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Abstract: Temperature forecasting has been a consistent research topic owing to its significant effect
on daily lives and various industries. However, it is an ever-challenging task because temperature is
affected by various climate factors. Research on temperature forecasting has taken one of two directions:
time-series analysis and machine learning algorithms. Recently, a large amount of high-frequent
climate data have been well-stored and become available. In this study, we apply three types of
neural networks, multilayer perceptron, recurrent, and convolutional, to daily average, minimum,
and maximum temperature forecasting with higher-frequency input features than researchers used in
previous studies. Applying these neural networks to the observed data from three locations with
different climate characteristics, we show that prediction performance with highly frequent hourly
input data is better than forecasting performance with less-frequent daily inputs. We observe that a
convolutional neural network, which has been mostly employed for processing satellite images rather
than numeric weather data for temperature forecasting, outperforms the other models. In addition,
we combine state of the art weather forecasting techniques with the convolutional neural network
and evaluate their effects on the temperature forecasting performances.

Keywords: convolution neural network; deep learning; long short term memory; temperature
forecasting

1. Introduction

Weather forecasting is one of the most steadily researched areas because the weather has a
significant impact on humans’ daily lives as well as various industry sectors [1–3]. Among weather
factors, temperature is considered the most important because it is closely related to energy generation
and agricultural operations [4–7]. In particular, minimum and maximum temperatures can have
adverse impacts on agricultural operations in extreme events, so accurate temperature forecasting
plays an important role in preventing agricultural damage [8]. However, weather factors including
temperature are continuous, data-intensive, multidimensional, dynamic, and chaotic, and thus, it is
ever-challenging to accurately predict temperature [9].

Researches on weather forecasting are mainly performed in two ways, physics-based and
data-driven models. First, physics-based weather forecasting models directly simulate physical
processes that numerically analyze the effects of atmospheric dynamics, heat radiation, and impact of
green space, lakes, and oceans. Most commercial and public weather forecasting systems still consist
of physics-based models [10–12]. On the other hand, data-driven models perform weather forecasting
using statistics or machine learning-based algorithms. The data-driven models have the advantage of
being able to identify unexpected patterns for the meteorological system without any prior knowledge.
However, it can require a large amount of data, and there is a lack of interpretation of how the models
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work. Contrary, the physics-based methods have the advantage of being interpretable and having the
potential for extrapolating over observed conditions. However, it has the disadvantage of requiring
well-defined prior knowledge and a large computational capacity [13,14]. Recently, data-driven models
for weather forecasting have been more actively studied with the increase in the number of available
features and observations.

To overcome these challenges, research has increased steadily on temperature forecasting, in two
main directions. One is that researchers have used time-series analysis based on autoregressive
integrated moving average (ARIMA) to study longer-term predictions such as monthly and
annual [15–17]. The other is machine learning algorithms based on neural network models for
shorter-term predictions such as hourly and daily.

Existing research has mostly been focused on forecasting temperatures using consistent time
unit data. Specifically, both the input data and the target data are the same time unit, for example,
using daily input data to forecast day-ahead temperature. However, as the amount of available
high-frequent data has increased and computing power using graphics processing units has improved,
it is possible to use hourly input data for daily temperature forecasting, as opposed to only the daily
input data that could previously be used. Both hourly and daily patterns can be employed to forecast
daily temperatures, but because these data are abundant and detailed, it is essential to process them
efficiently and effectively. In this context, neural network models have powerful versatility to process
large amounts of more detailed data.

In this study, we forecast daily average, minimum, and maximum temperatures with different
time-interval data using deep neural network models. Our major contributions are as follows. First,
unlike in previous studies, we used detailed time unit input data rather than target data to forecast
day-ahead temperature. Second, to enable efficient and effective processing of more detailed and
abundant data, we used three neural network models: multilayer perceptron (MLP), long-short
term memory (LSTM), and convolution neural network (CNN). In particular, we applied a CNN,
which has been mostly employed for satellite data in previous studies, to numeric weather data
with a suitable structure for them, and we, in fact, found that it outperformed the other models.
Third, we compared the models for factors such as time unit of input data, time length of input data,
regions, and neural network models. In addition, we combined the recent state of the art techniques
in weather forecasting such as multimodal learning and multitask learning and examined their
effects on temperature forecasting performance. For multimodal learning, we performed temperature
forecasting by employing additional satellite images as well as the existing numerical meteorological
data. For multitask learning, we predicted several temperatures simultaneously to take advantage
of shared information among different types of temperatures in different regions. To analyze the
effectiveness of multimodal learning and multitask learning, we compared their results with those of
the ordinary models.

The rest of the paper is organized as follows. In Section 2, we present the literature review. In
Section 3, we introduce the neural network architectures we proposed for forecasting the temperature.
In Section 4, we describe the data we used and how to preprocess the data. Section 5 presents the
experimental design and our interpretation of the results. In Section 6, we conclude the paper with
a summary.

2. Related Work

2.1. Data-Driven Temperature Forecasting

Researchers have performed data-driven temperature forecasting for a few decades, and there are
two main research directions: time-series analysis based on ARIMA and machine learning algorithms
based on neural network models. For the former, ARIMA is a linear statistical technique for analyzing
and forecasting time series. The key components of the model are auto-regressive, integrated, and
moving average. Briefly, the integration component makes data stationary through differentiating,
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and the auto-regressive component uses the dependency between some number of lagged data
and the moving-average accounts for previous error terms. For the latter temperature prediction
research direction, neural network models have been the most actively studied of the machine learning
algorithms for forecasting time series. Neural network models have strong power to solve many kinds
of nonlinear problems and can capture the relationships between input and target data. Furthermore,
they are applicable even when the units of data are different, whereas traditional methods require the
same units of data.

Researchers have mainly studied ARIMA models for forecasting temperatures for longer time
units, such as monthly and annual. For instance, one ARIMA model was used to forecast monthly
temperatures for Assam in India, specifically the variant of ARIMA called seasonal autoregressive
integrated moving average to reflect the seasonality [15]. In another study, an ARIMA model was used
to analyze annual rainfall and maximum temperature and forecast for watershed and agricultural
management [17]. Researchers also used the variant of ARIMA known as autoregressive fractionally
integrated moving average to forecast monthly temperature and precipitation time series [16].

Meanwhile, researchers have used neural networks to forecast temperatures for shorter time units
such as hourly and daily, including to forecast hourly temperature for load forecasting; these authors
first forecast daily temperatures to predict daily temperature trends and used these to forecast hourly
temperatures [18]. In another study, researchers developed an ensemble of neural network models to
forecast various weather factors such as hourly temperature wind speed, and relative humidity [9],
and others combined ARIMA and neural network models to forecast hourly temperatures [4]. These
authors first used ARIMA to forecast temperatures and used the forecast values as inputs in the neural
network for stable and accurate forecasts.

Most researchers to date have used the same time units for both input and target data, but neural
network models are versatile and can accommodate different input and target data units. Therefore,
it is possible to employ more specific input data than target data for better forecasting performance.
Better forecasting requires the capacity to process abundant and specific data efficiently and effectively
with proper neural network model architectures.

2.2. Neural Networks for Signal Processing

Forecasting temperatures using numeric weather data with different time units can be viewed as
signal processing because numeric weather data have sequences over time, and applications of signal
processing using neural network models have used different types of input and target data. The main
application areas of signal processing are speech recognition and bio-signal recognition, as well as
time series forecasting [18–27]. Researchers have used two typical neural network models for signal
processing: recurrent neural networks (RNNs) and CNNs.

RNNs are specialized for sequential data such as signal, time series, and text. These networks have
a component called hidden state that is a function of all previous hidden states and that allows RNNs
to perform well with sequential data. However, RNNs have a critical limitation, a vanishing gradient
problem. The LSTM model is an advanced RNN; it includes the gates in RNN, and it addresses the
vanishing gradient problem, allowing the model to perform much better than RNNs [28]. In the signal
processing research with LSTM, [22] performed speech recognition tasks using deep LSTM, and that
model outperformed those used in previous studies. Deep LSTM reflects the long term effectively
through multiple levels of representation. In one study, [24] predicted seizures using LSTM to process
electroencephalogram signal data. In another study, [27] used deep bidirectional LSTM network-based
wavelet sequences to classify electrocardiogram signals, and their model showed better recognition
performance than that of conventional networks.

Researchers have used CNNs with success in computer vision, and they have performed well
with speech recognition as well. CNNs have the key aspects of sparse interaction and parameter
sharing using convolution layers with considerably fewer parameters than with MLP [29]. In research
on signal processing using CNN, [21] performed speech recognition using CNN models, and their
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models outperformed the MLP models and hidden Markov model that had been used in previous
studies. [19] used a CNN to process electrocardiogram data to predict various cardiovascular diseases,
and others [23] used a CNN to process electroencephalogram signal data and diagnose epilepsy.
In both of these studies, the researchers used CNNs with one-dimensional signal data; however,
in a different study, [30] used two-dimensional electroencephalogram signal data, which enabled
brain-computer interaction.

Researchers have recently been studying both LSTM and CNNs to forecast time-series data.
Ref. [7] used LSTM combining ensemble empirical mode decomposition and fuzzy entropy to forecast
wind speed. Ref. [31] conducted and analyzed stable forecasting of environmental time series using
LSTM or [3] employed CNN to process one-dimensional signal data to forecast monthly rainfall; in
the latter study, the authors represented input data in one-dimensional signals using various weather
factors. However, this method does not consider that the order of weather variables is independent.
Furthermore, the methods mentioned above-employed input data and target data with the same time
units. Most existing studies on temperature-related tasks using CNNs have been employed satellite
data. Ref. [32] forecasted sea surface temperature field by processing satellite data with the combination
of CNN and LSTM and [33] predicted subsurface temperatures by using CNN with satellite remote
sensing data. In this study, we performed air temperature forecasting by applying the CNN to numeric
weather data rather than satellite data with a suitable structure to process them.

Most recently, various machine learning approaches, including multimodal learning which
combines different types of inputs to perform specific tasks and multitask learning which learns related
tasks simultaneously for computational efficiency and performance improvement by using shared
information among related tasks, have been applied to the weather forecasting. Ref. [34] performed
solar irradiance prediction by employing both numerical meteorological data and the images of sky.
Ref. [35] predicted rainfall at multiple sites simultaneously with multitask learning and [36] forecasted
wind power ramp events using multitask deep neural networks.

3. Proposed Neural Network Architectures

We used three neural network structures, MLP, LSTM, and CNN, with two different types of time
unit input data, daily and hourly, to forecast daily temperatures. We built the six models by pairing
each structure with each time unit as follows:

• MLP with daily input variables
• MLP with hourly input variables
• LSTM with daily input variables
• LSTM with hourly input variables
• CNN with daily input variables
• CNN with hourly input variables

The detailed structures of each model are explained in Tables 1–6 and Figures 1 and 2. Note that
T and m shown in Tables 1–6 denote the length of time of the input data and the number of input
variables, respectively.
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Table 1. The architecture of multilayer perceptron (MLP) with daily input data.

Layers Layer Type Input Structure Output Structure

0–>1 fully connected T × m 2400
1–>2 fully connected 2400 3600
2–>3 fully connected 3600 2400
3–>4 fully connected 2400 1600
4–>5 fully connected 1600 1200
5–>6 fully connected 1200 400
6–>7 fully connected 400 100
7–>8 fully connected 100 1

Table 2. The architecture of MLP with hourly input data.

Layers Layer Type Input Structure Output Structure

0–>1 fully connected T × m 7200
1–>2 fully connected 7200 3600
2–>3 fully connected 3600 2400
3–>4 fully connected 2400 1200
4–>5 fully connected 1200 800
5–>6 fully connected 800 400
6–>7 fully connected 400 100
7–>8 fully connected 100 1

Table 3. The architecture of LSTM with daily input data.

Layers Layer Type Input Structure Output Structure

0–>1 LSTM (T, m) (T, 20)
1–>2 LSTM (T, 20) (T, 20)
2–>3 LSTM (T, 20) T × 20
3–>4 fully-connected T × 20 1000
4–>5 fully-connected 1000 400
5–>6 fully-connected 400 100
6–>7 fully-connected 100 1

Table 4. The architecture of LSTM with hourly input data.

Layers Layer Type Input Structure Output Structure

0–>1 LSTM (T, m) (T, m)
1–>2 LSTM (T, m) (T, m)
2–>3 LSTM (T, m) T × m
3–>4 fully-connected T × m 6000
4–>5 fully-connected 6000 2400
5–>6 fully-connected 2400 1600
6–>7 fully-connected 1600 800
7–>8 fully-connected 800 400
8–>9 fully-connected 400 100

9–>10 fully-connected 100 1
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Table 5. The architecture of CNN with daily input data.

Layers Layer Type Output Structure Filter Size Number of Filter Stride

0–>1 convolution (T-1, m) (2, 1) 16 1
1–>2 convolution (T-2, m) (2, 1) 16 1
2–>3 convolution (T-3, m) (2, 1) 16 1
3–>4 convolution (T-4, m) (2, 1) 16 1
4–>5 convolution (1, m) (T-4,1) 24 1
5–>6 convolution 450 (1, m) 450 -
6–>7 fully connected 70 - - -
7–>8 fully connected 1 - - -
8–>9 fully-connected 100 1

Table 6. The architecture of CNN with hourly input data.

Layers Layer Type Output Structure Filter Size Number of Filter Stride

0–>1 convolution (T/2, m) (2, 1) 8 (2,1)
1–>2 convolution (T/4, m) (2, 1) 8 (2,1)
2–>3 convolution (T/8, m) (2, 1) 10 (2,1)
3–>4 convolution (T/16, m) (2, 1) 12 (2,1)
4–>5 convolution (1, m) (T/16,1) 24 1
5–>6 convolution 450 (1, m) 450 -
6–>7 fully connected 120 - - -
7–>8 fully connected 70 - - -
8–>9 fully connected 1 - - -

Figure 1. Model structure of long-short term memory (LSTM) for temperature forecasting.

Figure 2. Model structure of convolution neural network (CNN) for temperature forecasting.
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3.1. MLP

MLP is one of the most common neural network model structures for regression and classification,
which propagates information layers by layers. MLP consists of layers containing more than one
perceptron with activation functions and their connections; it receives input data by the input layer,
and these data are transmitted throughout the hidden layers and the output layer through connections.
Then, the output layers return the predicted values. One of the typical ways for calculating an output
value for each node is as follows:

y = σ

∑
i

wixi

 (1)

where y is the output value of each node, xi is the input from connected node i in the previous layer,
wi’s are learnable weight parameters, and σ is an activation function. Typically, hyperbolic tangent
function, logistic function, and rectified linear units are selected for activation functions.

Tables 1 and 2 represents the architectures of the MLP models in this study using the daily and
hourly input data, respectively; we determined these through trial and error. T and m in Tables 1 and 2
denote time length of input data and the number of input variables. For example, with three days of
input data in MLP with daily input data, the number of input nodes is 51: 3 (days) × 17 (variables).
Likewise, with three days of input data in MLP with hourly input data, the number of input nodes is
1080: 3 (days) × 24 (h) × 15 (variables).

3.2. LSTM

The LSTM model is an advanced RNN model that reflects temporal dependencies between input
data better than RNN by introducing the gates for controlling temporal information to the hidden state.
The LSTM model has dealt with a vanishing gradient problem of the RNN model and is one of the
most powerful artificial neural network models for sequential data such as text, signal, and time series.
The LSTM model consists of connections of cells which contains a hidden layer and an output layer.
A hidden layer receives an input xt and a context ht−1, values of the hidden layer of the previous cell,
as inputs and then derives a hidden context vector ht from the inputs and an output layer calculates
output vector yt with the hidden context vector as the following equations:

i = σ(Wixt + Uiht−1 + bi) (2)

o = σ(Woxt + Uoht−1 + bo) (3)

f = σ
(
W f xt + U f ht−1 + b f

)
(4)

ct = σ(Wcxt + Ucht−1 + bc) (5)

ht = tanh(i·xt + f·ct−1)·o (6)

yt = Wlht + bl (7)

where the gate vectors and cell state vectors i, o, f, ct, and weight matrices and bias vectors W, U, bi,
bo, bf, bc are learnable parameters, and σ denotes a sigmoid function. After deriving ht, the LSTM cell
returns the output vector yt by combining it with Wl and bl in the output layer.

We designed the LSTM structures in this study as three stacked LSTMs connected to the fully
connected layer. We describe LSTM model architectures in Figure 1, and Tables 3 and 4 summarize
the details of the daily input and hourly input LSTM model structures, respectively. If the number
of input variables is 17, the first cell receives a 17-dimensional vector as an input and extends it to a
20-dimensional vector before it passes to the second cell. In the case of hourly input data, however, the
LSTM model keeps the number of vector dimensions as the number of input variables m. As we noted
earlier, we determined the remaining structure of the LSTM model through trial and error. Note that T
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and m shown in Tables 3 and 4 denote the length of time of the input data and the number of input
variables, respectively.

3.3. CNNs

CNNs have the key aspects of sparse interaction and parameter sharing using convolution layers
with considerably fewer parameters. CNNs consist of three major components: convolution, pooling,
and fully connected layers. In convolution layers, the convolution operation is performed to extract
the local features. The convolution operation for two-dimensional case, for example, is as follows:

Si, j =
m∑

a=0

n∑
b=0

Ii−a, j−bKm+a,n+b (8)

where I is a matrix containing the input values, K is a convolution filter matrix sliding across the
input, a and b denote row and column indices in the input, and Si, j is output value at a location (i, j),
respectively. The pooling layer reduces the dimension of output neurons with pooling operation, or
down-sampling, which reduces several values into one. The most common pooling operations are
max-pooling, average-pooling, and min-pooling, which derive maximum, average, and minimum
value in a group, respectively. The fully connected layer is the same with MLP, taking inputs from the
previous layer, processing them with activation functions, and transmitting them to the next layer.

In this study, to apply a CNN to the multivariate climate input data, we represented the input data
on one axis for the time sequence and the other axis for each variable. For example, if three days of
hourly input data is used, the length of the axis for time is 72, and the other axis is 15 for each variable,
for a 72 × 15 rectangular input channel.

Because one axis of the input channel is composed of variables and the order of these variables is
independent, we designed one axis of all convolution filters except for the last convolution layer with a
length of 1 in order not to cross process each variable. After it passes all the convolution layers except
for the last one, the convolution channel will have a time axis length of 1 and a variable axis length
equal to the number of variables. Then, we designed the convolution filters of the last convolutional
layer to have the same structure as the output channel of the previous layer and for the convolution
filters to give a single value as output, respectively. Subsequently, the output consists of as many values
as the number of filters, and they are connected to the fully connected layers to forecast temperatures.

Figure 2 displays the structure of the CNN model. We determined the remaining model
architectures through trial and error, and these are shown in Tables 5 and 6. T and m in the tables are
the length of time of the input data and the number of input variables, respectively.

4. Data

In this section, we introduce the numeric weather data we used and describe the data preprocessing.
After preprocessing, we generated data in different time units; we collected the data as hourly units,
and we generated additional daily data from the hourly data by taking daily averages for each variable.
In addition, we generated daily minimum and maximum temperatures, and we used the generated
data as both input and target data.

4.1. Data Description

We collected the numeric weather data observed from the Automated Surface Observing System
operated by the Korea Meteorological Administration [37]. The Automated Surface Observing System
(ASOS) is a manned weather measurement system where the Korea Meteorological Administration
maintains and observes weather elements. We selected three ASOS stations in South Korea as shown
in Figure 3, representing metropolitan, Seoul; mountainous, Daegwalleong; and coastal, Seongsan.
There are 96 ASOS stations in operation in South Korea, and the average, maximum, and minimum
distances from one center to its nearest center are 32.6 km, 142.3 km, and 13.7 km, respectively [38,39].
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Note that the proposed deep neural network models perform pointwise temperature forecasting at
the ASOS station where the target variable is collected. We stated whether the input data from the
stations other than that corresponding to the target variable were used or not, for each experiment
in this study, in Section 5.1. We collected 10-year data, from 2009 to 2018, in hourly time units, and
we used 15 input variables: temperature, amount of water precipitation, humidity, vapor pressure,
dew point temperature, atmospheric pressure, sea-level pressure, hours of sunshine, solar radiation
quantity, amount of snowfall, total cloud cover, middle- and low-level cloud cover, ground-surface
temperature, wind speed, and wind direction. The meteorological measurement methods of each
variable are as follows [40]: (1) all temperatures are measured in every minute with an average of the
last five minutes. (2) all pressure variables are measured by several pressure sensors and recorded
every minute and compared with standard references for accurate measurements. (3) amount of water
precipitation is recorded every minute based on observing accumulated amount of amount of water
precipitation using cylinder and applying a post-processing algorithm. (4) humidity is calculated using
the five-minute averaged temperature and dew point temperature. (5) hours of sunshine are observed
by a sunshine sensor and recorded the cumulative time of sunlight in every minute. (6) solar radiation
is observed using a pyranometer and recorded in every minute. (7) amount of snowfall is recorded in
every minute by using the cylinder with heating system. (8) total, middle-level, and low-level cloud
cover rely on human observation and are recorded in deciles in every hour. (9) wind direction and
speed are recorded every minute using the past two-minute average of five-second averaged values.
After collecting the data, in this study, we converted all observed variables to hourly unit by selecting
the records on the hour.

Figure 3. Selected regions in South Korea. Map is from Korea National Geographic Information
Institute [41].

4.2. Data Preprocessing

For the data preprocessing, we first replaced the missing values from the data and then converted
the wind direction and speed to x-component and y-component.
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4.2.1. Missing Values

Missing values in this study can be classified into two cases: Missing values can occur intentionally
during data collection or by accident such as through mistakes or machine defects. The former occurs
regularly, so there are many missing values, but the latter errors are rare. Therefore, we treated the two
types of missing values differently.

First, intentional missing values were left blank on purpose. For instance, Table 7 shows the
number of missing values for solar radiation, and these data points were left blank because the time
units occurred during the evening and at dawn when the sun was not up; as such, we could replace
these missing values with 0. Amount of water precipitation, amount of sunshine, amount of snowfall,
total cloud cover, and middle-and low-level cloud cover were also deliberately missed, and thus we
processed these variables in the same way.

Table 7. Missing values for solar radiation.

Hour Number of Missing Values Hour Number of Missing Values

0 3287 12 5
1 3287 13 6
2 3286 14 4
3 3287 15 7
4 3287 16 9
5 3287 17 9
6 2054 18 3
7 1088 19 1044
8 3 20 1950
9 2 21 3287
10 2 22 3287
11 3 23 3287

Second, there were few missing values for data that are measured 24 h per day, such as temperature
and humidity. In these cases, because there were few missing values, we replaced them with the values
one time step before. For example, if a missing value occurred at 13:00 on 8 August 2009, we replaced
it with the value at 12:00 on 8 August 2009.

4.2.2. Wind Direction and Wind Speed

The wind direction is recorded as 1 degree and 359 degrees, which are in fact very close, but it
is recognized that the difference is 358 degrees when they are expressed numerically. Therefore, we
converted the wind direction with the wind speed into x-component and y-component as in (9) and
(10), as expressed in [42].

Vx = V cos
(
θ·
π

180

)
(9)

Vy = V sin
(
θ·
π

180

)
(10)

where V is wind speed and θ is wind direction.

4.3. Basic Statistics

After data preprocessing, we generated additional daily data using the hourly data. We used the
daily data as target data for temperature forecasting tasks using three types of daily temperatures and
as another input data for comparison. We introduce the hourly and daily data as follows.

4.3.1. Hourly Data

Tables 8–10 show the basic statistics for the hourly unit data for the three selected regions; these
basic statistics show clear differences between the three regions. In particular, the temperature, amount
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of water precipitation, and atmospheric pressure in Seongsan and Daegwallyeong clearly show such
regional characteristics. We note here that the solar radiation quantity in Seongsan was not measured;
therefore, in this experiment, there is one less variable than other regions.

Table 8. Basic statistics for hourly data in metropolitan area (Seoul).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

temperature (◦C) −18.0 39.4 12.9 14.1 3.5 22.6
amount of water precipitation (mm) 0.0 71.0 0.2 0.0 0.0 0.0

humidity (%) 7.0 100.0 59.7 60.0 45.0 76.0
vapor pressure (hPa) 0.5 36.1 11.2 9.0 4.1 17.2

dew point temperature (◦C) −31.1 27.2 4.4 5.5 −5.3 15.1
atmospheric pressure (hPa) 975.1 1028.3 1006.0 1006.1 999.7 1012.2

sea-level pressure (hPa) 984.4 1039.6 1016.2 1016.3 1009.6 1022.8
hours of sunshine (hr) 0.0 1.0 0.3 0.0 0.0 0.6

solar radiation quantity (MJ/m2) 0.0 3.6 0.5 0.0 0.0 0.9
amount of snowfall (cm) 0.0 28.5 0.2 0.0 0.0 0.0
total cloud cover (decile) 0.0 10.0 4.0 3.0 0.0 8.0

middle and low level cloud cover
(decile) 0.0 10.0 2.7 0.0 0.0 6.0

ground-surface temperature (◦C) −15.0 65.1 14.4 14.4 2.1 24.0
wind speed, x-component (m/s) −10.7 7.9 0.3 0.5 0.0 1.1
wind speed, y-component (m/s) −10.7 10.1 −0.8 −0.9 −2.5 1.0

Table 9. Basic statistics for hourly data in mountainous area (Daegwalleong).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

temperature (◦C) −26.7 32.6 7.4 8.3 −1.2 16.6
amount of water precipitation (mm) 0 67.3 0.1 0 0 0

humidity (%) 9 100 72.5 78 58 91
vapor pressure (hPa) 0.4 29.7 9.4 7.4 3.7 14.6

dew point temperature (◦C) −33.7 23.9 2.1 2.7 −6.8 12.6
atmospheric pressure (hPa) 895.9 942 926.1 926.3 922.4 930.1

sea-level pressure (hPa) 981.6 1044.1 1016.2 1016.3 1009.7 1022.7
amount of sunlight (hr) 0 1 0.3 0 0 0.7

solar radiation quantity (MJ/m2) 0 3.8 0.6 0 0 0.9
amount of snow cover (cm) 0 110.1 2.4 0 0 0

total cloud cover (decile) 0 10 3.1 0 0 7
middle and low level cloud cover

(decile) 0 10 2.2 0 0 5

ground-surface temperature (◦C) −21.5 51.6 9.5 8.5 −0.2 18.7
wind speed, horizontal component

(m/s) −9.7 14.5 0.1 0 0 0.5

wind speed, vertical component (m/s) −19.4 13.8 −1.8 −1 −4.6 0.8

Table 10. Basic statistics for hourly data in coastal area (Seongsan).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

temperature (◦C) −6.4 34.1 15.7 16.5 8.8 22.4
amount of water precipitation (mm) 0 74 0.2 0 0 0

humidity (%) 7 100 73.7 75 63 87
vapor pressure (hPa) 1.2 41.9 15.1 13.5 7.1 21.7

dew point temperature (◦C) −20.6 29.8 10.6 11.4 2.1 18.8
atmospheric pressure (hPa) 962.5 1035.1 1013.8 1013.8 1008 1019.7

sea-level pressure (hPa) 964.4 1037.5 1015.9 1015.9 1010 1022
hours of sunshine (hr) 0 1 0.2 0 0 0.4

solar radiation quantity (MJ/m2) - - - - - -
amount of snowfall (cm) 0 23.5 0.1 0 0 0
total cloud cover (decile) 0 10 3.2 0 0 7
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Table 10. Cont.

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

middle and low level cloud cover
(decile) 0 10 2.2 0 0 5

ground-surface temperature (◦C) −4.2 64.5 16.9 17 8.4 24.1
wind speed, x-component (m/s) −19.9 16.6 0.6 0.9 −0.6 2.1
wind speed, y-component (m/s) −16.6 16.4 −0.7 −0.8 −2.2 0.7

4.3.2. Daily Data

We constructed the daily data from the preprocessed hourly data by averaging the daily values
for the variables. In addition, we generated daily minimum and maximum temperatures. We used the
daily average, minimum, and maximum temperatures as target variables and as input data along with
other variables. Tables 11–13 show the basic statistics for the daily data.

Table 11. Basic statistics for daily data in metropolitan area (Seoul).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

average temperature (◦C) −14.7 33.7 12.9 14.4 3.5 22.7
minimum temperature (◦C) −18 30.4 9.1 10.2 −0.2 18.9
maximum temperature (◦C) −11.2 39.4 17.3 19.4 7.8 27.1

amount of water precipitation (mm) 0 12.5 0.2 0 0 0
humidity (%) 18.3 99.4 59.7 59.7 48.7 70.2

vapor pressure (hPa) 0.6 32.1 11.2 9.1 4.2 17.1
dew point temperature (◦C) −27.8 25.2 4.4 5.4 −5.4 15
atmospheric pressure (hPa) 980.4 1026.5 1006 1006.2 999.8 1012.2

sea-level pressure (hPa) 990.2 1037.9 1016.2 1016.5 1009.6 1022.8
hours of sunshine (hr) 0 0.6 0.3 0.3 0.1 0.4

solar radiation quantity (MJ/m2) 0 1.2 0.5 0.5 0.3 0.7
amount of snowfall (cm) 0 23.5 0.2 0 0 0
total cloud cover (decile) 0 10 4 3.8 1.5 6.1

middle and low level cloud cover
(decile) 0 9.3 2.7 2.3 0.5 4.5

ground-surface temperature (◦C) −9.2 39.5 14.4 15.4 3.4 25.1
wind speed, x-component (m/s) −4.6 4.7 0.3 0.4 −0.1 0.8
wind speed, y-component (m/s) −5.7 6.7 −0.8 −1 −2 0.3

Table 12. Basic statistics for daily data in mountainous area (Daegwalleong).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

average temperature (◦C) −19.1 26 7.4 8.6 −1.3 16.3
minimum temperature (◦C) −26.7 23.3 2.7 3 −5.7 12.1
maximum temperature (◦C) −15.3 32.6 12.2 13.8 2.9 21

amount of water precipitation (mm) 0 8.5 0.1 0 0 0
humidity (%) 20 100 72.5 75.5 60.6 85.7

vapor pressure (hPa) 0.5 26.1 9.4 7.6 3.7 14.5
dew point temperature (◦C) −29.7 21.8 2.1 2.8 −7.1 12.4
atmospheric pressure (hPa) 900 940.6 926.1 926.2 922.5 930

sea-level pressure (hPa) 985.4 1038.1 1016.2 1016.5 1009.8 1022.4
hours of sunshine (hr) 0 0.6 0.3 0.3 0.1 0.4

solar radiation quantity (MJ/m2) 0 1.3 0.6 0.5 0.4 0.8
amount of snowfall (cm) 0 83.4 2.4 0 0 0
total cloud cover (decile) 0 10 3.1 2.2 0 5.8

middle and low level cloud cover
(decile) 0 9.8 2.2 0.9 0 4.3

ground-surface temperature (◦C) −14.6 32.2 9.5 9.6 −0.2 19.2
wind speed, x-component (m/s) −4.5 5 0.1 0.1 −0.1 0.4
wind speed, y-component (m/s) −14.9 7.4 −1.8 −1.6 −4.1 1
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Table 13. Basic statistics for daily data in coastal area (Seongsan).

Variable Minimum Maximum Average Median 1st
Quartile

3rd
Quartile

average temperature (◦C) −4.7 30.3 15.7 16.4 8.8 22.2
minimum temperature (◦C) −6.4 28.3 12.7 12.9 5.2 19.8
maximum temperature (◦C) −1.7 34.1 18.8 19.8 12.4 24.9

amount of water precipitation (mm) 0 9.6 0.2 0 0 0.1
humidity (%) 17.8 99 73.7 73.9 64.3 84.5

vapor pressure (hPa) 3 37.7 15.1 13.3 7.3 21.7
dew point temperature (◦C) −9.5 27.9 10.6 11 2.2 18.7
atmospheric pressure (hPa) 988.2 1032.7 1013.8 1013.8 1008.1 1019.7

sea-level pressure (hPa) 990.5 1035.2 1015.9 1016 1010.1 1021.9
hours of sunshine (hr) 0 0.6 0.2 0.2 0.1 0.4

solar radiation quantity (MJ/m2) - - - - - -
amount of snowfall (cm) 0 17.9 0.1 0 0 0
total cloud cover (decile) 0 10 3.2 2.8 0 5.9

middle and low level cloud cover
(decile) 0 9.3 2.2 1.7 0 4

ground-surface temperature (◦C) −1.6 39.5 16.9 17.6 9 24
wind speed, x-component (m/s) −9.5 12.5 0.6 1 −0.6 1.9
wind speed, y-component (m/s) −7.2 9.3 −0.7 −0.7 −2 0.5

5. Experiments

With this research, we focused on predicting the next day’s average, minimum, and maximum
temperatures. Many factors may affect temperature forecasting performance. Therefore, we conducted
extensive experiments with various factors such as neural network structure, time unit of input data,
length of input data, and region for comparison study in Table 14. In this section, we introduce the
experimental settings and describe the comparison criteria. Next, we show the experimental results
and interpret them in Tables 15–17 and Figures 4–6. In the tables, the best results are boldfaced.

Table 14. Criteria of comparison.

Model Structure Time Unit of Input Data Length of Input Data Region

MLP Daily 1 day Metropolitan
LSTM Hourly 3 days Mountainous
CNN 5 days Coastal

10 days
30 days
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Table 15. Forecasting results, represented using the mean absolute error (MAE), for metropolitan area (Seoul).

Daily Input

Model MLP LSTM CNN

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

Input
length

1 day 1.489 (0.025) 1.490 (0.026) 2.086 (0.024) 1.560 (0.106) 1.648 (0.214) 2.177 (0.052) - - -
3 days 1.473 (0.021) 1.518 (0.025) 2.132 (0.024) 1.464 (0.021) 1.518 (0.047) 2.155 (0.139) 1.426 (0.018) 1.470 (0.027) 2.089 (0.017)
5 days 1.524 (0.032) 1.581 (0.026) 2.200 (0.034) 1.474 (0.051) 1.578 (0.179) 2.124 (0.068) 1.423 (0.027) 1.458 (0.019) 2.091 (0.020)

10 days 1.562 (0.043) 1.614 (0.037) 2.247 (0.045) 1.485 (0.117) 1.496 (0.054) 2.147 (0.046) 1.452 (0.019) 1.474 (0.029) 2.146 (0.032)
30 days 1.719 (0.031) 1.766 (0.036) 2.370 (0.037) 1.547 (0.358) 1.505 (0.075) 2.185 (0.089) 1.573 (0.214) 1.599 (0.234) 2.336 (0.298)

Hourly input

Model MLP LSTM CNN

Temperature average minimum maximum average minimum maximum average minimum maximum

Input
length

1 day 1.344 (0.027) 1.353 (0.024) 2.065 (0.037) 1.399 (0.394) 1.299 (0.087) 2.055 (0.130) 1.295 (0.029) 1.287 (0.035) 2.001 (0.022)
3 days 1.472 (0.032) 1.482 (0.023) 2.165 (0.024) 1.433 (0.396) 1.341 (0.176) 2.205 (0.568) 1.308 (0.029) 1.246 (0.041) 2.053 (0.039)
5 days 1.505 (0.028) 1.554 (0.029) 2.212 (0.039) 1.415 (0.550) 1.410 (0.377) 2.199 (0.404) 1.296 (0.023) 1.254 (0.028) 2.092 (0.037)

10 days 1.555 (0.022) 1.599 (0.024) 2.263 (0.021) 1.380 (0.181) 1.569 (0.699) 2.115 (0.055) 1.324 (0.048) 1.280 (0.037) 2.082 (0.035)
30 days 1.826 (0.023) 1.858 (0.041) 2.476 (0.026) 1.541 (0.477) 1.510 (0.316) 2.320 (0.525) 1.377 (0.039) 1.362 (0.064) 2.163 (0.057)

Table 16. Forecasting results, represented using the MAE, for mountainous area (Daegwalleong).

Daily Input

Model MLP LSTM CNN

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

Input
length

1 day 1.937 (0.026) 2.384 (0.031) 2.669 (0.050) 2.172 (0.416) 2.489 (0.112) 2.963 (0.157) - - -
3 days 1.859 (0.038) 2.353 (0.037) 2.670 (0.057) 2.152 (0.437) 2.430 (0.078) 3.004 (0.349) 1.804 (0.042) 2.292 (0.026) 2.640 (0.124)
5 days 1.962 (0.029) 2.440 (0.043) 2.806 (0.050) 2.129 (0.429) 2.486 (0.174) 2.912 (0.212) 1.807 (0.054) 2.300 (0.033) 2.603 (0.056)

10 days 2.206 (0.051) 2.508 (0.046) 2.933 (0.051) 2.031 (0.299) 2.412 (0.050) 2.919 (0.310) 1.861 (0.034) 2.364 (0.030) 2.627 (0.057)
30 days 2.376 (0.054) 2.721 (0.058) 2.996 (0.034) 2.053 (0.173) 2.384 (0.101) 2.854 (0.157) 2.366 (0.510) 2.618 (0.500) 3.432 (0.384)
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Table 16. Cont.

Hourly input

Model MLP LSTM CNN

Temperature average minimum maximum average minimum maximum average minimum maximum

Input
length

1 day 1.541 (0.026) 1.937 (0.054) 2.418 (0.032) 1.630 (0.185) 1.960 (0.587) 2.722 (0.256) 1.481 (0.019) 1.807 (0.129) 2.367 (0.051)
3 days 1.644 (0.027) 2.026 (0.030) 2.539 (0.046) 1.729 (0.506) 1.971 (0.590) 2.899 (0.660) 1.518 (0.046) 1.700 (0.049) 2.461 (0.073)
5 days 1.758 (0.033) 2.118 (0.041) 2.738 (0.086) 1.748 (0.549) 1.957 (0.194) 2.715 (0.068) 1.551 (0.030) 1.771 (0.072) 2.487 (0.086)

10 days 2.058 (0.095) 2.281 (0.054) 3.072 (0.095) 1.717 (0.489) 2.075 (0.494) 2.944 (0.911) 1.597 (0.031) 1.829 (0.073) 2.593 (0.072)
30 days 2.524 (0.070) 2.716 (0.055) 3.152 (0.044) 2.067 (0.925) 2.539 (0.646) 2.986 (0.534) 1.686 (0.080) 1.961 (0.079) 2.714 (0.163)

Table 17. Forecasting results, represented using the MAE, for coastal area (Seongsan).

Daily Input

Model MLP LSTM CNN

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

Input
length

1 day 1.412 (0.031) 1.530 (0.015) 2.052 (0.062) 1.567 (0.117) 1.616 (0.148) 2.453 (0.405) - - -
3 days 1.417 (0.021) 1.504 (0.022) 1.972 (0.027) 1.494 (0.091) 1.536 (0.111) 2.225 (0.334) 1.368 (0.018) 1.452 (0.019) 1.953 (0.041)
5 days 1.438 (0.031) 1.497 (0.017) 1.967 (0.030) 1.451 (0.071) 1.493 (0.054) 2.171 (0.155) 1.350 (0.023) 1.426 (0.021) 1.940 (0.032)

10 days 1.484 (0.050) 1.588 (0.052) 1.974 (0.040) 1.598 (0.482) 1.564 (0.198) 2.179 (0.199) 1.372 (0.023) 1.462 (0.020) 1.921 (0.025)
30 days 1.828 (0.072) 1.904 (0.060) 2.268 (0.070) 1.570 (0.240) 1.581 (0.235) 2.196 (0.247) 1.453 (0.163) 1.699 (0.335) 1.940 (0.040)

Hourly input

Model MLP LSTM CNN

Temperature average minimum maximum average minimum maximum average minimum maximum

Input
length

1 day 1.269 (0.022) 1.365 (0.028) 1.874 (0.031) 1.366 (0.305) 1.273 (0.088) 2.131 (0.140) 1.224 (0.026) 1.287 (0.028) 1.926 (0.082)
3 days 1.286 (0.012) 1.457 (0.020) 1.862 (0.014) 1.566 (0.871) 1.433 (0.556) 2.199 (0.356) 1.210 (0.025) 1.238 (0.035) 1.900 (0.080)
5 days 1.301 (0.020) 1.409 (0.021) 1.910 (0.017) 1.446 (0.833) 1.606 (0.969) 2.134 (0.239) 1.230 (0.036) 1.234 (0.033) 1.945 (0.235)

10 days 1.321 (0.018) 1.429 (0.022) 1.922 (0.022) 1.495 (0.401) 1.496 (0.541) 2.304 (0.384) 1.231 (0.031) 1.251 (0.042) 1.900 (0.086)
30 days 1.768 (0.120) 1.906 (0.098) 2.207 (0.053) 1.666 (0.796) 1.989 (1.410) 0.420 (1.265) 1.337 (0.139) 1.366 (0.093) 1.930 (0.133)
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Figure 4. Box plots of the best performance among the different input lengths in the metropolitan
area, Seoul.

Figure 5. Box plots of the best performance among the different input lengths in the mountainous
area, Daegwalleong.

Figure 6. Box plots of the best performance among the different input lengths in the coastal
area, Seongsan.

5.1. Experimental Setup

Several factors may affect the accuracy of temperature forecasting with neural networks, so we
employed neural a network with the following four parts:

• Model structure: We selected three neural network models to compare models their suitability
for the temperature forecasting. The models we tested were MLP, LSTM, and CNN.

• Time unit of input data: We selected two different units of input data to predict daily temperatures
for comparison: daily, which was the same as the target data, and hourly, which was more detailed
than the target.

• Length of input data: We selected five separate lengths of input data to determine the lengths of
historical data needed to forecast the next-day temperature. The data lengths were 1 day and 3, 5,
10, and 30 days.

• Region: We selected three regions in South Korea to understand the impacts of regional
characteristics on temperature forecasting: Seoul as a metropolitan area, Daegwalleong as
a mountainous area, and Seongsan as a coastal area.
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We summarize the factors and levels for each vector in Table 14. Note that each model performs
the pointwise forecasts for the location of the ASOS station in each region, and the input variables
collected only from the station that corresponds to the target variable were used for these tasks.

The structures of actual input and target data used in the experiments are as follows. First, both
daily and hourly input data are constructed by employing the data described in Sections 4.3.1 and 4.3.2,
respectively. An hourly data contains 15 weather variables for every hour in the length of input data
and a daily data contains these variables for every day. For MLP, an input is flattened to a vector with
the length of the number of weather variables, 15, multiplied by the time steps, the length of input for
daily data and 24 times of the length of input for hourly data. LSTM receives a sequence with the length
of the time steps and each element of the sequence is a vector containing the weather variables. Finally,
for CNNs, an input data is a two-dimensional matrix whose dimensions correspond to the number of
weather variables and the number of time steps. For instance, for the temperature forecasting using
three days of hourly data, an input instance contains 1080 numerical weather values with 15 weather
variables for 72 time steps. The input for MLP model is a 1080-dimensional vector, that for LSTM is
a sequence of 15-dimensional vectors whose length is 72, and that for CNN is a rectangular matrix
whose size is 72 by 15. Second, the target variables are the daily average, minimum, and maximum
temperature after one day of the inputs.

The details of the experimental setup are as follows. We divided the entire ten years of data into
batches of six years of data, two years of data, and another two years or data in sequential order to
prevent information leakage [3,36,43]. We then used these three batches as training, validation, and test
data, respectively. Since we employ information of several previous days from the target date, target
values in the test data set may be used as inputs in training or validation data sets if we randomly split
training, validation, and test sets. After splitting data sets, we randomize the order of instances in
the training set. To optimize our models, we used an adaptive moment estimation optimizer with a
learning rate of 0.00005 and set the mini-batch size to 4. To prevent over-fitting, we performed early
stopping using the validation data set. All of the activation functions are in rectified linear units. To
measure the accuracy of the models, we used mean absolute error (MAE) because it intuitively shows
the differences between the actual and predicted temperatures. The mathematical loss function is
shown in (11):

MAE =
1
n

∑n

i=1

∣∣∣yi − ŷi
∣∣∣ (11)

where n is the number of instances, yi is the target value of i-th instance, and ŷi is its predicted value.
We conducted additional experiments by combining the proposed method with recent approaches

including multimodal learning, multitask learning, and input variables from other regions. First, we
employed satellite images as additional inputs to the numerical meteorological data of the target
region for forecasting temperature to apply multimodal learning to the proposed method. In this
experiment, we added convolution layers that processes satellite images, and then concatenated it with
the output of the convolution layer that processed the numerical weather data to perform forecasting
temperature. The CNN model for multimodal learning has two sets of convolutional layers for two
types of inputs, numerical weather data, and satellite images. The convolutional layers for satellite
images consist of seven layers with 2 × 2 convolution filters with stride 2 and those for the numerical
weather data are the same with the convolutional layers used for ordinary forecasting. After both
types of inputs are processed into intermediate output values by the corresponding convolutional
layers, these intermediate outputs are flattened and concatenated. Then, this concatenated vector
is transmitted to the fully connected layers, whose structure is the same with the CNN models in
Tables 4–6, to predict the target temperature. The satellite image data was taken from 12-h period
observations over three years from 2015 to 2017 [44]. Therefore, the numerical weather data was also
used for the corresponding period. In addition, the number of satellite images used for prediction
coincides with the length of the numerical inputs. For example, six consecutive satellite images are
employed for forecasting temperatures for the models that use three-day numerical inputs. We divided
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the entire three years of data into batches of two years of data, six months of data, and another six
months of data in sequential order [3,36,43]. We then used these three batches as training, validation,
and test data, respectively.

Second, we studied if global variables such as input variables from other regions can improve
the temperature forecasting performance. We used the numerical meteorological variables collected
from the stations other than the target region for these experiments. For instance, when forecasting the
temperatures in Seoul, the input variables of Daegwallyeong and Seongsan are input together with the
data of Seoul. For this experiment, we used three convolution layers of the same structure of the CNN
model and passed the convolution by receiving input data from Seoul, Daegwallyeong and Seongsan
areas, respectively. After that, we concatenate it into a fully connected layer with the same structure as
the above experiment and then forecast the temperature in a specific area.

Third, temperatures in each region may be closely related to those in each other. Therefore,
we verified the effect of shared information between the temperature forecasting tasks using deep
multitask learning that learns related tasks simultaneously. We used input variables from all three
regions as in the case for global variables. Using the input variables, four multitask learning models
were constructed as follows: (1) a model forecasting average temperatures in three regions, (2) a model
forecasting minimum temperatures in three regions, (3) a model forecasting maximum temperatures
in three regions, (4) a model forecasting the average, minimum, and maximum temperatures in all
three regions.

5.2. Experimental Results

To check the significance of the forecasting performance, we performed the experiments 25 times
for each setting with random initialization of model weights. Tables 15–17 show the mean MAEs with
standard deviations for each setting and each of the three regions for the average, minimum, and
maximum temperature forecasts. For instance, when we predicted the minimum temperature in Seoul
25 times using three-day time unit data, the mean and standard deviation for the MAE were 1.246
and 0.041, respectively. To aid in understanding, Figures 4–6 show box plots of the best performance
among the different input time lengths for each setting with the boldfaced values in Tables 15–17.

We explain the experimental results for each factor as follows. First, for model structures, the CNN
performed best with both daily and hourly input data; in the metropolitan area using hourly input
data, the CNN showed means of MAE 1.295, 1.246, and 2.001 for average, minimum, and maximum
temperature, respectively. MLP showed averages MAEs of 1.344, 1.353, and 2.065, and the LSTM
averages of MAE were 1.380, 1.299, and 2.055, both respectively. The standard deviations were 0.029,
0.041, and 0.022 for the CNN; 0.027, 0.024, and 0.037 for the MLP, and 0.181, 0.087, and 0.130 for the
LSTM; the LSTM showed larger standard deviations than those with the CNN and MLP. As Figure 4
shows, the first quartiles of LSTM using hourly input data are lower than those of the MLP using the
same data. However, the gap between the first and third LSTM quartiles was large, and there were a
few outliers. In contrast, the CNN showed robust performance in both means and standard deviations.

In terms of time units of the input data, the hourly data showed better performance than did
the daily data. In particular, the difference was prominent when forecasting average and minimum
temperatures. In Figures 4–6, the box plots show that the first quartiles of results using daily input
data are higher than the third quartiles of results using hourly data.

For time length of input data, based on the results boldfaced in Tables 15–17, the best results were
22 times for 1 day, 11 times for 3 days, 14 times for 5 days, 5 times for 10 days, and 2 times for 30
days. We obtained most of the best results when the length of the input data ranged from 1 to 5 days.
However, it was interesting to note that the LSTM model showed the best results when we used longer
input data, and the MLP showed the best results with short data lengths. With the CNN, hourly input
data, and forecasting the coastal area, longer input data showed the best performance. In contrast,
shorter input data were best for forecasting in the mountainous area. Therefore, the time length of the
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input data can be interpreted to be affected not only by the artificial neural network model but also by
the region.

Overall, the models performed best in Seongsan, the coastal area, and the worst in Daegwallyeong,
the mountainous area. The forecasting performance best to worst was for the coastal area, the
metropolitan area, and then the mountainous area. With the CNN with hourly input data, the
best average MAEs for the coastal area were 1.210, 1.234, and 1.900, and the best averages for the
mountainous area were 1.481, 1.700, and 2.367. Therefore, the differences in forecasting accuracy across
regions are apparent in each region.

For the three temperatures, we forecasted, predicting the maximum temperature was obviously
the most difficult task. In Tables 15–17, all maximum temperatures under the same setting give
worse results than those for the average and minimum temperatures. We found a clear pattern in
the experimental results that predicting the maximum temperatures in the mountainous area was
difficult, and we interpreted the causes of these results as follows. Table 18 shows the daily differences
in temperatures between yesterday and today for 10 years, called differencing. The differences in daily
temperature increase the forecasting difficulty because there were high daily temperature differences
in the maximum temperatures in the mountainous region.

Table 18. Average of daily temperature absolute differences.

Temperature Metropolitan, Seoul Mountainous, Daegwalleong Coastal, Seongsan

average 1.749 2.075 1.467
minimum 1.972 2.854 1.734
maximum 2.457 2.764 1.957

In this regard, CNN using hourly input data, which showed the best results, reported interesting
results as follows. In the coastal region, unlike the other regions, the CNN with hourly input data
performed best with longer input data. We interpret this to reflect that a CNN extracts valid information
from earlier times for forecasting temperatures in areas with relatively lower daily differences, as shown
in Table 18. In contrast, in areas with larger differences, the CNN appeared to employ relevant, more
recent input data. Therefore, it is necessary to set appropriate time lengths for the input data according
to the daily differences in a region to improve forecasting performance.

In addition, we performed a comparative experiment on the preprocessing methods of missing
values by accident. In the case of the existing experiments, as mentioned in 4.2.1, missing values by
accident were replaced with data from the previous point, which is one of the widely used preprocessing
methods for time series data. Another typical method is linear interpolation, which interpolates missing
values using data before and after the point in time. We performed forecasting temperatures using the
data preprocessed in each method to compare the two preprocessing methods. The experiment was
conducted with CNN using three days of hourly data that showed the best overall performance. After
25 experiments were repeated for each forecasting temperature task, we performed one-tailed t-tests
and the results are shown in Table 19. The experimental results are the average MAE and standard
deviation of each method and the p-value of the one-tailed t-tests. Since the smallest p-value was 0.176,
the two methods did not show statistically significant difference. We interpreted this result as follows.
The 10-year hourly data consists of a total of 87,648 rows and each variable have only less than 100
missing values on average. Also, the linear interpolation may not be usable in actual cases because it
uses future values to impute missing values.
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Table 19. Forecasting results, represented using the MAE for two imputation methods.

Metropolitan, Seoul Mountainous, Daegwalleong Coastal, Seongsan

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

previous
point

1.308
(0.029)

1.246
(0.041)

2.053
(0.039)

1.518
(0.046)

1.700
(0.049)

2.461
(0.073)

1.210
(0.025)

1.238
(0.035)

1.900
(0.080)

linear
interpolation

1.306
(0.034)

1.244
(0.021)

2.064
(0.042)

1.523
(0.033)

1.711
(0.055)

2.501
(0.237)

1.215
(0.040)

1.240
(0.017)

1.905
(0.073)

p-value 0.431 0.391 0.176 0.310 0.240 0.214 0.285 0.428 0.412

The followings are the experimental results of combining the proposed method with recent
approaches. All experiments on multimodal learning, global variables, and multitask learning
were conducted with CNN-based models using three-day hourly inputs. First, Table 20 show the
average MAEs with standard deviations for multimodal learning. The best results are boldfaced.
The multimodal learning using satellite image with numerical weather data did not improve overall
performance. Excluding the average temperature in the Seongsan region, the average MAEs were
higher than the model using the numerical weather data. In other words, providing additional
satellite image was not effective to forecast temperature. We interpreted the causes of the result as
follows. First, the time interval between satellite images is so large that it could not improve the
temperature forecasting performances. Utilizing higher-frequent satellite images may be helpful in
this case. Second, the satellite images may not be suitable for other weather forecasting tasks such as
rainfall prediction and solar radiation which are directly affected by the cloud situation, rather than the
temperature forecasting.

Table 20. Forecasting results, represented using the MAE for multimodal learning.

Metropolitan, Seoul Mountainous, Daegwalleong Coastal, Seongsan

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

numerical
data only

1.558
(0.072)

1.428
(0.028)

2.281
(0.043)

1.284
(0.044)

1.654
(0.080)

1.971
(0.036)

1.309
(0.081)

1.146
(0.109)

1.629
(0.047)

multimodal
learning with

satellite
images

1.570
(0.106)

1.457
(0.114)

2.294
(0.107)

1.427
(0.159)

1.794
(0.201)

2.150
(0.150)

1.307
(0.127)

1.367
(0.113)

1.726
(0.198)

Second, Table 21 includes the results of temperature forecasting with input variables from
other regions in the average MAEs with standard deviations. The experimental results with the
global variables, the variables from all three regions, showed better results than those with the local
variables, the input variables only from the target region, for the average and maximum temperature
of Daegwallyeong area and the average, minimum, and maximum temperature of Seongsan area.
Especially, the average MAE of the maximum temperature in Daegwallyeong area was improved from
2.461 to 2.370, and the average MAEs of average and maximum temperature in Seongsan area were
improved from 1.210, 1.900 to 1.110, 1.781, respectively. It can be considered that the CNN model
extracted useful information from input data of other regions when forecasting a specific region. It is
noteworthy that the forecasting performance is improved even for the maximum temperatures, which
has high forecasting difficulty.

Finally, the average MAEs with standard deviations of multitask learning are also shown in
Table 21 where the best results are boldfaced. The multitask model for forecasting the average
temperatures in three regions simultaneously improved the forecasting performance of Seongsan. The
multitask model for maximum temperatures also improved forecasting performance in Seongsan.
Finally, the multitask model, which forecasted nine temperatures simultaneously, performed better at
maximum temperature in Daegwalleong and minimum and maximum temperatures in the Seongsan.
The multitask learning showed better performance for tasks equal to single task with global conditions
compared to single task with local conditions. Therefore, the improvement of average temperature
performance in Daegwallyeong was mainly due to the effect of global conditions. However, the
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maximum temperature in Daegwallyeong and all temperatures in Seongsan can be interpreted as the
effect of shared information between related tasks as well as the effects of global condition.

Table 21. Forecasting results of, represented using the MAE for global variables and multitask learning.

Metropolitan, Seoul Mountainous, Daegwalleong Coastal, Seongsan

Temperature Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

single task
learning with
local variables

1.308
(0.029)

1.246
(0.041)

2.053
(0.039)

1.518
(0.046)

1.700
(0.049)

2.461
(0.073)

1.210
(0.025)

1.238
(0.035)

1.900
(0.080)

single task
learning with

global variables

1.356
(0.144)

1.310
(0.137)

2.122
(0.116)

1.491
(0.139)

1.816
(0.227)

2.370
(0.141)

1.110
(0.093)

1.210
(0.086)

1.781
(0.244)

multitask
learning for

average
temperatures

1.327
(0.043) - - 1.492

(0.114) - - 1.109
(0.074) - -

multitask
learning for
minimum

temperatures

- 1.328
(0.082) - - 1.734

(0.087) - - 1.251
(0.155) -

multitask
learning for
maximum

temperatures

- - 2.178
(0.115) - - 2.423

(0.098) - - 1.743
(0.096)

multitask
learning for all
temperatures

1.399
(0.102)

1.375
(0.123)

2.211
(0.094)

1.498
(0.115)

1.861
(0.140)

2.331
(0.091)

1.131
(0.066)

1.199
(0.112)

1.671
(0.060)

To sum up the results, hourly input data are more effective for daily temperature forecasting than
daily input data. Therefore, we conclude that when forecasting daily temperatures, detailed hourly
data provide better information than daily data. Here, a CNN with hourly input data outperformed an
MLP and LSTM. The length of time of the input data depended on both the model and the region,
and the regions showed significant differences in forecasting difficulty. In addition, it was effective
to perform forecasting temperature with input data of different regions together and learn related
forecasting tasks simultaneously using multitask learning in some cases.

6. Conclusions

We performed daily average, minimum, and maximum temperature forecasting with daily and
hourly numerical weather data using neural network models. The hourly input, a more detailed time
unit than the target data, had never been studied before. In order to process the detailed and abundant
input data, we approached it from the perspective of two-dimensional signal processing using diverse
neural network models, MLP, LSTM, and CNN. In particular, a CNN had never been used to forecast
temperatures using numeric weather data. In addition, we conducted a comparison study to analyze
temperature forecasting tasks affected by various factors. We found that the CNN showed better
forecasting performance than did the MLP and LSTM. For time units of the input data, hourly input
data worked better than daily input data in most cases. The time length of the input data depended on
both the model and the region. To sum up the experimental results, depending on the target region,
the CNN model using hourly input data of appropriate time length showed the best performance. In
addition, using data from different regions together and multitask learning were effective in improving
temperature forecasting performance in some cases.

Future researchers can incorporate loss balancing algorithms for multitask learning to improve the
performance of challenging tasks. To improve the performance of difficult tasks including maximum
temperature, researchers could consider dynamic task prioritization [45] and weighted loss function [46].
In addition, the proposed procedure in this study, including the usage of high-frequent inputs and
variables from other regions, and employment of multitask learning algorithms, can be applied to
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forecast other weather variables including amount of water precipitation, solar radiation quantity,
wind speed, and so forth.
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