[MeSH Terms] OR
(“sexual”[All Fields] AND “arousal”[All Fields]) OR “sexual arousal”[All Fields]; fMRI:
“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND “reso-
nance”[All Fields] AND “imaging”[All Fields]) OR “magnetic resonance imaging”[All
Fields] OR “fMRI”[All Fields]
6. List any limits that may apply to your search:
Gender: Female; Male.
Age: Adult.
Year(s) of publication: no limits; Language(s): English
7. List the databases you will search: PubMed, Scopus, and Web of Science.
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