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Abstract: In recent years, benefiting from deep convolutional neural networks (DCNNs), face
parsing has developed rapidly. However, it still has the following problems: (1) Existing
state-of-the-art frameworks usually do not satisfy real-time while pursuing performance; (2) similar
appearances cause incorrect pixel label assignments, especially in the boundary; (3) to promote
multi-scale prediction, deep features and shallow features are used for fusion without considering
the semantic gap between them. To overcome these drawbacks, we propose an effective and
efficient hierarchical aggregation network called EHANet for fast and accurate face parsing. More
specifically, we first propose a stage contextual attention mechanism (SCAM), which uses higher-level
contextual information to re-encode the channel according to its importance. Secondly, a semantic
gap compensation block (SGCB) is presented to ensure the effective aggregation of hierarchical
information. Thirdly, the advantages of weighted boundary-aware loss effectively make up for the
ambiguity of boundary semantics. Without any bells and whistles, combined with a lightweight
backbone, we achieve outstanding results on both CelebAMask-HQ (78.19% mIoU) and Helen
datasets (90.7% F1-score). Furthermore, our model can achieve 55 FPS on a single GTX 1080Ti card
with 640 × 640 input and further reach over 300 FPS with a resolution of 256 × 256, which is suitable
for real-world applications.

Keywords: semantic segmentation; face parsing; semantic gap compensation block; stage contextual
attention mechanism; weighted boundary-aware loss

1. Introduction

Face parsing, also known as face fine-grained segmentation, has attracted much attention due to
its remarkable behavior, such as face beauty [1], face image synthesis [2], and expression transfer [3].
Face parsing aims to assign different semantic labels to each pixel of a facial image (e.g., nose, eye,
hair, brow), as shown in Figure 1. In the past few decades, much effort has been devoted to building
robust face-parsing models under the controlled scenarios. Although these methods have achieved
promising results, they are usually severely degraded under uncontrolled scenarios, which limits their
scope of application.

Recently, the performance of segmentation has been greatly improved by the involvement of deep
convolutional neural networks (DCNNs), especially the well-known FCN-based [4–7] frameworks.
However, most of the classical semantic segmentation structures rely on cumbersome backbones
(e.g., VGG16 [4] occupies approximately 500 MB of memory, and it takes about 100 ms to perform a
forward inference even on a powerful GPU), which is not conducive to the deployment of low-end
embedded devices. For large-scale model deployments, low-latency and high-efficiency are often
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contradictory. How to balance the relationship between them is a problem to be considered in the task
of facial parsing.

(a)Input RGB image (b)Rendered image

Figure 1. An example of face parsing.

Compared with general semantic segmentation tasks, there are three main challenges in face
parsing. Firstly, since the facial area of a person is symmetrical, it is challenging to distinguish the left
and right eyes because they have similar representations and textures. Secondly, boundary ambiguity
(e.g., the region between hair and dark hats) often interferes with the visual system of annotators,
which also confuses the learned model. Thirdly, in general, features from shallow layers encode
more detailed information, while features from deep layers encode more semantic information to
distinguish between different categories. To enhance the model’s feature representation ability and
extract multi-scale features, concatenation or add is usually used for aggregation between different
feature blocks. However, the semantic gap between these blocks at different stages is rarely considered,
which can have a negative effect on performance.

To address the aforementioned problems, including reducing the delay of the network,
the categories being difficult to distinguish, the boundaries being ambiguous, and the semantic
gaps between different layers, we propose a compact and effective hierarchical aggregation network
named EHANet which can compensate the magnitude of the receptive field between layers at different
stages and effectively reduce the computational complexity of the model. More specifically, we first
present a so-called stage contextual attention mechanism (SCAM) that weights feature map channels
at different stages to model the correlation between feature map channels. Secondly, we introduce
a semantic gap compensation block (SGCB) to compensate for the semantic gap between different
feature blocks. Furthermore, in view of the ambiguity of the boundary, we propose a weighted
boundary-aware loss, which effectively improves the boundary semantic discrimination ability. Finally,
through the use of an FPN-like [8] structure and a lightweight ResNet18 [9] backbone, a network
integrating efficiency and performance is obtained.

The proposed method is evaluated on two public datasets, CelebAMask-HQ [10] and Helen [11].
Extensive experimental results show that the performance of our proposed network is comparable to
the state-of-the-art models, while creating a lesser resource overhead. Specifically, we obtain 78.19%
mIoU (mean intersection of union) with 71 FPS and 76.69% mIoU with 89 FPS on the CelebAMask-HQ
test set while achieving a 90.7% F1-score on the Helen test set on a single 1080Ti GPU.

In summary, our contributions are four-fold as follows:

• An end-to-end powerful and efficient network is proposed, called EHANet, which can make up
for the semantic gap between different hierarchies and improve the overall discriminative ability
of the model.

• We propose a stage contextual attention mechanism, which re-encodes feature map channels to
effectively utilize the correlations between different feature map channels.
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• A weighted boundary-aware supervision is designed to enhance the network’s ability to
distinguish between different categories in the boundary area.

• We verify the effectiveness of the method on two benchmark datasets, and the results prove the
superiority of our algorithm.

2. Related Work

Face Parsing. Early works mainly focused on exemplars and graphical models. Kae et al. [12]
combined the conditional random field and the Boltzmann machine to model both local and global
structure in face segmentation. Liu et al. [13] integrated the CNN into graphical models for structured
prediction problems. Smith et al. [11] proposed an exemplar-based segmentation algorithm that
exploits landmarks and SIFT features to transfer partial masks from aligned exemplars to the test
images. With the popularity of DCNNs, a lot of CNN-based work has emerged. Liu et al. [14]
proposed a pixel-level face parsing network by combining shallow CNN and spatial variant RNN.
Guo et al. [15] designed an encoder–decoder network for face parsing with the help of a novel adaptive
prior mechanism. Considering that a traditional crop-and-resize pipeline may ignore the contextual
area outside the regions of interest (such as hair), Lin et al. [16] proposed a “RoI tanh-warping” image
processing method, which achieved a state-of-the-art result.

Lightweight Networks. Han et al. [17] first proposed a lightweight model called SqueezeNet,
which employs several 1 × 1 convolutions and parallel convolutions. While the performance
is equivalent to AlexNet, the calculation amount of the model parameters is reduced by eight
times. MobileNet [18,19] introduces deep separable convolutions to achieve low-latency results
without a significant drop in accuracy. From the perspective of optimizing the network structure,
ShuffleNet [20,21] fuses the operations of group convolution and channel shuffling to ensure the
information flow and dimensionality reduction between channels. ShuffleNet v2 innovatively
establishes four guidelines, which are very helpful for the design of lightweight architectures.
Octave convolution [22] reduces the size of low-frequency features through feature sharing in
adjacent locations, thereby reducing feature redundancy and memory consumption. Some recent
solutions [23–25] mainly refer to the above modules and channel pruning [26] tricks to reduce
model runtime.

Contextual Information. A great deal of research has focused on exploiting contextual
information to enhance the representation capabilities of segmentation. Global pooling is widely
used in various backbones to obtain the contextual information for global representation. Dilated
convolution [27] expands the receptive field by introducing an expansion rate, which is commonly
used in semantic segmentation tasks. DFANet [23] aggregates discriminative features through
sub-network and sub-stage cascade, respectively. PSPNet [28] uses multi-scale pyramid pooling to
obtain features at different scales. ACFNet [29] harvests the contextual information from a categorical
perspective. Recently, ExFuse [30] has been proposed to improve the low-level context through
additional supervision of the encoder.

Attention Mechanism. Computer vision draws on the attention mechanism of natural language
processing, and produces many wonderful results. SeNet [31] relies on context to automatically
obtain the importance of each feature channel through self-learning. CBAM [32] combines spatial
and channel attention mechanisms. Compared to SeNet, which only focuses on channels, CBAM
can achieve better results. Based on CBAM’s dual-path attention, DANet [33] directly uses non-local
autocorrelation matrices for operations, avoiding tedious operations. CCNet [34] proposes a novel
vertical and horizontal attention module that can be used to capture contextual information from
remote dependencies in a more efficient way.

Boundary Supervision. Many studies have confirmed that boundary supervision can further
sharpen and refine the edge contour prediction. CE2P [35] improves edge segmentation in a multi-task
learning manner by introducing additional boundary supervision in human parsing task. ETNet [36]
introduces boundary fine-grained restrictions in the encoder to guide feature extraction during medical



Appl. Sci. 2020, 10, 3135 4 of 16

segmentation. Contrary to the above, MSFNet [37] uses features extracted from the backbone to
implement the boundary supervision with classes.

3. Methodology

The framework of our proposed method is illustrated in Figure 2. Specifically, it consists of the
following four parts. The first part is the stage contextual attention mechanism (SCAM), which consists
of vanilla convolution and the channel attention mechanism. The second part is the semantic gap
compensation block (SGCB), which is motivated by the dilated convolution to increase the receptive
field and bridge the semantic gaps at different scales. The third part is the boundary-aware (BA)
module, which resorts to auxiliary edge supervision to strengthen the model’s ability to recognize
boundaries. In the last part, we dissect the overall architecture of EHANet and give the definition of
the loss function.

Figure 2. Diagram of our effective hierarchical aggregation network (best viewed in color).
“C” stands for channel-wise concatenation. “SCAM” denotes stage contextual attention mechanism.
“SGCB” denotes semantic gap compensation block. “BA” denotes boundary-aware module.

3.1. Stage Contextual Attention Mechanism

Faced with ambiguous semantic categories, model outputs are often misclassified or produce
inconsistent parsing results. Depending on the interdependence between feature map channels, we can
emphasize interdependent feature maps to improve the feature representation of a particular category.
Partly inspired by the work of SeNet [31], we introduce a stage attention based on channel-wise
attention. Unlike SeNet only using the current context, we use higher-level features with richer
semantics to provide contextual guidance for lower-level ones. Based on the above observations,
we extract the high-level context features of stage-(n + 1) to facilitate learning of the low-level features
of stage-n, which is called stage contextual attention mechanism (SCAM). It should be noted that
“stage” represents different convolutional blocks in Figure 2.

As illustrated in Figure 3, given a high-level input feature map f in
H ∈ RC×H×W , we first feed it

into a global pooling and two 1× 1 shrink and expand convolutions (Add relu and sigmoid layers
sequentially) to generate a global feature map fG, where fG ∈ RC×1×1. Then, feature map f in

L ∈
RC×h×w is obtained from the low-level input feature map followed by another 1× 1 convolution.
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In particular, 1× 1 convolution ensures the consistency of the channel while reducing the number
of calculations needed. After that we perform an element-wise matrix multiplication between f in

L
and fG, and then Add with f in

H through bilinear upsampling as U(·) to get the output feature map
f out
L ∈ RC×h×w. Overall, it can be written as:

f out
L = f in

L � fG + U( f in
H ) (1)

where � denotes element-wise multiplication.

Figure 3. Stage contextual attention mechanism. “Conv” denotes convolutional operation.

3.2. Semantic Gap Compensation Block

In the networks with encoder-decoder architecture, skip connections are often employed to
fuse shallow and deep layers. ExFuse [30] points out that simple fusion of deep and shallow layers
of the network may lead to semantic gaps, which should be alleviated in order to obtain robust
multi-scale features. Motivated by this work, we construct a semantic gap compensation block (SGCB)
to compensate semantic gaps in a hierarchical aggregation manner. Our insight is that shallow
layers utilize receptive field enhancement to bridge the semantic gap with deep layers. In detail,
it contains two points: (1) increasing the receptive field can capture richer context to enhance the
shallow representation ability; (2) by adjusting different rates, the receptive fields in the deep and
shallow layers are generally consistent.

ERFNet [38] indicates that 1D factorized convolution greatly reduces the number of parameters
(only 33% of the conventional convolution), while the accuracy is close to 2D convolution. Motivated
by ERFNet and Inception series [6,7], we design an efficient SGAB module (Figure 4a) that captures
hierarchical features of different scales in parallel. ShuffleNet v2 [21] points out that the FLOPs
(float-point operations) are the smallest when the dimensions of the input and output channels are
the same. Following this principle, we use Channel Equalization module (channel dimensions of
different branches are equally divided) and Concatenation module to guarantee the consistency of
the input and output channels. Take the first branch as an example, which consists of {3× 1, 1× 3}
convolution pairs, where each convolution is equipped with a dilation rate ri that determines the span
of the convolution interval. Setting different ri values (i.e., (1, 2, 4)) for different branches can acquire
multi-scale context. For stage-level feature fusion (Figure 4b), Add is used to perform element-wise
summation of feature maps at different stages after semantic compensation.
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(a)

(b)

Figure 4. Semantic gap compensation block. Among them, (a) is for the current layer, and (b) is
employed for the fusion between different stages. Notation: “Conv” is convolutional operation.
“BN” denotes the batch normalization. “Dilated” means dilated convolution.

3.3. Boundary-Aware Module

Similarly to [35], in order to strengthen the boundary information, we introduce a boundary-aware
(BA) module. To our knowledge, shallow features contribute to boundary perception. Based on this,
we leverage deep separable convolutions to efficiently extract boundary features and project them to
the boundary perception space.

Due to weak semantics, boundary pixels are often confused with neighboring pixels belonging to
different categories, which results in unsatisfactory segmentation results. To alleviate this problem,
we propose two strategies. One strategy is to specify a boundary map for boundary supervision
to highlight the influence of boundary pixels. Another strategy is to combine the BA branch and
coarse-segmentation branch as input to get rich semantics while retaining boundary details.
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3.4. EHANet for Segmentation

The loss functions can be described as:

Ls = −
1
N ∑

n∈N
∑
i,j

ps
n(i, j) · log( p̂s

n(i, j)) (2)

Lb =


−∑

i,j
β · log( p̂b(i, j)) pb(i, j) = 1,

−∑
i,j
(1− β) · log(1− p̂b(i, j)) pb(i, j) = 0

(3)

Lc = −
1
N ∑

n∈N
∑
i,j
·pc

n(i, j) · log( p̂c
n(i, j)) (4)

where Ls, Lb, and Lc refer to the losses of the coarse-segmentation, boundary-aware,
and combined-segmentation branches, respectively. p̂ and p represent the N-channel confidence
map and the N-channel ground truth, respectively. (i, j) denotes the 2D coordinates of the pixel.
Based on the binary cross-entropy, boundary-aware loss allocates an appropriate weight ratio β to
alleviate the imbalance of foreground and background categories. According to strategy 1, contrary
to CE2P [35], we introduce a coefficient θ to consolidate the influence of the boundary. As shown
in Equations (5) and (6), a positive α is set to enforce the weight of boundary pixels, which is called
weighted boundary-aware loss.

Lw = − 1
N ∑

n∈N
∑
i,j

θ · pc
n(i, j) · log( p̂c

n(i, j)) (5)

θ =

{
1 + α pb(i, j) = 1,

1 pb(i, j) = 0
(6)

Ltotal = λs · Ls + λb · Lb + λw · Lw (7)

Ltotal denotes the total loss function. λs, λb, and λw are utilized to balance the losses during training.
The parameters Θ of the EHANet are optimized by minimizing Equation (7), which are formulated
as minΘ L = Ltotal . During the training process, λs, λb, and λc are empirically set to 1, 1, and 2
respectively. Moreover, α is experimentally set to 50. For a more detailed discussion of α, refer to
Section 5.3.1.

To strike a balance between speed and performance, we built a lightweight network based on
a truncated ResNet18 [9] backbone, which was pretrained on ImageNet. The ResNet [9] backbone
is composed of a stem block and four bottlenecks. Among them, the stem block contains a 7× 7
convolutional layer and a max pooling layer, each of which reduces the dimensions to 1/2. Except for
the first of the four bottlenecks, the steps of the remaining bottlenecks are unified at 2. In addition,
each bottleneck consists of two 3×3 convolutions and one skip connection. It is worth noting that the
default paradigm is Conv + BN + Relu, except when feature fusion is required. Therefore, the total
down-sampling rate of the network is 32.

Considering that ResNet Stem lacks context, the stage contextual attention mechanism (SCAM) is
only laterally connected with stage-1, stage-2, and stage-3, just like the structure of a feature pyramid
network (FPN) [8]. Subsequently, an semantic gap compensation block (SGCB) module is added
after each SCAM. Moreover, both the reduction factor and the expansion factor in SCAM module
are 8. The dilation rates ri in the three SGCBs are (1, 2, 4), (3, 6, 9), and (7, 9, 13). Regardless
of SCAM or SGCB, the number of output channels is set to 256. For the auxiliary boundary-aware
(BA) module, we introduce two parallel paths from stage-1 and stage-2 to extract detailed features,
and then concatenate them after the up-sampling operation. More specifically, the parallel branches
all go through a 3×3 deep separable convolution with stride 1 and a 1×1 conventional convolution
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to refine the features. On the one hand, this module is used as auxiliary supervision. On the other
hand, after 3 × 3 convolution, it performs fine-segmentation along with the coarse-segmentation
sub-network. Benefiting from this framework, the fusion segmentation model not only contains rich
semantics, but also refines the boundaries.

4. Experiment Setup

4.1. Datasets

CelebAMask-HQ. CelebAMask-HQ dataset [10] is a large-scale facial semantic understanding
dataset with a resolution of 512× 512. It consists of 30, 000 manually fine labeled data involving
19 classes. We refer to CelebA-HQ [39] and divide it into 24, 183/2993/2824 images for training,
validation, and testing.

Helen. Helen dataset [11] is a challenging facial parsing dataset that contains 11 semantic
classes; i.e., hair, eyes, lips, etc. The training, validation, and testing sets consist of 2330, 100, and
300 images respectively.

4.2. Implementation Details

Our experiments are conducted using Pytorch v1.4.0 framework with CUDA and CuDNN
backends. The baselr is set to 0.001 for CelebAMask-HQ and 0.007 for Helen. Standard mini-batch
gradient descent is employed as the optimizer with the momentum of 0.9, weight decay of 1× 10−5

and batch size of 16. We adopt the widely equipped poly training strategy where the baselr is
multiplied by (1− iter

total_iter )
0.9 after each iteration. To avoid over-fitting, common data augmentations

are used, including random horizontal flip, random color jittering, random scaling in the range of
[0.5, 2], and random crop image patches. We train the model for 150 epochs on CelebAMask-HQ
dataset, and 200 epochs on Helen. Additionally, the experimental environment is equipped with
a 3.60 GHz CPU and a Nvidia GTX 1080Ti graphics card. Our code is available on GitHub (https:
//github.com/JACKYLUO1991/FaceParsing).

4.3. Evaluation Metrics

We adopt the most commonly used Pixel Acc. (pixel accuracy) [4] and mIoU (mean intersection
of union) [4] for CelebAMask-HQ and F1-score [11] for Helen to evaluate the model’s performance.
The mathematical expression of Pixel Acc. and mIoU can be written as:

Pixel Acc. =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(8)

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)

where k + 1 is the number of classes (including background); pij indicates the number of pixels that
belong to category i but have been misjudged as category j.

Precision and recall can be defined for each class and F1-score is the harmonic mean of them,
with an expression of:

F1 = 2× precision · recall
precision + recall

(10)

5. Results and Discussion

Unless otherwise stated, all experiments adopt ResNet18 backbone as a benchmark. In the
following sections, we first evaluate performance with state-of-the-art methods on test sets of

https://github.com/JACKYLUO1991/FaceParsing
https://github.com/JACKYLUO1991/FaceParsing
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CelebAMask-HQ and Helen. Then, we further conduct ablation studies on CelebAMask-HQ
validation set to confirm the effectiveness of our method.

5.1. Results on CelebAMask-HQ

In this subsection, we compare our algorithm with several recently published methods, including
DFANet [23], DANet [33], DABNet [24], CE2P [35], and UNet [5] on the CelebAMask-HQ test set.
For fair comparison, we re-implement the above frameworks under the same hardware configuration
without using extra training data or multi-scale testing.

As depicted in Table 1 and Figure 5, our solution outperforms others by a large margin.
Surprisingly, our approach surpassed CE2P (the winner of LIP Challenge 2018) (http://sysu-hcp.net/
lip/index.php) by 0.32% mIoU (78.19% vs. 77.87%) while halving the running time. Restricted by the
cumbersome ResNet101, CE2P is not suitable for real-time segmentation. On the contrary, benefiting
from the lightweight ResNet18, our network achieved comparable results with CE2P while ensuring
low latency. By modifying the backbone network to ResNet34, the accuracy of EHANet is much better
than CE2P, which reflects that CE2P has a large number of redundant parameters. Moreover, it can
be observed that compared with the fastest method DABNet, the accuracy of our method is more
than 10% higher than the former. To further evaluate the effect, detailed per-category comparisons
are also reported in Table 1, where our method achieves the highest IoU on 10 out of 19 categories.
Overall, the improvements over the state-of-the-art methods confirm the effectiveness of our EHANet
for face parsing.

Figure 5. Runtime and mIoU (mean intersection of union) on CelebAMask-HQ. “R” denotes ResNet
backbone (i.e., R18 is equivalent to ResNet18). Our method achieved remarkable results in both
accuracy and efficiency.

Lightweight models often lack context, resulting in poor segmentation for small objects.
I.e., neither DFANet nor UNet detected a “necklace.” In contrast, our network can well alleviate
this problem through the channel-wise attention mechanism in order to better encode the semantic
categories. The qualitative results on CelebAMask-HQ test set are presented in Figure 6. From the
dotted rectangle, we can observe that our results are smoother and more natural.

http://sysu-hcp.net/lip/index.php
http://sysu-hcp.net/lip/index.php
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Table 1. Category-wise comparison (IoU) on the CelebAMask-HQ test set. The best performance for each individual class is marked with bold-face number. “BA”
denotes boundary-aware branch, “†” denotes EHANet with ResNet34 backbone, “FPS” denotes frames per second. Resolution is unified to 512 × 512.

Methods Background Skin Nose Eye-Glass Left-Eye Right-Eye Left-Brow Right-Brow Left-Ear Right-Ear Mouth

DFANet [23] 88.12 89.69 83.96 69.29 69.19 69.12 66.04 66.05 66.52 65.85 70.23
DABNet [24] 90.36 91.27 86.04 72.62 73.69 74.38 69.78 69.25 72.28 70.83 78.41

UNet [5] 89.36 92.25 87.83 77.64 79.45 79.75 74.17 73.98 77.28 76.00 83.47
DANet [33] 93.04 93.15 88.92 84.04 80.65 80.84 75.63 75.37 78.93 78.29 85.45
CE2P [35] 92.78 93.17 88.54 84.44 81.95 82.03 75.55 75.51 78.35 77.72 85.65

EHANet(Ours) 91.80 92.90 88.57 84.00 81.58 81.92 75.02 74.93 78.25 77.90 85.55
EHANet(Ours) + BA 92.76 93.16 88.73 84.62 81.70 81.96 75.54 75.48 78.58 77.55 85.62

EHANet(Ours) + BA † 92.98 93.26 89.02 84.91 81.85 82.02 75.66 75.52 78.76 78.00 85.69

Methods Upper-Lip Lower-Lip Hair Hat Earring Necklace Neck Cloth FPS mIoU (%) Pixel Acc. (%)

DFANet [23] 66.17 70.26 86.25 61.02 25.68 0.00 76.38 60.21 72 65.79 91.85
DABNet [24] 73.91 78.37 88.52 63.56 36.23 0.01 78.74 67.27 99 70.36 93.24

UNet [5] 79.32 82.00 88.16 32.62 42.58 0.00 79.92 61.88 81 71.46 93.00
DANet [33] 80.41 83.52 91.31 75.87 52.78 9.46 83.55 78.07 13 77.33 95.09
CE2P [35] 80.89 83.57 91.18 76.13 52.47 19.73 83.53 76.30 30 77.87 95.00

EHANet(Ours) 80.98 83.25 90.31 74.26 48.11 13.16 81.38 73.30 89 76.69 94.51
EHANet(Ours) + BA 80.96 83.60 91.08 76.30 51.82 17.61 83.37 76.10 83 77.71 94.96

EHANet(Ours) + BA † 81.04 83.47 91.26 77.05 51.84 20.19 84.15 77.93 71 78.19 95.28
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Figure 6. Qualitative comparisons on CelebAMask-HQ. Zoom in for more details in electronic version.

5.2. Results on Helen

To validate the generalization ability of our method, we further report the comparison between
our model and existing face parsing methods on the Helen test set. For a fair comparison with
previous work, we refer to the preprocessing step in [15]. Furthermore, F1-score is calculated by
combining eyebrow, eye, mouth, and nose categories.

It can be observed from Table 2 that our model outperforms all other models except the method
proposed by Lin et al. [16]. Lin’s method introduced the novel RoI tanh-warping, which has the
disadvantage of taking up too many resources and having high-resolution input requirements. On the
other hand, it is worth noting that when model complexity is relatively low, EHANet still boosts the
performance by 0.2% (90.7% vs. 90.5%) compared to VGG-based RED-Net [15], which indicates that
EHANet is more compact and efficient.

Table 2. Results on the Helen test dataset. * Denotes additional data processing.

Methods Year Overall F1-Score (%)

Smith et al. [11] 2013 80.4
Liu et al. [13] 2015 84.7
Liu et al. [14] 2017 88.6
Guo et al. [15] 2018 90.5
Lin et al. * [16] 2019 92.4

Ours 2020 90.7

5.3. Ablation Study

In this subsection, we perform ablation experiments to illustrate the effectiveness of each
component of our EHANet. To quickly verify the experimental results, the default image resolution is
256× 256.

5.3.1. Ablation Studies on Weighted Boundary-Aware Loss

To evaluate the effectiveness of our proposed weighted boundary-aware (WBA) loss, we construct
ablation experiments on it. WBA loss utilizes strong supervisory information to enhance the ability to
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distinguish between adjacent categories. Equation (5) gives the supervision loss of the WBA, where θ

indicates the impact of boundary on the overall loss, and the magnitude of θ is determined by α.
The mIoU scores are reported in Table 3. When θ ≡ 1, Lw (=Lc) becomes the vanilla cross-entropy loss,
which treats different categories equally, making it difficult to distinguish between “hard samples”.
The mIoU value at this time is the lowest, only 72.34%. As α gradually increases, mIoU shows a
ridge trend (72.71%→ 73.00%→ 72.83%) and reaches the highest value at 50. The reasons can be
briefly described as follows: (1) when α is less than 30, the model does not fully learn the boundary
knowledge; (2) when α is greater than 70, the model focuses on boundary, while neglecting the learning
of the main task. Therefore, proper adjustment of this hyper-parameter has a promoting effect on the
results. All of the above confirm the effectiveness of our boundary supervisory strategy for robust
feature learning.

Table 3. Performance comparison with and without weighted boundary-aware loss.

WBA Loss α mIoU (%)

7 - 72.34
3 30 72.71
3 50 73.00
3 70 72.83

5.3.2. Ablation Studies on Each Component

We use the feature pyramid network (FPN) [8] equipped with ReNet18 backbone as the baseline,
which restores the input size by bilinear up-sampling on the P2 layer, resulting in a mIoU of 71.02%.
In the experiment, the effect was observed by gradually replacing the lateral connection layer
and convolution fusion layer in the FPN with the stage contextual attention mechanism module
and semantic gap compensation block, and adding other components. We report the quantitative
comparison results in Table 4. On the one hand, the stage contextual attention mechanism module can
provide rich context, and the semantic gap compensation block reduces the gap between semantics.
Adding these two modules improves the performance by 0.37% and 0.49%, respectively. On the
other hand, the boundary-aware module explicitly introduces boundary features into the latent
space of features, and strengthens the ability to represent boundary details, which greatly improves
the performance of our model by 0.54%. The square dashed box in Figure 2 provides an intuitive
comparison of whether to add a boundary-aware branch. When we further introducing weighted
boundary-aware loss, we obtain the optimal result, a mIoU of 73%. The latter two illustrate the effect
of boundary processing on improving performance. Figure 7 shows the qualitative comparison results,
where our model gets more consistent results for objects of the same category and keeps more detailed
information, benefiting from our proposed components.

Table 4. Ablation experiments of EHANet on CelebAMask-HQ validation set. “SCAM” denotes
stage contextual attention mechanism module, “SGCB” denotes semantic gap compensation block,
“BA” denotes boundary-aware branch, “WBA loss” denotes weighted boundary-aware loss.

Methods mIoU (%)

baseline 71.02
baseline + SCAM 71.39
baseline + SCAM + SGCB 71.88
baseline + SCAM + SGCB + BA 72.34
baseline + SCAM + SGCB + BA + WBA loss (ours) 73.00
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Figure 7. Face parsing results comparison against FPN-ResNet18 [8] baseline, where significantly
improved regions are marked with white dashed boxes. To highlight the details, we merge the input
and output color maps according to 1:1. Our method performs better on both boundary details and
fine-grained segmentation.

5.4. Efficiency and Accuracy

We carry on the experiments to demonstrate the potential of our segmentation architecture in
terms of accuracy and efficiency trade-off. Since our goal is to design an efficient and universal
framework, the impact of different input resolutions and different backbones on model performance
needs to be given quantitatively. As shown in Table 5, we note that deeper network tends to
perform better (ResNet18 → 73.00%, ResNet101 → 75.35%). However, the weakness is that the
amount of floating-point calculations increases exponentially (3.1 G vs. 11.5 G). From another
perspective, the increased input brings rich spatial details. Although it can improve the accuracy of
the model, it brings high latency. Moreover, as the image dimension gradually rises from 256 to 640,
the performance gain becomes inconspicuous (e.g., an increase of 2.36% from 256 to 384 but only an
increase of 0.53% from 512 to 640), indicating that the model tends to be saturated.

Regardless of different backbones or different resolutions, our EHANet consistently brings
consistent positive gains in terms of mIoU, which suggests the scalability of our proposed method.
In particular, the fastest setting of our method runs at a speed of 313 FPS at mIoU 73.00%.
The whole comparative experiment provides a reference for how to choose the appropriate model in
real-world environment.

Table 5. Performance comparison of models at different resolutions and different backbones. M = 106,
G = 109. “-” represents the same statistics as above.

Methods Input Size FLOPs FPS #Params mIoU (%)

EHANet + ResNet18 256 × 256 3.1G 313 11.8M 73.00
EHANet + ResNet18 384 × 384 7.1G 143 - 75.36
EHANet + ResNet18 512 × 512 12.5G 83 - 76.51
EHANet + ResNet18 640 × 640 19.6G 55 - 77.04

EHANet + ResNet34 256 × 256 5.6G 294 21.9M 74.77
EHANet + ResNet50 256 × 256 6.7G 204 25.0M 75.21

EHANet + ResNet101 256 × 256 11.5G 167 43.9M 75.35
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6. Conclusions

In this paper, we present an effective hierarchical aggregation network named EHANet for
real-time face parsing. Firstly, to capture long-term dependencies to enhance the discrimination of
different categories, we propose a stage contextual attention mechanism module. Next, we introduce
a semantic gap compensation block to bridge the semantic gap caused by feature fusion at different
stages. Finally, we use weighted boundary-aware loss to force the model to distinguish between
adjacent categories. Our method has achieved remarkable results on both the CelebAMask-HQ and
Helen datasets, proving the robustness of our network. Subsequent ablation experiments further
confirmed the effectiveness of the proposed method. The advantage of low latency makes our method
further applicable to mobile deployment.

Our future work includes exploring the effect of weakly supervised signals on segmentation
performance.

Author Contributions: Conceptualization, L.L. and D.X.; methodology, L.L. and D.X.; software, L.L.; validation,
L.L. and X.F.; formal analysis, L.L.; investigation, L.L. and X.F.; resources, D.X.; data curation, L.L.;
writing—original draft preparation, L.L.; writing—review and editing, D.X.; visualization, L.L.; supervision, D.X.;
project administration, D.X. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: This work was done when Ling Luo was an intern at Meidaojia Research, Beijing, P.R. China.
L.L thanks their support for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ou, X.; Liu, S.; Cao, X.; Ling, H. Beauty emakeup: A deep makeup transfer system. In Proceedings of the
24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016;
pp. 701–702.

2. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018; pp. 8798–8807.

3. Zhang, D.; Lin, L.; Chen, T.; Wu, X.; Tan, W.; Izquierdo, E. Content-adaptive sketch portrait generation by
decompositional representation learning. IEEE Trans. Image Process. 2016, 26, 328–339. [CrossRef] [PubMed]

4. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

5. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

6. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

7. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan. D.; Vanhoucke. V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

8. Lin, T. Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 2117–2125.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

10. Lee, C. H.; Liu, Z.; Wu, L.; Luo, P. MaskGAN: Towards diverse and interactive facial image manipulation.
arXiv 2019, arXiv:1907.11922.

11. Smith, B.M.; Zhang, L.; Brandt, J.; Lin, Z.; Yang, J. Exemplar-based face parsing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Oregon, Portland, 25–27 June 2013; pp. 3484–3491.

http://dx.doi.org/10.1109/TIP.2016.2623485
http://www.ncbi.nlm.nih.gov/pubmed/27831874


Appl. Sci. 2020, 10, 3135 15 of 16

12. Kae, A.; Sohn, K.; Lee, H.; Learned-Miller, E. Augmenting CRFs with Boltzmann machine shape priors
for image labeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Oregon, Portland, 25–27 June 2013; pp. 2019–2026.

13. Liu, S.; Yang, J.; Huang, C.; Yang, M.H. Multi-objective convolutional learning for face labeling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 3451–3459.

14. Liu, S.; Shi, J.; Liang, J.; Yang, M. H. Face parsing via recurrent propagation. arXiv 2017, arXiv:1708.01936.
15. Guo, T.; Kim, Y.; Zhang, H.; Qian, D.; Yoo, B.; Xu, J.; Zou. D.; Han. J.; Choi, C. Residual Encoder Decoder

Network and Adaptive Prior for Face Parsing. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 6861–6869.

16. Lin, J.; Yang, H.; Chen, D.; Zeng, M.; Wen, F.; Yuan, L. Face Parsing with RoI Tanh-Warping. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 5654–5663.

17. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto. M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

19. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, MA, USA, 19–21 June 2018; pp. 4510–4520.

20. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, MA, USA, 19–21 June 2018; pp. 6848–6856.

21. Ma, N.; Zhang, X.; Zheng, H. T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 116–131.

22. Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan. S.; Feng, J. Drop an octave: Reducing
spatial redundancy in convolutional neural networks with octave convolution. In Proceedings of the IEEE
International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 3435–3444.

23. Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 9522–9531.

24. Li, G.; Yun, I.; Kim, J.; Kim, J. DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic
Segmentation. arXiv 2019, arXiv:1907.11357.

25. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

26. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–19 October 2017; pp. 1389–1397.

27. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
28. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
29. Zhang, F.; Chen, Y.; Li, Z.; Hong, Z.; Liu, J.; Ma, F.; Han. J.; Ding, E. ACFNet: Attentional class feature

network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6798–6807.

30. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 269–284.

31. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, MA, USA, 19–21 June 2018; pp. 7132–7141.

32. Woo, S.; Park, J.; Lee, J. Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.



Appl. Sci. 2020, 10, 3135 16 of 16

33. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 3146–3154.

34. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic
segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
27 October–2 November 2019; pp. 603–612.

35. Ruan, T.; Liu, T.; Huang, Z.; Wei, Y.; Wei, S.; Zhao, Y. Devil in the details: Towards accurate single and
multiple human parsing. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI,
USA, 27 January–1 February 2019; pp. 4814–4821.

36. Zhang, Z.; Fu, H.; Dai, H.; Shen, J.; Pang, Y.; Shao, L. ET-Net: A Generic Edge-aTtention Guidance
Network for Medical Image Segmentation. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 442–450.

37. Si, H.; Zhang, Z.; Lv, F.; Yu, G.; Lu, F. Real-Time Semantic Segmentation via Multiply Spatial Fusion Network.
arXiv 2019, arXiv:1911.07217.

38. Romera, E.; Alvarez, J. M.; Bergasa, L. M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for
real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]

39. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 4401–4410.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2017.2750080
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Stage Contextual Attention Mechanism
	Semantic Gap Compensation Block
	Boundary-Aware Module
	EHANet for Segmentation

	Experiment Setup
	Datasets
	Implementation Details
	Evaluation Metrics

	Results and Discussion
	Results on CelebAMask-HQ
	Results on Helen
	Ablation Study
	Ablation Studies on Weighted Boundary-Aware Loss
	Ablation Studies on Each Component

	Efficiency and Accuracy

	Conclusions
	References

