
applied  
sciences

Article

Missing Value Imputation in Stature Estimation by
Learning Algorithms Using Anthropometric Data:
A Comparative Study

Youngdoo Son 1 and Wonjoon Kim 2,*
1 Department of Industrial and Systems Engineering, Dongguk University—Seoul, Seoul 04620, Korea;

youngdoo@dongguk.edu
2 Department of Industrial & Management Engineering, Sungkyul University, Anyang 14907, Korea
* Correspondence: wjkim@sungkyul.ac.kr; Tel.: +31-467-8186

Received: 24 May 2020; Accepted: 18 July 2020; Published: 21 July 2020
����������
�������

Abstract: Estimating stature is essential in the process of personal identification. Because it is difficult
to find human remains intact at crime scenes and disaster sites, for instance, methods are needed for
estimating stature based on different body parts. For instance, the upper and lower limbs may vary
depending on ancestry and sex, and it is of great importance to design adequate methodology for
incorporating these in estimating stature. In addition, it is necessary to use machine learning rather
than simple linear regression to improve the accuracy of stature estimation. In this study, the accuracy
of statures estimated based on anthropometric data was compared using three imputation methods.
In addition, by comparing the accuracy among linear and nonlinear classification methods, the best
method was derived for estimating stature based on anthropometric data. For both sexes, multiple
imputation was superior when the missing data ratio was low, and mean imputation performed well
when the ratio was high. The support vector machine recorded the highest accuracy in all ratios of
missing data. The findings of this study showed appropriate imputation methods for estimating
stature with missing anthropometric data. In particular, the machine learning algorithms can be
effectively used for estimating stature in humans.

Keywords: identification of human information; estimating stature; missing data imputation; machine
learning algorithm

1. Introduction

One of the major limitations in attempting to estimate human information such as sex, stature, and
age at crime and disaster scenes is that necessary anthropometric measurements can be missing [1–3];
previous researchers have shown that estimating the biological information of a human body using
a variety of anthropometric measurements such as of the upper and lower limbs is effective [4–6].
However, many previous researchers have shown that estimates of biological information vary widely
across different ancestry groups and sexes [7–9]. Therefore, it is important to identify anthropometric
measurements that can best estimate the biological information of a specific ancestry group. In addition,
investigators have developed and applied several statistical techniques for estimating human biological
information. Most previous researchers used regression analysis based on principles of linearity in
body parts [10–13], but recently, efforts have been made to improve the accuracy through nonlinear
analysis methods such as artificial neural networks [14–17].

There are documented methods of estimating human physical information based on measurement
data [18,19], but most of the relevant studies are based on complete bodies including all parts [20–22].
In the real world however, human remains are damaged, whether intentionally or naturally. Therefore,
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it is difficult to extrapolate human biological information from human remains found in the field, where
damage is not contained but is instead manifested differently in different situations and environments.

The purpose of this study was to compare imputation methods of managing missing values
in anthropometric data in the process of estimating biological information for damaged remains at
crime and disaster sites. For this purpose, we first examined the differences in accuracy between
different imputation methods. Second, to compare the differences in accuracy according to the
learning algorithm, we selected the optimal algorithm according to the missing ratio of data. Finally,
we compared the accuracy of machine learning algorithms by dividing body parts into upper versus
lower limbs.

The remainder of this study has consisted as follows. Section 2 includes a literature review for
previous studies related to this study. In Section 3, we describe the participant, measurement, procedure
of experiment, and data processing methods. Section 4 provides the results of three imputation methods
for four learning algorithms. Finally, in Section 5, we discuss the results of each learning algorithm by
comparing them with the results from previous studies; we also provide future research directions.

2. Background

2.1. Human Biological Information

Estimated stature is known to be one of the most important factors in profiles of human biometric
information [23]. Researchers over recent decades have studied methods of predicting human stature
by measuring various parts of the human body and have developed and utilized various estimation
methodologies [24]. Developed methods include measuring body parts or bones of ashes, and these
methods have been used to estimate height in various countries [24,25]. The methods of estimating
stature and the measurement variables of interest have differed according to sex and ancestry, and
research on Koreans is insufficient. Due to the lack of previous studies, there may be limitations in
improving the accuracy of stature estimation, and finally differences occur from the current standard
of forensic anthropology.

Human stature is a polymorphic result of a combination of genetic, environmental, and biological
elements, and it is essential to develop a method that can be applied universally to different ancestry
groups and countries. Most of the research related to estimating stature in Koreans has been conducted
on only upper or lower limbs, and the necessity for research based on integrating body parts has been
steadily raised. Researchers have highlighted that the accuracy of estimating biological information
such as stature, sex, and age with a part of the human body has been lower than the accuracy of
estimates for other ancestry groups and countries.

One of the major limitations of previous studies that estimate human stature is that the researchers
have assumed intact bodies of human when they have developed their estimation models. In the
fields of anthropology and forensic science, however, biological information is estimated using body
parts that have been damaged in some way. Therefore, a model is needed that can effectively estimate
stature from even damaged body parts.

2.2. Imputation Method for Handling Missing Values

Missing values are one of the most frequent issues in data analysis; they can occur for many
reasons such as malfunctioning sensing systems or survey questions left blank. Imputation, the process
of replacing missing values, has been extensively studied, and for this study, we compared three
methods, mean imputation, nearest neighbor imputation, and multiple imputation.

Mean imputation is one of the simplest methods; it entails filling in missing values with the
corresponding means [26]. Medians can be used instead of means for robustness. For categorical
variables, the missing values are usually replaced with the most frequent values. Although this
approach is simple and can be powerful, it has a limitation that feature variances are underestimated.
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Nearest neighbor (NN) imputation, or hot-deck imputation, replaces missing values with the
corresponding variables in the closest instance [27,28]. Because imputation based on a single nearest
instance may not be robust, there have been several studies to improve NN imputation by using
multiple nearest points [29–31].

Unlike mean and NN imputation in which a missing value is replaced by a single value, multiple
imputation samples a missing value multiple times from the predefined distribution [32]. Then,
the multiple data sets are generated by the random sampling of missing values, and the result is
obtained by an ensemble of the results of each data set. The parameters in the distribution can be
estimated by expectation-maximization algorithm [33,34] and Markov chain Monte Carlo method [35]
when they cannot be found analytically.

2.3. Machine Learning Classifier

Recently, machine learning algorithms have been widely used in areas including business and
finance, health care, and production due to their superior performance in sophisticated tasks [36–40].
We employed four widely used machine learning classifiers to predict the stature. The brief descriptions
of these classifiers are as follows.

Logistic regression is a basic classifier that assumes the logarithm of the ratio between the
probability of positive class to that of negative class as a linear combination of independent variables
as in Equation (1):

log
(

p1

p0

)
= b0 + b1x1 + b2x2 + b3x3 + · · · bpxp. (1)

Because Equation (1) cannot be solved analytically for general cases, it is usually solved by
iteratively reweighted least squares. It can be extended to multiclass classification by setting the log
odds, the logarithm values of the ratios between the probability of a certain class and that of the
reference class, as linear combinations of independent variables as in Equation (2):

log
(

pi

pK

)
= bi,0 + bi,1x1 + bi,2x2 + bi,3x3 + · · · bi,pxp, i = 1, . . . , K − 1. (2)

where K denotes the number of classes.
Naïve Bayes classifier (NB) is a probabilistic classifier based on Bayes theorem [41]. It usually

assumes that all features are conditionally independent of one another given the class of an instance;
thus, the classifier becomes as follows:

P(y = k|x1, x2, . . . , xp) =
1
Z

P(y = k)P(x1, x2, . . . , xp|y = k) =
1
Z

P(y = k)
p∏

i=1

P(xi|y = k). (3)

where xi is the i-th feature of an instance, P(y = k) is a prior probability that the instance belongs
to class k, and Z =

∑K
k=1 P(y = k)

∏p
i=1 P(xi

∣∣∣y = k) is a normalization factor, usually called evidence.
In general, prior probabilities are defined proportional to the number of instances belonging to the class
before training. Thus, in a training phase, a model finds the parameters in the likelihood distribution,
P(xi

∣∣∣y = k), that best fits the training instances.
Artificial neural networks (ANNs) are one of the most famous machine learning models today

because they encompass deep learning, the most powerful algorithms in many applications. Neural
networks were originally inspired by the human brain, which consists of several interconnected
neurons [42]. In a neural network algorithm, as in a central nervous system, each neuron receives
signals from other neurons, processes them into a new signal, and transmits it to others. The output of
each neuron is calculated as follows:

output = g

 M∑
i=1

wixi

 (4)
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where xi’s are inputs from other neurons, wi’s are weight parameters, and g(·) is an activation
function that gives a neural network model nonlinearity; rectified linear unit, sigmoid, and hyperbolic
tangent functions are typical choices for the activation function. In multilayer perceptron, a neural
network model for regression and classification, the layers containing a number of neurons are located
sequentially, and the neurons in one layer receive inputs from the neurons in the previous layer
and transmit outputs to those in the next layer. After calculating the final output values in the
output layer, the weight parameters between layers are trained to minimize the cost function by
backpropagation [43].

Support vector machine (SVM), proposed by [44], is one of the most famous kernel-based classifiers
and has advantages in both sparsity and robustness. It finds a hyperplane, a decision boundary,
which maximizes the margin, the distance between a decision boundary and the closest data point,
in the feature space, a high-dimensional space mapped from the original space. By mapping from the
original space to the high-dimensional feature space, the separating hyperplane can be found even
when it does not exist in the original space. Mapping to the high-dimensional space increases the
calculation time for most algorithms, and sometimes it fails to find a solution within a reasonable time.
However, solving the dual problems of SVM only requires the inner product of two instances in the
feature space, the kernel function. This “kernel trick” dramatically reduces the calculation for training
SVM and makes the algorithm scalable. Because the original SVM is designed to perform binary
classification, one-versus-one or one-versus-all settings are adopted for the multiclass classification
tasks. In this paper, we used a one-versus-all scheme for multiclass classification.

3. Method

3.1. Participants

The measurement was performed by SizeKorea (Korean Agency for Technology and Standards) in
South Korea (https://sizekorea.kr/page/data/1_2). The 6th investigation for anthropometric dimension
in Korean was conducted from March to November 2010 and the total number of participants was
14,016 (7532 males and 6484 females) recruited from various regions of South Korea. The participants’
ages ranged from 7 to 69, with the average age for the men being 22.00; the women’s average age was
23.74. All subjects were measured in the morning because human stature changes throughout the day.

3.2. Measurements

In this study, the upper and lower limbs were defined with referred to previous studies [45,46],
and all dimensions of measurement used in this research are explained in Table 1. For the consistency of
measurements, only upper and lower limbs on the right side were measured, and Martin Anthropometer,
caliper (Martin type), and plastic tapeline were used for each body measurement. All units of
measurement are centimeters and are rounded off at the third decimal place. Stature is measured by
the vertical distance from the floor surface to the vertex point of the head. The subject was standing
parallel to the anthropometer with the gaze fixed in front, and the measurer recorded the stature of the
object displayed on the anthropometer.

The human upper limb is defined as the region from deltoid to hand and is commonly composed
of the shoulder, upper/lower arm, wrist, hand, and finger. In this study, 10 measurement variables
related to the upper limb were selected (see Table 1). In each of the upper limbs, the variables related
to arm and elbow were measured with a plastic tapeline, and the variables related to hand were
measured with a caliper (Martin type). The lower limb of human consists of the thigh, the leg (or
upper/lower leg), and the foot. The researchers selected 15 measurement variables related to length,
width, circumference for upper/lower leg, and foot. In each of the lower limbs, all variables except the
foot length/breadth of the lower limbs were measured by Martin Anthropometer.

https://sizekorea.kr/page/data/1_2
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Table 1. Measurement variables used in the experiment

Category Measurement
Variable Definition

Upper
Limb

Upper Arm Length The distance from lateral shoulder to radial
Arm Length The distance from lateral shoulder to ulnar styloid over radial

Under Arm Length The distance from axilla to ulnar styloid

Hand Length The distance between a line connecting radial styloid and dactylion
III

Palm Length The distance between a line connecting radial styloid and base of
the middle finger

Hand Breadth The distance between metacarpal V and metacarpal II

Hand Thickness The maximum thickness between dorsum of hand and palm at
metacarpal III

Inner Grip Circumference The circumference of grip, shaped as the interphalangeal joint of
thumb where it meets the tip of index finger

Hand Circumference The circumference of the hand over metacarpal V and metacarpal II

Elbow Circumference The circumference of the elbow at center olecranon with the arm
bent 90◦

Wrist Circumference The smallest circumference from the elbow to the knuckles of the
hand

Upper Arm Circumference The circumference of the upper arm around the flexed biceps with
the upper arm extended horizontally and the elbow flexed 90◦

Lower
Limb

Hip Height The vertical distance between a buttock protrusion and standing
surface

Waist Height The vertical distance between a standing surface and side waist
band (half the distance between the tenth rib and iliac crest)

Iliac Spine Height The vertical distance between a standing surface and anterior
superior iliac spine

Knee Height The vertical distance between a standing surface and the tibia
Thigh Vertical Length The distance between gluteal fold and popliteal fossa

Outside Leg Length The vertical distance between a standing surface and side waist
band (half the distance between the tenth rib and iliac crest)

Foot Breadth The horizontal length between metatarsophalangeal V and
metatarsophalangeal I

Foot Length The straight length between ptemion and acropodion

Lateral Malleolus Height The vertical distance between a standing surface and lateral
malleolus

Thigh Circumference The horizontal circumference at gluteal fold
Knee Circumference The horizontal circumference at mid-patella

Ankle Circumference the maximum circumference over lateral malleolus and medial
malleolus

3.3. Experimental Procedure

The overview of the research flow and analysis of this study is shown in Figure 1. First, we
generated input data sets for each experiment. After choosing the input features, upper limbs, lower
limbs, or both, and sexes, male, female, or both, that would be utilized for the experiment, we randomly
made missing values from an input data set according to the missing ratio ranging from 0.2 to 0.8. Then,
we employed three imputation methods, mean, nearest neighbor, and multiple, to impute the missing
values. For multiple imputation, we assumed that the joint distribution of input variables followed
Gaussian distribution and sampled missing values from the conditional distribution five times.

Then, in referring to Miguel-Hurtado and his colleagues, we transformed the target variable,
stature, into seven classes [15]. The classes were chosen equally spaced, so that the boundary values
were (1047.0, 1173.9, 1300.7, 1427.6, 1554.4, 1681.3, 1808.1, 1935.0) for the seven-class cases, respectively.
Because both maximum and minimum values occurred in male cases, the boundary values for males
were the same as those for all instances. The boundary values for female cases were (1057.0, 1159.9,
1262.7, 1365.6, 1468.4, 1571.3, 1674.1, 1777.0) for 7 class cases, respectively.
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Because the combination of missing value imputation methods and machine learning classifiers
for anthropometry data have not yet been studied, we selected four conventional machine learning
classifiers, logistic regression, naïve Bayes, neural network, and support vector machine, for the
stature classification tasks with the imputed data sets because they have already been employed for
anthropometry as well as other applications [15,47]. We also applied five-fold cross validation to
find the best hyperparameters for classifiers. For the neural network classifier, we controlled two
hyperparameters, the number of layers and the number of nodes in each hidden layer. We changed
the number of layers from one to three and the number of hidden nodes from 10 to 50. For SVM,
we employed Gaussian kernel. There were also two hyperparameters, γ, which controlled the
bandwidth of the kernel function, and C, which balanced the errors for misclassified instances and
the regularization for the classifier or the margin maximization. In this study, we varied γ from 0.01
to 100 and C from 0.05 to 10. For each of three imputation methods, the parameters for imputation,
including mean values and covariance matrices, were estimated only with the training data set and the
imputation for validation set was also conducted based on these parameters. We repeated the whole
procedure 10 times for every case, and we reported averaged cross validation errors for comparison.

4. Results

4.1. Stature Classification: Upper Limb

For each learning algorithm, Table 2 shows the relationships between the missing ratio and the
accuracy according to the three imputation methods based on variables for the upper limb for both
males and females. There was no statistical significance at the 95% confidence level in the one-sample
t-test for the results of accuracy obtained through 10 repeated trials for the imputation methods and
learning algorithms for both sexes.

First, in cases of both sexes, when the missing ratio was 0.2, multiple imputation had the highest
accuracy in all algorithms except NB. In mean and multiple imputation, the accuracy of NB changed
less than it did with other algorithms when we increased the missing ratio. Among the three imputation
methods, NN imputation showed the lowest accuracy at all missing ratios; all algorithms showed
lower accuracy as the missing ratio increased. In addition, when the missing ratio was 0.6 or more,
mean imputation had higher accuracy than multiple imputation; this was because the accuracy of
multiple imputation when the missing ratio increased was lower than the accuracy of the other two
methods under the same conditions. SVM showed the highest accuracy among the four machine
learning algorithms: 0.756; missing ratio = 0.2.

Second, for females, when the missing ratio was 0.2 to 0.4, multiple imputation using SVM
showed the highest accuracy. In contrast, when the missing ratio was 0.5 to 0.8, mean imputation
using SVM showed the highest accuracy. The results of the experiment confirmed that the accuracy
derived through SVM was the highest at all missing ratios. In addition, among the imputation methods,
NN imputation showed the lowest accuracy at all missing ratios.

Finally, for males, when the missing ratio was 0.2 to 0.4, multiple imputation using SVM showed
the highest accuracy, as with females. However, unlike with the female cases, when missing ratio was
0.5 or 0.6, the accuracy of SVM and ANN was the same, and when the missing ratio was larger than
0.7, mean imputation was more accurate than multiple.
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Table 2. Accuracy results by imputation method and learning algorithm: Upper limb.

Sex Method Imputation
Missing Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Combined
sexes

Logistic

Mean 0.721 0.700 0.680 0.654 0.628 0.584 0.549
Nearest

neighbor
(NN)

0.657 0.594 0.539 0.487 0.445 0.417 0.407

Multiple 0.745 0.732 0.713 0.684 0.643 0.579 0.493

Naïve Bayes
classifier (NB)

Mean 0.666 0.660 0.650 0.634 0.614 0.581 0.537
NN 0.622 0.586 0.550 0.508 0.465 0.432 0.398

Multiple 0.662 0.650 0.633 0.605 0.563 0.510 0.436

Support vector
machine (SVM)

Mean 0.749 0.734 0.717 0.696 0.671 0.638 0.595
NN 0.698 0.647 0.597 0.539 0.491 0.452 0.445

Multiple 0.756 0.741 0.719 0.688 0.644 0.582 0.493

Artificial
neural network

(ANN)

Mean 0.734 0.714 0.697 0.670 0.642 0.609 0.565
NN 0.692 0.642 0.586 0.526 0.476 0.439 0.432

Multiple 0.753 0.738 0.717 0.687 0.644 0.582 0.495

Female

Logistic Mean 0.681 0.661 0.642 0.622 0.596 0.566 0.528
NN 0.625 0.576 0.529 0.486 0.457 0.432 0.420

Multiple 0.699 0.686 0.663 0.634 0.591 0.535 0.466

NB Mean 0.644 0.634 0.620 0.597 0.570 0.533 0.479
NN 0.600 0.572 0.536 0.501 0.464 0.434 0.406

Multiple 0.635 0.619 0.594 0.559 0.509 0.453 0.405

SVM Mean 0.697 0.682 0.665 0.645 0.622 0.591 0.551
NN 0.652 0.611 0.569 0.525 0.486 0.454 0.440

Multiple 0.707 0.691 0.668 0.638 0.595 0.539 0.469

ANN Mean 0.684 0.664 0.645 0.625 0.600 0.571 0.532
NN 0.635 0.590 0.545 0.506 0.470 0.441 0.429

Multiple 0.703 0.689 0.665 0.636 0.594 0.538 0.467

Male

Logistic Mean 0.729 0.710 0.686 0.662 0.637 0.605 0.562
NN 0.658 0.596 0.537 0.488 0.451 0.431 0.425

Multiple 0.757 0.744 0.727 0.699 0.658 0.601 0.514

NB Mean 0.696 0.686 0.669 0.648 0.620 0.580 0.519
NN 0.651 0.615 0.573 0.531 0.488 0.451 0.420

Multiple 0.692 0.679 0.659 0.627 0.583 0.528 0.458

SVM Mean 0.734 0.715 0.695 0.671 0.645 0.614 0.573
NN 0.688 0.640 0.585 0.532 0.484 0.448 0.438

Multiple 0.762 0.748 0.729 0.700 0.660 0.602 0.517

ANN Mean 0.749 0.733 0.717 0.695 0.673 0.643 0.604
NN 0.704 0.658 0.607 0.555 0.510 0.468 0.453

Multiple 0.760 0.746 0.728 0.700 0.660 0.603 0.518

4.2. Stature Classification: Lower Limb

The relationship between the missing ratio and the accuracy according to the three imputation
methods based on variables for the lower limb is shown in Table 3 by male and female. There was no
statistical significance at the 95% confidence level in the one-sample t-test for the results of accuracy
obtained through 10 repeated trials for the imputation methods and learning algorithms for both sexes.

First, for both sexes, when the missing ratio was 0.2, multiple imputation had the highest accuracy
with all learning algorithms except NB. With mean and multiple imputation, the accuracy of NB
changed less than did accuracy with the other algorithms when the missing ratio increased. Among the
three imputation methods, as in the upper limb, NN showed the lowest accuracy at all missing ratios.
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Table 3. Accuracy results by imputation method and learning algorithm: Lower limb.

Sex Method Imputation
Missing Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Combined
sexes

Logistic Mean 0.778 0.757 0.735 0.710 0.679 0.643 0.596
NN 0.694 0.624 0.559 0.500 0.454 0.433 0.427

Multiple 0.816 0.805 0.788 0.756 0.702 0.615 0.497

NB Mean 0.784 0.772 0.757 0.737 0.709 0.668 0.613
NN 0.709 0.655 0.599 0.543 0.493 0.457 0.428

Multiple 0.800 0.790 0.770 0.734 0.668 0.570 0.451

SVM Mean 0.822 0.811 0.796 0.777 0.752 0.716 0.668
NN 0.755 0.700 0.638 0.573 0.519 0.486 0.493

Multiple 0.837 0.824 0.803 0.767 0.706 0.617 0.501

ANN Mean 0.811 0.798 0.777 0.761 0.732 0.689 0.636
NN 0.770 0.722 0.657 0.579 0.511 0.475 0.477

Multiple 0.835 0.822 0.802 0.767 0.707 0.617 0.498

Female

Logistic Mean 0.757 0.738 0.715 0.696 0.669 0.637 0.596
NN 0.690 0.624 0.568 0.520 0.485 0.462 0.456

Multiple 0.791 0.784 0.768 0.740 0.690 0.612 0.513

NB Mean 0.759 0.747 0.729 0.705 0.674 0.631 0.574
NN 0.701 0.653 0.603 0.558 0.513 0.477 0.440

Multiple 0.771 0.762 0.743 0.710 0.649 0.557 0.462

SVM Mean 0.788 0.775 0.758 0.740 0.718 0.682 0.637
NN 0.732 0.680 0.629 0.576 0.533 0.504 0.496

Multiple 0.808 0.797 0.778 0.745 0.692 0.614 0.517

ANN Mean 0.771 0.751 0.730 0.709 0.681 0.647 0.603
NN 0.719 0.668 0.611 0.558 0.516 0.487 0.477

Multiple 0.806 0.795 0.776 0.745 0.692 0.613 0.514

Male

Logistic Mean 0.770 0.749 0.726 0.703 0.674 0.639 0.594
NN 0.683 0.610 0.547 0.493 0.459 0.440 0.443

Multiple 0.813 0.804 0.787 0.756 0.702 0.618 0.512

NB Mean 0.776 0.762 0.741 0.718 0.684 0.639 0.577
NN 0.707 0.655 0.602 0.552 0.505 0.469 0.439

Multiple 0.792 0.781 0.762 0.724 0.659 0.565 0.465

SVM Mean 0.808 0.793 0.776 0.757 0.732 0.693 0.651
NN 0.748 0.693 0.637 0.581 0.533 0.501 0.501

Multiple 0.833 0.819 0.798 0.763 0.705 0.621 0.519

ANN Mean 0.788 0.768 0.75 0.724 0.694 0.657 0.609
NN 0.748 0.693 0.631 0.567 0.517 0.485 0.480

Multiple 0.830 0.817 0.796 0.763 0.706 0.621 0.515

All learning algorithms were less accurate as the missing ratio increased, although when the
missing ratio was 0.5 or more, mean imputation was more accurate than multiple imputation. This was
because the accuracy of multiple imputation decreased more than did accuracy with the other two
methods when the missing ratio increased. The highest accuracy among the four machine learning
algorithms was with SVM: 0.837; missing ratio = 0.2.

Second, with females, when the missing ratio was 0.2 to 0.6, multiple imputation using SVM
showed the highest accuracy, and when the missing ratio was 0.5 or 0.6, accuracy was the same for SVM
and ANN. In contrast, when the missing ratio was 0.7 to 0.8, mean imputation using SVM showed the
highest accuracy. Among all methods, NN imputation showed the lowest accuracy at all missing ratios.

Finally, in the case of males, when the missing ratio was 0.2 to 0.5, multiple imputation using SVM
showed the highest accuracy. Unlike with the female cases, when the missing ratio was 0.5, the accuracy
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of SVM and ANN was the same, and when the missing ratio was larger than 0.7, mean imputation was
more accurate than multiple.

4.3. Stature Classification: Both

For each learning algorithm, Table 4 shows the relationship between the missing ratio and the
accuracy according to the three imputation methods based on variables for both limbs by male and
female. There was no statistical significance at the 95% confidence level in the one-sample t-test for
the results of accuracy obtained through 10 repeated trials for the imputation methods and learning
algorithms for both sexes.

Table 4. Accuracy results by imputation method and learning algorithm: Upper/lower limb.

Sex Method Imputation
Missing Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Both

Logistic Mean 0.801 0.784 0.769 0.748 0.724 0.693 0.650
NN 0.717 0.648 0.578 0.515 0.465 0.424 0.407

Multiple 0.829 0.821 0.811 0.791 0.755 0.694 0.594

NB Mean 0.771 0.765 0.754 0.740 0.720 0.688 0.642
NN 0.700 0.654 0.605 0.551 0.498 0.447 0.410

Multiple 0.791 0.784 0.773 0.749 0.706 0.634 0.529

SVM Mean 0.834 0.821 0.809 0.793 0.775 0.746 0.702
NN 0.765 0.708 0.647 0.585 0.523 0.467 0.434

Multiple 0.857 0.847 0.833 0.810 0.767 0.698 0.595

ANN Mean 0.818 0.800 0.784 0.761 0.736 0.705 0.658
NN 0.758 0.700 0.628 0.561 0.498 0.442 0.417

Multiple 0.854 0.845 0.831 0.808 0.767 0.699 0.596

Female

Logistic Mean 0.768 0.753 0.734 0.718 0.696 0.667 0.625
NN 0.701 0.645 0.581 0.533 0.486 0.448 0.426

Multiple 0.794 0.789 0.778 0.759 0.725 0.664 0.567

NB Mean 0.756 0.748 0.735 0.717 0.689 0.653 0.591
NN 0.694 0.652 0.604 0.556 0.509 0.460 0.422

Multiple 0.771 0.763 0.750 0.727 0.679 0.596 0.481

SVM Mean 0.798 0.783 0.769 0.751 0.730 0.700 0.656
NN 0.740 0.691 0.638 0.586 0.533 0.482 0.449

Multiple 0.822 0.812 0.797 0.774 0.732 0.667 0.572

ANN Mean 0.787 0.769 0.751 0.732 0.710 0.681 0.635
NN 0.717 0.663 0.603 0.554 0.503 0.460 0.434

Multiple 0.819 0.810 0.795 0.773 0.732 0.666 0.571

Male

Logistic Mean 0.798 0.784 0.765 0.743 0.719 0.688 0.647
NN 0.712 0.642 0.572 0.515 0.470 0.434 0.420

Multiple 0.823 0.820 0.811 0.793 0.759 0.698 0.604

NB Mean 0.787 0.776 0.762 0.743 0.717 0.678 0.615
NN 0.713 0.670 0.618 0.570 0.516 0.466 0.424

Multiple 0.803 0.796 0.782 0.757 0.711 0.633 0.526

SVM Mean 0.829 0.816 0.798 0.782 0.761 0.732 0.689
NN 0.769 0.717 0.659 0.601 0.543 0.488 0.453

Multiple 0.857 0.847 0.832 0.810 0.768 0.702 0.609

ANN Mean 0.817 0.799 0.779 0.758 0.732 0.701 0.655
NN 0.742 0.687 0.625 0.561 0.507 0.455 0.431

Multiple 0.853 0.844 0.829 0.807 0.768 0.702 0.607
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First, for both sexes, when the missing ratio was 0.2, multiple imputation had the highest accuracy
with all algorithms. Among the three imputation methods, NN was the least accurate at all missing
ratios, although all algorithms were less accurate as the missing ratio increased. In addition, when the
missing ratio was 0.6 or more, mean imputation was more accurate than multiple imputation. This was
because multiple imputation showed the least accuracy of any method as the missing ratio increased.
Among the four machine learning algorithms, SVM was the most accurate: 0.857; missing ratio = 0.2.

Second, for females, when the missing ratio was 0.2 to 0.6, multiple imputation using SVM showed
the highest accuracy, whereas when the ratio was 0.7 or 0.8, mean imputation using SVM was the
most accurate. The results of the experiment confirmed that the accuracy derived through SVM was
the highest at all missing ratios. In addition, among the learning algorithms, the NB was the least
accurate of all methods at all missing ratios. Finally, with males, when the missing ratio was 0.2 to 0.6,
multiple imputation using SVM showed the highest accuracy, as with the female cases, but when the
missing ratio was larger than 0.7, accuracy was higher with mean rather than multiple imputation.

5. Discussion and Future Work

The purpose of this study was to investigate the optimal missing value imputation and statistical
methods for estimating demographic features through anthropometric measurements. We examined
general imputation methods with machine learning algorithms to estimate sex and stature using
anthropometric measurements related to the upper and lower limbs. In this study, we proposed three
ways to impute missing values, and within our classification analysis of machine learning, we used
seven classes to classify statures. Estimates of this class are significant for constructing biometric
profiles of humans using various kinds of anthropometric data. In addition, this study has provided a
baseline of comparison to researchers who conduct study that estimates human biological information
based on anthropometric measurements by country and ethnicity.

First, we confirmed through upper and lower limbs that there were differences in the accuracy of
the stature estimates for Korean males versus females; specifically, the stature estimates for the men
were more accurate than the estimates of Korean women’s stature. Previous researchers obtained
similar results for Koreans [10,45], but these results were not unique to Koreans: Other researchers
found the same results in multiple studies on estimating stature across different countries [4,5,48–50].

Second, through our experiments on imputing missing values, we confirmed that multiple
imputation was the most accurate in all cases of estimating biological information based on the upper
and lower limbs except for high missing ratios. The multiple imputation used in this study was
estimated using Gaussian distribution, which imputes missing data based on covariance between
data. Therefore, this method is potentially more accurate than others but has a disadvantage in that it
requires a larger minimum data set than do other methods for estimating the parameters of Gaussian
distribution. We confirmed similar results in this study: As the missing ratio increased, the accuracy
of multiple imputations decreases rapidly; when the missing ratio was over 0.7, mean imputation
showed the highest accuracy in all cases. With mean imputation, the missing data are estimated
based on the averages of the totals without considering relationships among features, so that the
average for each missing ratio in the overall data does not change significantly. The other imputation
methods, multiple and nearest neighbor imputations can be overfitted to the small amount of observed
information. In this study, among the three imputation methods, the accuracy of mean imputation
decreased the least when the missing ratio increased. Therefore, when estimating stature through
anthropometric measurements in Koreans, if the victim’s body is severely damaged and it is difficult
to obtain measurements for each body part, anthropometric measurements should be calculated using
mean imputation.

Third, from the perspective of the learning algorithm, we used two types of linear classification
(logistic, NB) and two types of nonlinear classification (SVM, ANN) in this study. In the previous
studies of estimating stature through anthropometric data, researchers primarily performed linear
regression and classification analysis based on the linearity of the human body. However, recently
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researchers have confirmed the accuracy of estimating stature using nonlinear or machine learning
methods [51]. We also determined that in the context of missing data, which is the main contribution of
this study, nonlinear classification was more accurate for measuring stature. Therefore, it is necessary
to expand the methodology based on machine learning in research to estimate or classify biological
information of humans through anthropometry.

The limitation of this study and future research are as follows. First, this study focused on deriving
the best algorithm for estimating stature based on anthropometric measurements of Koreans over
a wider range of ages compared to previous studies using statistical methods. In addition, in this
research, it was not conducted on the elderly population over the age of 69. The aging of Korean
society is progressing, and the population of the elderly is growing rapidly. Therefore, in future studies,
it seems necessary to collect anthropometric data of elderly people over 70 years old and propose a
more general methodology for estimating stature. Second, for this study we assumed that all missing
data occurred randomly and that human body parts in the fields of anthropology and forensic science
correlate with each other. For example, in a corpse without an arm, the probability that the hand is
damaged is extremely high. In addition, the measurements related to the same body parts, such as the
food breadth and the foot length, have high probability that they are missing simultaneously. Therefore,
based on the results of this study, it is necessary to carry out additional studies in consideration of
missing data specific to humans. Third, it is possible to conduct research to improve accuracy by
examining various anthropometric variables that we did not measure in this study.

Since this study was conducted on living people, it can be used when estimating the stature of
suspects. However, since a corpse’s body measurements change, it is difficult to apply it directly to
the identification of the victims such as a crime or natural disasters. Therefore, in the future, it is
necessary to conduct research to find a method for accurately estimating the stature for Korean corpses
by additionally considering data on the carcasses. In addition, the type of missingness can be varied
by the situations, the imputation methods for anthropometry data with structural missing values can
be studied. In addition, the sophisticated machine learning classifiers, such as random forests and
deeper neural networks, can be used for similar tasks to improve the prediction performances.
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