
Citation: Dener, M.; Ok, G.; Orman,

A. Malware Detection Using Memory

Analysis Data in Big Data

Environment. Appl. Sci. 2022, 12,

8604. https://doi.org/10.3390/

app12178604

Academic Editor: Eui-Nam Huh

Received: 4 August 2022

Accepted: 25 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Malware Detection Using Memory Analysis Data in Big
Data Environment
Murat Dener 1,*, Gökçe Ok 1 and Abdullah Orman 2

1 Information Security Engineering, Graduate School of Natural and Applied Sciences, Gazi University,
06560 Ankara, Turkey

2 Department of Computer Technologies, Vocational School of Technical Sciences,
Ankara Yıldırım Beyazıt University, 06760 Ankara, Turkey

* Correspondence: muratdener@gazi.edu.tr

Abstract: Malware is a significant threat that has grown with the spread of technology. This makes
detecting malware a critical issue. Static and dynamic methods are widely used in the detection
of malware. However, traditional static and dynamic malware detection methods may fall short
in advanced malware detection. Data obtained through memory analysis can provide important
insights into the behavior and patterns of malware. This is because malwares leave various traces on
memories. For this reason, the memory analysis method is one of the issues that should be studied in
malware detection. In this study, the use of memory data in malware detection is suggested. Malware
detection was carried out by using various deep learning and machine learning approaches in a big
data environment with memory data. This study was carried out with Pyspark on Apache Spark big
data platform in Google Colaboratory. Experiments were performed on the balanced CIC-MalMem-
2022 dataset. Binary classification was made using Random Forest, Decision Tree, Gradient Boosted
Tree, Logistic Regression, Naive Bayes, Linear Vector Support Machine, Multilayer Perceptron, Deep
Feed Forward Neural Network, and Long Short-Term Memory algorithms. The performances of
the algorithms used have been compared. The results were evaluated using the Accuracy, F1-score,
Precision, Recall, and AUC performance metrics. As a result, the most successful malware detection
was obtained with the Logistic Regression algorithm, with an accuracy level of 99.97% in malware
detection by memory analysis. Gradient Boosted Tree follows the Logistic Regression algorithm
with 99.94% accuracy. The Naive Bayes algorithm showed the lowest performance in malware
analysis with memory data, with an accuracy of 98.41%. In addition, many of the algorithms used
have achieved very successful results. According to the results obtained, the data obtained from
memory analysis is very useful in detecting malware. In addition, deep learning and machine
learning approaches were trained with memory datasets and achieved very successful results in
malware detection.

Keywords: malware memory analysis; big data; machine learning; deep learning; Apache spark;
classification

1. Introduction

Technology is developing day by day and its usage rate is increasing. This shift in
technology also provides an environment for malware to spread. According to the statistics
of the AV-test institute, 470.01 million malwares were detected in 2015, while this number
reached 1312.54 million in 2021. In the first quarter of 2022, approximately 30 million new
malwares were detected [1]. This requires the development of various methods to deal
with malware.

The malware must go through a forensic process for its purpose to be discovered.
Signatures of malicious software are created from the findings obtained at the end of
this process and can be used to protect against malware threats [2]. Analysis of malware
is generally divided into static and dynamic. In static analysis, analyses are performed

Appl. Sci. 2022, 12, 8604. https://doi.org/10.3390/app12178604 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12178604
https://doi.org/10.3390/app12178604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3495-1897
https://doi.org/10.3390/app12178604
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12178604?type=check_update&version=2

Appl. Sci. 2022, 12, 8604 2 of 21

by deriving some features from the file such as API calls, control flow graphs, opcodes,
and n-grams. Dynamic analysis, on the other hand, is performed by running malware in
an isolated environment using behavioral features such as performance counters, opcodes,
and memory access patterns. [3,4]. There are also hybrid methods in the literature in
which the two methods are used together [4]. However, both static and dynamic analysis
methods have some limitations. Static analysis is effective on malware samples with known
signatures. However, it cannot show the same effect on emerging malware. In the dynamic
analysis approach, running each suspicious sample imposes a burden in terms of time and
computing resources. Some advanced malwares can hide themselves by hiding from the
virtual server [5].

Memory analysis can overcome the limitations of static and dynamic analysis methods.
With memory analysis, the limitations of malware signatures created as a result of static
analysis can be overcome. Memory-based features can also overcome some dynamic
analysis limitations such as hidden behavior of malwares during analysis. Although
memory analysis is basically a static analysis, it is a known fact that new generation
malware does not exhibit some behaviors during static analysis. However, since such
hidden behaviors can be detected with memory analysis, it provides significant gains in
malware detection compared to traditional static analysis. Malware leaves some traces in
memory [6]. With memory analysis, some information about the behavioral characteristics
of malware can be obtained using information such as terminated processes, DDL records,
registries, active network connections, and running services [7]. Memory analysis work
consists of two stages, memory acquisition and memory analysis. Memory acquisition is
the stage of obtaining a full image of the machine memory. Memory analysis is the phase
of examining and analyzing the movements of malware, usually using a forensic memory
tool [8]. In this way, it becomes possible to detect hidden malware with memory analysis.

Analysis of malware data can often be considered in the context of big data. [3].
In malware analysis, the data to be examined is heterogeneous and large in volume.
At the same time, it is necessary to work with streaming data to determine whether
a suspicious activity is caused by malware. This requires the use of big data technologies in
malware detection. In addition, machine learning methods are one of the most widely used
techniques to automatically learn the patterns and behavior patterns they leave behind
while detecting malware [9]. The deep learning method is another classification method
used recently.

In this study, a classification has been made on the CIC-MalMem-2022 dataset, which
includes hidden malware families obtained by memory analysis. The study was carried
out using Apache Spark big data platform on Google Colaboratory. Random Forest (RF),
Decision Tree (DT), Gradient Augmented Tree (GBT), Logistic Regression (LR), Naive Bayes
(NB), Linear Support Vector Machine (Linear SVC), Multilayer Perceptron (MLP) data for
binary classification set), Deep Neural Network (DNN), and Long Short-Term Memory
(LSTM) were the nine different machine learning and deep learning methods used. Results
were evaluated with Accuracy, F1-score, Precision, Recall, and AUC performance metrics.

The main contributions of this study can be summarized as follows:

(1) It has been shown through the study that malware detection can be performed using
memory data.

(2) This study provides a basis for future studies on the analysis and classification of
memory data with the big data approach.

(3) Another contribution of the study is that various deep learning and machine learning
approaches, which are frequently used in many intrusion detection systems in the
literature and are very popular, have been confirmed to achieve successful results in
memory data malware detection.

(4) The memory data and malware detection performance of nine different machine learn-
ing and deep learning algorithms were compared. The results will guide researchers
about the techniques to be preferred in future studies.

Appl. Sci. 2022, 12, 8604 3 of 21

The rest of the study is organized as follows. Related studies are given in Section 2.
Information on the malware families included in the dataset is in Section 3. In Section 4, the
materials and methods used in the study are mentioned. In Section 5, model parameters
and experimental results are given. Finally, Section 6 presents the results obtained.

2. Related Works

Malware attacks are increasing day by day and becoming more complex. Therefore,
malware detection has become more and more imperative. Thus, studies based on static,
dynamic, and memory analysis in detecting malicious software are gaining popularity in
the literature. Many different malware detection techniques have been proposed using these
3 different approaches. In this section, some malware techniques using these approaches in
the literature are presented.

One of the studies is the study to detect malware based on behavior by compar-
ing memory data by Aghaeikheirabady et al. [10]. They used data in user space and
multiple memory structures simultaneously. In this way, fast information extraction and
high accuracy rates are the aim. When the approach was tested with machine learn-
ing, Naive Bayes provided the best performance with 98.9%. Another of these studies
is AMAL, a behavior-based malware classification and clustering system presented by
Mohaisen et al. [11]. AMAL consists of two subsystems. AutoMal extracts low-granularity
behavioral features on the file system, memory, network, and registry. MaLabel performs
the function of vectorizing extracted features and generating classifiers. According to
the study, AMAL provides 99.5% precision in classifying certain families. Mosli et al. [5]
conducted a study to detect malware by extracting Registry, DLLs, and APIs from memory
images. It compared malware detection performances using machine learning algorithms.
By using the SVM classifier on the Registry feature, an accuracy rate of 96% was obtained.
In another study, Ahmadi et al. [12] focused on the impact of feature extraction and selec-
tion stages in malware classification. Grouping and weighting of malwares according to
their behavioral characteristics is emphasized. Rathnayaka and Jamdagni [6] proposed
a framework for malware detection by integrating static and memory analysis methods.
The authors mention that the proposed framework achieves 90% accuracy in malware
detection.

Considering memory data, Kumara and Jaidhar [13] presented a volatile memory
introspection system called A-IntExt based on Virtual Machine Monitor. The system
has been developed with Virtual Machine Introspection, Forensic Memory Analysis, and
machine learning methods. Their aim is to provide early diagnosis in malware detection
with this system. The system has reached an accuracy rate of 99.55% in the evaluations
made with the dataset. Mosli et al. [14] performed a behavior-based automated malware
detection using forensic memory analysis and machine learning techniques. In the study,
an accuracy rate of 91.4% was obtained in the tests performed with malware and benign
samples. Petrik et al. [15] performed malware detection with only binary raw data from
memory dumps of devices. It had the characteristics of being independent from the
operating system and architectural structure. The authors mention that over 98% accuracy
rates were achieved when various machine learning and CNN algorithms were applied.
Nissim et al. [16] conducted a study based on memory data to detect remote access trojans
and ransomware for virtual servers provided in cloud computing environments. In this
study, temporary memory dumps were analyzed with the MinHash method, which is
a similarity classification method. Vipasana, TeslaCrypt, Chimera, Cerber, Hidden Tear
ransomware families, and DarkComet, Pandora, SpyGate, Comet, and Babylon remote
access Trojan families were used in the experiments. In comparison with machine learning-
based classifiers, 100% TPR rate and a very low FPR rate were achieved for both malwares.
Banin and Dyrkolbotn [3] investigated the effect of memory access data on malware
detection over time. Machine learning models were trained with old samples and their
ability to detect new malware was evaluated. Yucel and Koltuksuz [2] have introduced
an approach for extracting memory access images to detect the activities of malware. A

Appl. Sci. 2022, 12, 8604 4 of 21

dataset containing 24 different malware families and 6 benign executable files belonging to
four malware categories was used. Malware samples from the same family are shown in 3D
space according to the computational instruction sequence, the instruction address, and the
accessed memory address, and their similarity ratios are compared. Lashkari et al. [17] have
worked to extract the most important features from memory dumps to detect malware. For
this, they have developed a tool called VolMemLyzer. Thirty-six features belonging to nine
categories were extracted using VolMemLyzer. The tool has been tested on 1900 memory
dumps with machine learning methods. As a result of the study, a 93% True-Positive (TP)
rate was obtained. However, the authors emphasized that the number of malwares was
low, which limited the study. The authors increased the malware samples, resulting in the
CIC-MalMem-2022 dataset.

In addition, Severi et al. [18] presented a new platform by addressing the shortcomings
and disadvantages of existing malware analysis systems. Using the platform they call
Malrec, they aimed to capture the traces of the entire system and to provide replayability.
The authors presented a new dataset and wanted to demonstrate that it met the goal of high
accuracy by performing a test with DNN on this dataset. In the study by Kang et al. [19],
a word2vec-based LSTM approach was proposed for malware classification by analyzing
API functions. Better performance was obtained than other vector size reduction methods
in the evaluations. Safa et al. [20] studied the performance of deep learning techniques in
malware classification. In this study, LSTM, GRU, and CNN algorithms were compared in
static and behavior-based malware detection. At the same time, a hybrid CNN and LSTM
model has been developed. The proposed hybrid model achieved a higher success rate
than other models with an accuracy rate of 99.31%. In another study, Lu et al. [21] carried
out a study to detect malware with a combination of machine learning and deep learning
methods. In this study, features were extracted with Random Forest and API call sequences
were preprocessed with LSTM. It has been shown that 96.7% accuracy rate in malware
detection is achieved with the consolidated framework. In another study, Sung et al. [22]
worked on malware detection in drones and GCSs. An approach is presented that in-
cludes the low-dimensional vector generating fastText model and Bi-LSTM. Panker and
Nissim [23] presented an approach for detecting malware in Linux VM environments. In
the study, 53 malware family samples were used in nine malware categories. Using various
machine learning and deep learning algorithms, seven experiments were performed on
volatile memory data from HTTP and DNS servers. A study by Sihwail et al. [7] proposes
an approach for malware detection and classification using memory features extracted
from memory images. Using Volatility, they extracted six different memory features. In
the classification mode, it achieved an accuracy rate of 98.5% and an FPR rate of 1.24%.
In addition, evaluations were made with feature selection methods, and it was revealed
that DLL features have a higher weight than other memory features. One of the studies to
classify malware without signature is presented by Diaz and Bandala [24]. In the study,
classification was made on PE files with LSTM and LightGBM algorithms. In classifica-
tion, they aimed to perform dynamic analysis with LSTM. On the other hand, LightGBM
was preferred because it creates less burden on resources. According to the evaluations,
the proposed model has achieved an accuracy of 91.73%. Wang and Qian [25] presented
a textual CNN method called textCNN to detect malicious code families. The performance
of the method has been evaluated on two different datasets. Finally, a recent study by
Arfeen et al. [26] proposes a framework that provides periodic memory dumping for
comprehensive and accurate analysis. WannaCry, HiddenTear, Cerber, TeslaCrypt, and
Vipasana ransomware were used in the development of the framework. With the proposed
framework, binary classifications were made on the dataset using the XGBoost algorithm.
As a result, 88% accuracy was achieved in ransomware.

Rezende et al. [27] focused on malware detection on grayscale images. With the pro-
posed ResNet-50 architecture, an accuracy rate of 98.62% has been achieved. Ni et al.’s [28]
work proposes a method called MCSC that performs classification based on static properties.
Accordingly, grayscale images are created with SimHash and classification is performed

Appl. Sci. 2022, 12, 8604 5 of 21

with CNN. The proposed method has achieved accuracy rates of up to 99.26%. Dai et al. [29]
proposed a malware detection approach in which memory images are extracted and con-
verted to fixed-size grayscale images. The features were extracted from the images with
HOG. Malware has been classified using extracted features. In the classifications made,
95.2% accuracy was obtained with the Multilayer Perceptron (MLP) algorithm. In another
study, Li et al.’s [30] study addressed the additional runtime overhead of dynamic analysis
in malware detection in the cloud. To solve this problem, it introduced a deep learning-
based memory analysis and malware detection approach. Snapshots were extracted and
converted to grayscale images. CNN was used to detect malware. Dai et al. [31] proposed
a community learning approach that uses software and hardware features such as API
feature set, grayscale memory dump image, and hardware performance counter. It used
a neural network as a detector to detect malware. Focusing on malware detection on images,
Wong et al. [32] proposed a layer using the ECOC-SVM configuration. In the proposed
model, features obtained by transfer learning using ShuffleNet and DenseNet-201 were
combined in an average pooling layer. The model has been tested on four different malware
datasets and the results have been compared. As a result, it has been shown that class
distinctions can vary depending on the datasets and it is difficult to generalize the ECOC
coding matrix. In Bozkir et al.’s [33] study, memory dumps of suspect states that could
be represented as RGB images were obtained and classified. Ten malware families were
used in the study. Memory dumps obtained using GIST and HOST identifiers were signed.
Signatures were compared with machine learning-based classifiers. The SMO algorithm
achieved 96.39% accuracy in the feature vectors obtained with the combination of GIST
and HOST. In addition, the accuracy of malware detection methods had increased with
the UMAP-based manifold learning strategy. Hemalatha et al. [34] treated the malware
binaries as two-dimensional images. A deep learning-based malware classification model
was proposed by addressing the problem of unstable data with DenseNet. The method
was evaluated on four different datasets. It has been observed that the proposed method
reduces the FP rate. Tekerek and Yapici [35] made a malware classification by converting
byte files to RGB and grayscale image files, with the CNN approach it proposed. At the
same time, a new data augmentation method was presented, with an emphasis on the
problem of unevenly distributed malware family samples. The method was tested with
two different datasets and 99.86% and 99.60% accuracy rates were obtained.

Awan et al. [36] proposed a deep learning framework based on spatial attention and
CNN called SACNN. Twenty-five different malware families have been classified with
the image-based classification process. The authors also addressed the problem of class
imbalance. In the study, performance evaluations were made on the Malimg dataset and
very successful results were obtained. Yadav et al. [37] present a comparison of 26 different
pre-trained CNN models for Android malware detection. Eight different models were used
in the study, namely VGG16, VGG19, ResNet50, InceptionV3, MobileNetV2, DenseNet121,
DenseNet169, and EfficientNetB4. In addition to these models, the performances of SVM
and RF classifiers were also evaluated. The proposed method achieved 97% accuracy in
binary classification. Damaševičius et al. [38] proposed an ensemble classification-based
methodology for malware detection. The first stage is fully connected and is handled
by CNN, while the final classification is handled by meta-learner. The performance of
13 different machine learning systems were compared in the study. Experimental studies
were carried out on the Classification of Malware with PE headers (ClaMP) dataset. The
best performance was obtained by using the 5 dense and CNN in the first stage and the
ExtraTrees classifier in the last stage. Azeez et al. [39] proposed an ensemble-learning
method for malware detection. In the proposed method, the base stage consists of a fully
connected and 1D CNN network, while the end stage consists of a machine learning algo-
rithm. The authors compared the performance of 15 different machine learning methods as
a meta-learner. Experimental studies were carried out on the Windows Portable Executable
(PE) malware dataset.

Appl. Sci. 2022, 12, 8604 6 of 21

As seen in related works, studies focus on extracting memory dumps and detecting
malware using them. In the studies, malware classification was made using various
machine learning and deep learning algorithms. However, these classifications were made
with one or more specified algorithms. In this study, nine different machine learning and
deep learning methods were applied for malware detection on memory dumps. In this way,
the classification performance of many methods was compared. Unlike the related studies,
a balanced memory analysis dataset was used. In addition, the studies were carried out on
the big data platform. As a result of the study, very high accuracy rates were determined.

Table 1 provides summaries of studies focusing on malware detection in the literature
by best or recommended models, datasets, samples, and accuracy rates. Accordingly, it is
seen in the literature that various machine learning and deep learning approaches are used
in malware detection studies. Different datasets are used to test the proposed methods in
the studies. In studies focusing on malware detection with memory forensics, it is seen
that, generally, malware and benign samples collected from repository are used. In our
study, the CIC-Malmem-2022 dataset based on memory analysis features was used. In this
study, a higher accuracy rate was obtained with the balanced CIC-Malmem-2022 dataset
compared to other studies.

Table 1. Comparison of other works on Malware Detection.

Authors Model Dataset/Repository Samples Accuracy (%)

2014 Aghaeikheirabady et al. [10] NB Virussign
VxHeaven

350 m
200 b 98.90

2015 Mohaisen et al. [11] SVM AutoMal 115,157 99.22

2016 Mosli et al. [5] SGD VirusShare
VXHeaven

400 m
100 b 96.00

2016 Ahmadi et al. [12] XGBoost BIG 2015 21,741 99.80

2017 Kumara and Jaidhar [13] RF VXHeaven SourceForge 3750 m
4500 b 99.55

2017 Mosli et al. [14] RF VirusShare 3130 m
1157 b 91.40

2017 Rezende et al. [27] DCNN Malimg 9339 98.62
2018 Dai et al. [29] MLP OpenMalware 1984 m 95.20
2018 Severi et al. [18] DNN MalRec 66,301 m F-Score: 94.20

2018 Petrik et al. [15] RF
CNN MalRec 9000 m

3000 m
99.65

98.00+
2018 Ni et al. [28] Hashing + CNN BIG 2015 10,805 m 99.26
2019 Li et al. [30] CNN VirusTotal 10,000+ 90.50
2019 Dai et al. [31] RF+ MLP OpenMalware 27,000 96.90

2019 Sihwail et al. [8] SVM VirusTotal
Das Malwerk

1200 m
400 b 98.50

2019 Safa et al. [20] CNN + LSTM BIG 2015 10,868 m 99.31
2019 Kang et al. [19] Word2Vec + LSTM BIG 2015 10,868 m 97.59

2019 Lu et al. [21] LSTM VirusShare
VirusTotal

1430 m
1352 b 96.70

2021 Hemalatha et al. [34] DenseNet

Malimg
BIG 2015
MaleVis
Malicia

9339 m
10,868 m

13,183
9670 m
1043 b

98.23
98.46
98.21
89.48

2020 Sung et al. [22] fastText + LSTM BIG 2015 10,868 m 96.76

2021 Bozkir et al. [33] SMO Dumpware10 3686 m
608 b 96.39

2021 Panker and Nissim [23] RF,KNN ViruShare
VirusTotal 21,800 98.70–99.90

2021 Wong et al. [32] DenseNet201 + ShuffleNet +
ECOC-SVM

Malimg
MaleVis

Virüs-MNIST
Dumpware10

9339
13,760
51,880
4294

99.14
95.01
86.36
96.62

2021 Diaz and Bandala [24] LSTM + LightGBM SoReL-20M 91.73

2022 Tekerek and Yapici [35] CNN BIG 2015
Dumpware 10

10,868 m
3686 m
608 b

99.86
99.60

2022 Arfeen et al. [26] XGBoost 29,273 88.70

2022 Wang and Qian [25] TextCNN SoReL-20M
BIG 2015

10,260 m
3759 m

98.18
93.46

2022 This Study LR CIC-MalMem-2022 29,298 m
29,298 b 99.97

Note: m—malware, b—benign.

Appl. Sci. 2022, 12, 8604 7 of 21

3. Malware Families

Malware is software that is programmed to perform harmful, illegal, and unwanted
activities on a system [2]. Malware can be classified in several ways, such as Trojan, virus,
worm, ransomware, rootkit, spam, and spyware. The dataset used in this study contains
malware samples belonging to three different malware categories. The malware categories
mentioned are Trojan horse, spyware, and ransomware.

Trojan Horse: Programs that appear harmless to users but carry out malicious soft-
ware activities in the background. The first known Trojan horse is a question-and-answer
game called Animal, created in 1974. This game had users choose an animal name and
pose questions to guess the animal’s name. In the background, it was copying itself to all
directories that the user had written access to, without authorization [40]. There is no limit
to what Trojan horses can do nowadays. New Trojan horse families are emerging every day.
Five types of Trojan horses are described in this study:

• Zeus: It is also known as Zbot. It first appeared in 2007. It is a type of banking
Trojan that is used to steal banking credentials via keylogging. Another important
function is to create a botnet by communicating with the C&C server. In the years
after its emergence, open-source code was shared and new versions such as Citadel,
GameoverZeus, Ice IX, and KINS were created [41].

• Emonet: It is a Trojan horse that first appeared in 2014. It is a banking malware
designed to snatch sensitive information by sniffing the network. In the years after its
emergence, it has been transformed into a platform that allows other malware to be
installed. It has capabilities such as creating and organizing botnets. It also has some
worm properties to propagate [41].

• Refroso: It is a Trojan horse with a backdoor function that first appeared in 2009. It
can change the settings of the firewall by deleting the registry entries. It can start and
hide memory processes. It can perform some activities such as redirecting to malicious
websites and hiding unwanted activities in the browser. It can assist access attacks by
providing a configuration that allows outside access.

• Scar: It is a Trojan horse that allows different malware to be installed on the device
it infects. It downloads a list of URLs that link to files with the exe extension to
allow malware to download more. It can also perform operations such as collecting
confidential information on the device and changing operating system settings.

• Reconyc: It is a Trojan horse that does the downloading different malware on the
device it infects. Like most malware, it is distributed from untrusted websites or as
an attachment to another file. It also can limit access to some important tools in the
operating system such as Command Prompt, Task Manager, and Registry Editor.

Spyware: They are malware that secretly record user information and movements
and transfer it to third parties. They usually collect information about the user’s browsing
habits and activities. This study describes the five types of spyware included in the dataset:

• 180Solutions: It is spyware, also known as Zango. It monitors some activities on the
Internet such as user movements, URLs visited, and cookies. It serves pop-ups and
targeted advertisements using the information it collects.

• CoolWebSearch (CWS): It is a browser hijacker first seen in 2003. It transfers sensitive
data collected through the browser to networks associated with CoolWebSearch. It
has several versions with different techniques such as DataNoter, BootConf, PnP,
Winres, SvcHost, and MSInfo. These versions perform different functions such as
monitoring access to certain websites, ensuring that CoolWebSearch does not appear
on the whitelist, and downloading adware.

• Gator: It is adware, also known as Gain AdServer. It can replicate itself by pretending
to be a virus. It can also download other spyware programs and perform updates.
Like other adware, it tracks user movements and delivers targeted ads and pop-ups.
Gator can cause memory wear by taking up a lot of hard disk space.

Appl. Sci. 2022, 12, 8604 8 of 21

• Transponder: It is spyware. It installs as a Browser Helper Object (BHO) distributed
with third-party software. At its initial setup, it collects information about the device
and user ID. Then, it monitors some activities such as user movements, URLs visited,
cookies, etc., and transfers them to the server. It is also software that creates pop-up
banners.

• TIBS: It is a malware known as TIBS dialer. It is spread through email attachments
and unreliable websites. It makes paid calls to adult websites using the modem. It
runs in the background of the device it has infected and does not affect its performance.
It is manifested by abnormal situations such as uncontrollable connections, unwanted
downloads, and hidden internet connections.

Ransomware: It is a type of malware that aims to obtain funds directly from the
user [40]. It restricts user access by encrypting disks, files, or various data on the device.
A fee is required from the user to remove the password. However, paying the specified
ransom does not always guarantee that the encrypted data can be accessed again. Ran-
somware is one of the growing problems nowadays. This study describes the five types of
spyware included in the dataset:

• Conti: A ransomware that emerged in 2020 that infiltrates local or networked drives
via phishing email. When clicked, it downloads Bazar backdoor and IcedID Tro-
jan horse to target machines. Encrypts SMB-type files with AES-256 using up to
32 logical threads. It ignores files with dll, exe, lnk, and sys extensions during en-
cryption. It deletes shadow copies of encrypted files and prevents them from being
uploaded again.

• Maze: It appeared in 2019. Maze is distributed via phishing emails that distribute
malicious macros with docx extension attachments, or by vulnerable networks such as
RDP servers, and Citrix/VPN servers. It is also distributed as a PE binary (dll, exe). It
uses ChaCha20 stream ciphers and RSA-2048 public encryption keys to encrypt files.
For this reason, it is also known as ChaCha ransomware. The creators of Maze publish
some of their encrypted documents on their websites.

• Pysa: It is a type of ransomware that appeared in 2018 and cannot spread on its own. It
is also known as Mespinoza. Phishing emails infiltrate machines by performing Brute
Force attacks against RDP servers and Active Directory. It uses a hybrid encryption
method created with AES-CBC and RSA algorithms. It stores the encrypted files with
the Pysa extension. It deletes shadow copies of encrypted files and prevents them
from being uploaded again.

• Ako: It is ransomware that infiltrates the machine with a phishing email that emerged
in 2020. It is also known as MedusaReborn. It is distributed with an encrypted zip file.
It is propagated by the src file in the folder. It encrypts files other than exe, dll, sys,
ini, lnk, key, and rdp files using MD5, SHA-1, and SHA-256. It drops a text containing
the ransom note and a folder named “id.key” containing the encryption key on the
target desktop.

• Shade: It is ransomware that was first seen in 2019 and infiltrated the machine via
phishing email. Also known as Troldesh. Shade is distributed in a zip file written in
Javascript. It uses two separate keys generated with AES-256 in CBC mode to encrypt
the content and filename of each file. It is also known for leaving notes with a large
number of different extensions on the computer is infected.

4. Material and Methods

In this section, firstly, information about Apache Spark big data platform is given.
Then, the dataset used in the study is introduced. The preprocessing steps performed are
mentioned. Finally, information about machine learning and deep learning methods used
in classification is given.

Apache Spark [42] is an open-source project designed to process big data in parallel.
Apache Spark is developed in the Scala language. Its basic structure is Resilient Distributed
Dataset (RDD). RDDs are distributed, flexible, and fault-tolerant structures. Apache Spark

Appl. Sci. 2022, 12, 8604 9 of 21

does in-memory data processing. Thanks to this feature, it can process faster than MapRe-
duce running on disk. Apache Spark consists of Spark Core, Spark SQL, Spark Streaming,
MLlib, and GraphX components. Spark Core is the structure on which all components are
built. Spark SQL, Spark Streaming, MLlib, and GraphX are the most important libraries of
Apache Spark. Spark SQL processes structured data while Spark Streaming is used for the
analysis of real-time data. MLlib is Spark’s machine learning library. Graph and network
analyses are performed with the GraphX library. These libraries can be used together in
a single project. Spark has multi-language support for realizing projects. Applications
can be made on Spark using Scala, Java, Python, and R languages. Apache Spark can use
Hadoop Distributed File System (HDFS) for storage and can be integrated with many big
data technologies.

4.1. Dataset

The CIC-MalMem-2022 dataset [43] used in this study was made available by the
Canadian Institute for Cybersecurity in 2022. The dataset is designed to test obfuscated
malware detection methods using memory dumps. CIC-MalMem-2022 is a balanced
dataset with a total of 58,596 records. Of the records that it contains, 29,298 are benign
and 29,298 are malicious. The malicious memory dump was created by executing software
samples collected from VirusTotal on a VM with 2GB memory. Next, normal behavior
was collected by running applications on the machine to generate a bona fide memory
dump [44]. The dataset contains three different types of malwares: Spyware, Ransomware,
and Trojan. As seen in Table 2, there are samples of 15 different malware families in
the dataset.

Table 2. Detailed explanation of the attributes of the CIC-MalMem-2022 dataset.

ID Modul.Feature_Name Description

1 Category Category
2 pslist.nproc Total number of processes
3 pslist.nppid Total number of parent processes
4 pslist.avg_threads Average number of threads for the processes
5 pslist.nprocs64bit Total number of 64 bit processes
6 pslist.avg_handlers Average number of handlers
7 dllist.ndlls Total number of loaded libraries for every process
8 dllist.avg_dlls_per_proc Average number of loaded libraries per process
9 handles.nhandles Total number of opened handles
10 handles.avg_handles_per_proc Average number of handles per process
11 handles.nport Total number of port handles
12 handles.nfile Total number of file handles
13 handles.nevent Total number of event handles
14 handles.ndesktop Total number of desktop handles
15 handles.nkey Total number of key handles
16 handles.nthread Total number of thread handles
17 handles.ndirectory Total number of directory handles
18 handles.nsemaphore Total number of semaphore handles
19 handles.ntimer Total number of timer handles
20 handles.nsection Total number of section handles
21 handles.nmutant Total number of mutant handles
22 ldrmodules.not_in_load Total number of modules missing from the load list
23 ldrmodules.not_in_init Total number of modules missing from the init list
24 ldrmodules.not_in_mem Total number of modules missing from the memory list
25 ldrmodules.not_in_load_avg The average amount of modules missing from the load list
26 ldrmodules.not_in_init_avg The average amount of modules missing from the init list
27 ldrmodules.not_in_mem_avg The average amount of modules missing from the memory
28 malfind.ninjections Total number of hidden code injections
29 malfind.commitCharge Total number of Commit Charges
30 malfind.protection Total number of protection

Appl. Sci. 2022, 12, 8604 10 of 21

Table 2. Cont.

ID Modul.Feature_Name Description

31 malfind.uniqueInjections Total number of unique injections
32 psxview.not_in_pslist Total number of processes not found in the pslist
33 psxview.not_in_eprocess_pool Total number of processes not found in the psscan
34 psxview.not_in_ethread_pool Total number of processes not found in the thrdproc
35 psxview.not_in_pspcid_list Total number of processes not found in the pspcid
36 psxview.not_in_csrss_handles Total number of processes not found in the csrss
37 psxview. not_in_session Total number of processes not found in the session
38 psxview. not_in_deskthrd Total number of processes not found in the desktrd
39 psxview.not_in_pslist_false_avg Average false ratio of the process list
40 psxview.not_in_eprocess_pool_false_avg Average false ratio of the process scan
41 psxview.not_in_ethread_pool_false_avg Average false ratio of the third process
42 psxview.not_in_pspcid_list_false_avg Average false ratio of the process id
43 psxview.not_in_csrss_handles_false_avg Average false ratio of the csrss
44 psxview.not_in_session_false_avg Average false ratio of the session
45 psxview.not_in_deskthrd_false_avg Average false ratio of the deskthrd
46 modules.nmodules Total number of modules
47 svcscan.nservices Total number of services
48 svcscan.kernel_drivers Total number of kernel drivers
49 svcscan.fs_drivers Total number of file system drivers
50 svcscan.process_services Total number of Windows 32 owned processes
51 svcscan.shared_process_services Total number of Windows 32 shared processes
52 svcscan.interactive_process_services Total number of interactive service processes
53 svcscan.nactive Total number of actively running service processes
54 callbacks.ncallbacks Total number of callbacks
55 callbacks.nanonymous Total number of unknown processes
56 callbacks.ngeneric Total number of generic processes
57 Class Benign or Malware

In addition, the dataset contains 57 attributes that contain traces of these malware
families in memory. These attributes are seen in Table 3.

Table 3. Malware samples used in the classification training and testing.

Malware Category Malware Families Count

Trojan Horse Zeus 1950
Emotet 1967
Refroso 2000

Scar 2000
Reconyc 1570

Spyware 180Solutions 2000
Coolwebsearch 2000

Gator 2200
Transponder 2410

TIBS 1410
Ransomware Conti 1988

Maze 1958
Pysa 1717
Ako 2000

Shade 2128

Total 29,298

4.2. Data Preprocessing

To make the dataset suitable for classification, some preprocessing steps are required.
These processes are important to improve the efficiency of classification models, as well
as to bring the data into a suitable format for the use of machine learning and deep
learning algorithms. In addition, some data balancing operations are performed against the

Appl. Sci. 2022, 12, 8604 11 of 21

overfitting problem, especially in deep learning approaches. However, the CIC-MalMem-
2022 dataset used in the study is a balanced dataset and consists of two classes, benign and
malware. It is a dataset that is resistant to the overfitting problem because the dataset is
balanced. Therefore, no action was taken for the overfitting problem in the study. In this
study categorical class values were converted to numerical values using Label Encoder.
With the Label Encoder process, each categorical value is randomly assigned to a different
numerical value, starting from zero. In this study, Benign and Malware categorical values
are assigned to two different values, 0 and 1, to make them ready for machine learning and
deep learning algorithms, and the numeric labels of the classes are seen in Table 4.

Table 4. Class name and numeric labels.

Label Class Name

0 Benign
1 Malware

Another preprocessing step is to remove features that do not have any impact on the
performance of machine learning and deep learning algorithms from the dataset. These
operations are generally called feature selection. For this purpose, “pslist.nprocs64bit”,
“handles.nport” and “svcscan.interactive_process_services” features that have zero values
in the dataset and do not have any effect on the results of the learning algorithms that have
been removed from the dataset. In addition, the “Category” feature in the dataset provides
information about malware families. This feature is unnecessary for binary classification.
However, it can be used in multiclass classification studies. As a result, the number of
features in the dataset, which was 57 in the feature selection preprocessing stage, was
reduced to 52. This step also prevents unnecessary resource consumption.

In this study, normalization was performed as the last preprocessing step. The nor-
malization process applied in the study is formulated with Equation (1). The normalization
process reduces numeric values to the range 0–1. In this way, the performance of algorithms
is improved by reducing the difference between numerical values.

o′ =
o− µ

σ
(1)

where o is the original value, o′ is the normalized value, and µ and σ are the mean and
standard deviation values, respectively.

4.3. Machine Learning and Deep Learning Algorithms

As the complexity and size of datasets increase, detection of malware becomes more
difficult. In the literature, machine learning algorithms are widely used to analyze such
complex data, extract patterns, and develop technologies in parallel with the development
of malware [9]. Machine learning and deep learning algorithms create classification models
using extracted features. They then use these models to classify new entries. Generally, the
accuracy of the classification predictions represents the success of the algorithm. In this
study, two-class classification models, malicious and benign, were established by using the
nine different algorithms mentioned below.

Random Forest (RF): Random Forest is a supervised ensemble algorithm introduced
by Breiman [45]. It is based on the bagging technique. As seen in Figure 1, it is formed by
the combination of multiple decision trees, which are created by choosing random samples.
The majority vote is calculated by averaging the results of all decision trees. The final
decision is made by a majority vote [46]. Increasing the number of trees (depth) improves
accuracy. It is an algorithm that is resistant to the overfitting problem.

Appl. Sci. 2022, 12, 8604 12 of 21

Appl. Sci. 2022, 12, 8604 13 of 23

the combination of multiple decision trees, which are created by choosing random
samples. The majority vote is calculated by averaging the results of all decision trees. The
final decision is made by a majority vote [46]. Increasing the number of trees (depth)
improves accuracy. It is an algorithm that is resistant to the overfitting problem.

Figure 1. Random Forest Structure.

Decision Tree (DT): It is a supervised learning algorithm used for classification and
regression. As seen in Figure 2, it is a rooted tree model that tests an attribute at each node.
Each branch and leaf carry a class label. Attribute values are classified by moving from
the root node to the leaf nodes. At each step, a model that predicts classes is created with
the decision rule created based on the attributes [45,47]. Decision trees are an algorithm
that are easy to understand and interpret. It is a frequently used machine learning
algorithm in the literature. Some of the most well-known decision tree examples are ID3,
J48, CART, and C4.5. In this study, CART was used as tree type in both Decision Tree
algorithm and Random Forest algorithm.

Figure 2. Decision Tree Structure.

Naive Bayes (NB): It is a supervised machine learning algorithm based on Bayes’
theorem. It calculates the probability of a sample belonging to a class. Naive Bayes accepts
that the emergence of a feature is independent of other features. Likewise, it is assumed
that each feature independently contributes equally to the computation [45]. The
probability value is given as 0 when there is new data in the test dataset that is not in the
training set. Mathematically, the probability equation of Bayes’ theorem is: 𝐏(𝐀|𝐁) = 𝐏(𝐁|𝐀)𝐏(𝐀)𝐏(𝐁) (2)P(A|B)—Posterior probability of the class when the predictor is given; P(A)—Prior probability of the class; P(B|A)—Probability of the predictor when class is given; P(B)—Prior probability of the predictor.

Logistic Regression (LR): It is a supervised machine learning algorithm used for
regression and classification. It estimates the dependent target variable using the set of

Figure 1. Random Forest Structure.

Decision Tree (DT): It is a supervised learning algorithm used for classification and
regression. As seen in Figure 2, it is a rooted tree model that tests an attribute at each node.
Each branch and leaf carry a class label. Attribute values are classified by moving from the
root node to the leaf nodes. At each step, a model that predicts classes is created with the
decision rule created based on the attributes [45,47]. Decision trees are an algorithm that
are easy to understand and interpret. It is a frequently used machine learning algorithm
in the literature. Some of the most well-known decision tree examples are ID3, J48, CART,
and C4.5. In this study, CART was used as tree type in both Decision Tree algorithm and
Random Forest algorithm.

Appl. Sci. 2022, 12, 8604 13 of 23

the combination of multiple decision trees, which are created by choosing random
samples. The majority vote is calculated by averaging the results of all decision trees. The
final decision is made by a majority vote [46]. Increasing the number of trees (depth)
improves accuracy. It is an algorithm that is resistant to the overfitting problem.

Figure 1. Random Forest Structure.

Decision Tree (DT): It is a supervised learning algorithm used for classification and
regression. As seen in Figure 2, it is a rooted tree model that tests an attribute at each node.
Each branch and leaf carry a class label. Attribute values are classified by moving from
the root node to the leaf nodes. At each step, a model that predicts classes is created with
the decision rule created based on the attributes [45,47]. Decision trees are an algorithm
that are easy to understand and interpret. It is a frequently used machine learning
algorithm in the literature. Some of the most well-known decision tree examples are ID3,
J48, CART, and C4.5. In this study, CART was used as tree type in both Decision Tree
algorithm and Random Forest algorithm.

Figure 2. Decision Tree Structure.

Naive Bayes (NB): It is a supervised machine learning algorithm based on Bayes’
theorem. It calculates the probability of a sample belonging to a class. Naive Bayes accepts
that the emergence of a feature is independent of other features. Likewise, it is assumed
that each feature independently contributes equally to the computation [45]. The
probability value is given as 0 when there is new data in the test dataset that is not in the
training set. Mathematically, the probability equation of Bayes’ theorem is: 𝐏(𝐀|𝐁) = 𝐏(𝐁|𝐀)𝐏(𝐀)𝐏(𝐁) (2)P(A|B)—Posterior probability of the class when the predictor is given; P(A)—Prior probability of the class; P(B|A)—Probability of the predictor when class is given; P(B)—Prior probability of the predictor.

Logistic Regression (LR): It is a supervised machine learning algorithm used for
regression and classification. It estimates the dependent target variable using the set of

Figure 2. Decision Tree Structure.

Naive Bayes (NB): It is a supervised machine learning algorithm based on Bayes’
theorem. It calculates the probability of a sample belonging to a class. Naive Bayes accepts
that the emergence of a feature is independent of other features. Likewise, it is assumed that
each feature independently contributes equally to the computation [45]. The probability
value is given as 0 when there is new data in the test dataset that is not in the training set.
Mathematically, the probability equation of Bayes’ theorem is:

P(A|B) = P(B|A)P(A)

P(B)
(2)

P(A|B)—Posterior probability of the class when the predictor is given;
P(A)—Prior probability of the class;
P(B|A)—Probability of the predictor when class is given;
P(B)—Prior probability of the predictor.
Logistic Regression (LR): It is a supervised machine learning algorithm used for

regression and classification. It estimates the dependent target variable using the set of

Appl. Sci. 2022, 12, 8604 13 of 21

independent variables. It takes probability values between 0 and 1. It uses the sigmoid
function shown in Figure 3 to position linear outputs between 0 and 1.

Appl. Sci. 2022, 12, 8604 14 of 23

independent variables. It takes probability values between 0 and 1. It uses the sigmoid
function shown in Figure 3 to position linear outputs between 0 and 1.

Figure 3. Sigmoid Function.

Gradient Boosted Tree (GBT): It is a supervised ensemble algorithm used for
regression and classification. It is based on the boosting technique. It is an algorithm based
on a weak learner tree. In the decision tree, a model is created for the weak learner and a
prediction is made. Calculation errors are passed on to the next weak learning tree, as
shown in Figure 4. The last model is the strong learner and is the weighted average of all
models. Apache Spark MLlib is only supported for binary classification.

Figure 4. Gradient Boosted Tree Iterations.

Linear Support Vector Machine (Linear SVC): It is a supervised machine learning
algorithm. Each data point is plotted in a space of equal size to the number of features. As
seen in Figure 5, classification is made by separating the data of one class from the others
with a drawn hyper-plane. The training samples are called support vectors. Margins
defined by support vectors define the hyperplane [46]. Apache Spark MLlib supports
Linear SVC for binary classification only. The OneVsRest approach is used for multiclass
classification.

Figure 3. Sigmoid Function.

Gradient Boosted Tree (GBT): It is a supervised ensemble algorithm used for regres-
sion and classification. It is based on the boosting technique. It is an algorithm based
on a weak learner tree. In the decision tree, a model is created for the weak learner and
a prediction is made. Calculation errors are passed on to the next weak learning tree, as
shown in Figure 4. The last model is the strong learner and is the weighted average of all
models. Apache Spark MLlib is only supported for binary classification.

Appl. Sci. 2022, 12, 8604 14 of 23

independent variables. It takes probability values between 0 and 1. It uses the sigmoid
function shown in Figure 3 to position linear outputs between 0 and 1.

Figure 3. Sigmoid Function.

Gradient Boosted Tree (GBT): It is a supervised ensemble algorithm used for
regression and classification. It is based on the boosting technique. It is an algorithm based
on a weak learner tree. In the decision tree, a model is created for the weak learner and a
prediction is made. Calculation errors are passed on to the next weak learning tree, as
shown in Figure 4. The last model is the strong learner and is the weighted average of all
models. Apache Spark MLlib is only supported for binary classification.

Figure 4. Gradient Boosted Tree Iterations.

Linear Support Vector Machine (Linear SVC): It is a supervised machine learning
algorithm. Each data point is plotted in a space of equal size to the number of features. As
seen in Figure 5, classification is made by separating the data of one class from the others
with a drawn hyper-plane. The training samples are called support vectors. Margins
defined by support vectors define the hyperplane [46]. Apache Spark MLlib supports
Linear SVC for binary classification only. The OneVsRest approach is used for multiclass
classification.

Figure 4. Gradient Boosted Tree Iterations.

Linear Support Vector Machine (Linear SVC): It is a supervised machine learning
algorithm. Each data point is plotted in a space of equal size to the number of features.
As seen in Figure 5, classification is made by separating the data of one class from the
others with a drawn hyper-plane. The training samples are called support vectors. Margins
defined by support vectors define the hyperplane [46]. Apache Spark MLlib supports
Linear SVC for binary classification only. The OneVsRest approach is used for multiclass
classification.

Appl. Sci. 2022, 12, 8604 14 of 21Appl. Sci. 2022, 12, 8604 15 of 23

Figure 5. Support Vector Machine Algorithm.

Multilayer Perceptron (MLP): It is a kind of feed-forward neural network. It has a
structure consisting of an input layer, hidden layer, and output layer. The output layer
must be equal to the number of classes. It has a supervised trained structure that uses
labeled data. The multilayer perceptron is generally used when there are a large amount
of labeled data [48]. Multilayer Perceptron is also a supported algorithm in Spark MLlib.

Deep Neural Network (DNN): As seen in Figure 6, it is a feed-forward neural
network with multiple hidden layers. It is widely used in supervised and unsupervised
learning and for classification and clustering. Deep Neural Networks compute the input
sequentially across layers. The output vector in each layer creates the input vector for the
next layer. The units in the tiers are multiplied by the current weight coefficient to produce
a weighted total. The determined activation function determines the output value by
applying the weighted sum obtained [48].

Figure 6. Feed-Forward Neural Network Architecture.

Long Short-Term Memory (LSTM): It is a type of Recurrent Neural Network (RNN).
It is designed to solve the disappearing gradient and long-term dependency problems in
RNN. It has feedback connections. In this way, it keeps the sequential data in its memory
and remembers the information for a long time. Unlike RNN, LSTM cells contain four
interactive layers. Figure 7 shows the interactive layers in the LSTM cell. Each cell has
three different gates. The gateway is the gate that updates the cell status at a given
moment. The exit gate is the gate that determines the next cell’s input at a given moment.
The forget gate is the gate that decides whether data will be forgotten or not, depending
on the situation of the cell at a certain moment. The mathematical formulas for these gates
are as follows. Input Gate (i୲) = σ୥(W୧x୲ + U୧h୲ିଵ + b୧) (3)

Figure 5. Support Vector Machine Algorithm.

Multilayer Perceptron (MLP): It is a kind of feed-forward neural network. It has
a structure consisting of an input layer, hidden layer, and output layer. The output layer
must be equal to the number of classes. It has a supervised trained structure that uses
labeled data. The multilayer perceptron is generally used when there are a large amount of
labeled data [48]. Multilayer Perceptron is also a supported algorithm in Spark MLlib.

Deep Neural Network (DNN): As seen in Figure 6, it is a feed-forward neural network
with multiple hidden layers. It is widely used in supervised and unsupervised learning and
for classification and clustering. Deep Neural Networks compute the input sequentially
across layers. The output vector in each layer creates the input vector for the next layer.
The units in the tiers are multiplied by the current weight coefficient to produce a weighted
total. The determined activation function determines the output value by applying the
weighted sum obtained [48].

Appl. Sci. 2022, 12, 8604 15 of 23

Figure 5. Support Vector Machine Algorithm.

Multilayer Perceptron (MLP): It is a kind of feed-forward neural network. It has a
structure consisting of an input layer, hidden layer, and output layer. The output layer
must be equal to the number of classes. It has a supervised trained structure that uses
labeled data. The multilayer perceptron is generally used when there are a large amount
of labeled data [48]. Multilayer Perceptron is also a supported algorithm in Spark MLlib.

Deep Neural Network (DNN): As seen in Figure 6, it is a feed-forward neural
network with multiple hidden layers. It is widely used in supervised and unsupervised
learning and for classification and clustering. Deep Neural Networks compute the input
sequentially across layers. The output vector in each layer creates the input vector for the
next layer. The units in the tiers are multiplied by the current weight coefficient to produce
a weighted total. The determined activation function determines the output value by
applying the weighted sum obtained [48].

Figure 6. Feed-Forward Neural Network Architecture.

Long Short-Term Memory (LSTM): It is a type of Recurrent Neural Network (RNN).
It is designed to solve the disappearing gradient and long-term dependency problems in
RNN. It has feedback connections. In this way, it keeps the sequential data in its memory
and remembers the information for a long time. Unlike RNN, LSTM cells contain four
interactive layers. Figure 7 shows the interactive layers in the LSTM cell. Each cell has
three different gates. The gateway is the gate that updates the cell status at a given
moment. The exit gate is the gate that determines the next cell’s input at a given moment.
The forget gate is the gate that decides whether data will be forgotten or not, depending
on the situation of the cell at a certain moment. The mathematical formulas for these gates
are as follows. Input Gate (i୲) = σ୥(W୧x୲ + U୧h୲ିଵ + b୧) (3)

Figure 6. Feed-Forward Neural Network Architecture.

Long Short-Term Memory (LSTM): It is a type of Recurrent Neural Network (RNN).
It is designed to solve the disappearing gradient and long-term dependency problems
in RNN. It has feedback connections. In this way, it keeps the sequential data in its
memory and remembers the information for a long time. Unlike RNN, LSTM cells contain
four interactive layers. Figure 7 shows the interactive layers in the LSTM cell. Each cell
has three different gates. The gateway is the gate that updates the cell status at a given
moment. The exit gate is the gate that determines the next cell’s input at a given moment.
The forget gate is the gate that decides whether data will be forgotten or not, depending on
the situation of the cell at a certain moment. The mathematical formulas for these gates are
as follows.

Input Gate (it) = σg(Wixt + Uiht−1 + bi) (3)

Output Gate (ot) = σg(Woxt + Uoht−1 + bo) (4)

Forget Gate (ft) = σg(Wfxt + Ufht−1 + bf) (5)

Appl. Sci. 2022, 12, 8604 15 of 21

Appl. Sci. 2022, 12, 8604 16 of 23

Output Gate (o୲) = σ୥(W୭x୲ + U୭h୲ିଵ + b୭) (4)Forget Gate (f୲) = σ୥(W୤x୲ + U୤h୲ିଵ + b୤) (5)

Figure 7. LSTM Architecture.

5. Experiments and Evaluation
This section describes the experiments performed on the CIC-MalMem-2022 dataset.

The studies were carried out on Google Colab using Pyspark supported by the Apache
Spark big data platform. Machine learning and deep learning models have been
established using Keras and Spark MLlib. Nine machine learning and deep learning
algorithms were compared, and their performances were evaluated. The workflow
followed in the study is shown in Figure 8.

Figure 8. Malware Detection Flowchart.

5.1. Model Parameters
In the study, the CIC-MalMem-2022 dataset was divided into 70% training set and

30% test set. To ensure that the training and test sets to be used in the established models
were the same, the seed parameter was set as “1234”. In addition, as a cross validation
procedure in the study, the training and test datasets were separated 10 times by 70% and
30%, each time containing different data, and the results obtained were averaged. In the
established models, the default parameters were generally adhered to. However, there
were parameter values entered except for the default parameters.

In the model established with the Random Forest algorithm, the maximum depth
was determined as 5. The maximum depth represents the depth of the tree. As the depth
of the trees increases, it can capture more information about the data. In the model
established with the Decision Tree algorithm, the maximum depth was specified as 5, as
in the Random Forest. Two different parameter values were given in the model

Figure 7. LSTM Architecture.

5. Experiments and Evaluation

This section describes the experiments performed on the CIC-MalMem-2022 dataset.
The studies were carried out on Google Colab using Pyspark supported by the Apache
Spark big data platform. Machine learning and deep learning models have been established
using Keras and Spark MLlib. Nine machine learning and deep learning algorithms were
compared, and their performances were evaluated. The workflow followed in the study is
shown in Figure 8.

Appl. Sci. 2022, 12, 8604 16 of 23

Output Gate (o୲) = σ୥(W୭x୲ + U୭h୲ିଵ + b୭) (4)Forget Gate (f୲) = σ୥(W୤x୲ + U୤h୲ିଵ + b୤) (5)

Figure 7. LSTM Architecture.

5. Experiments and Evaluation
This section describes the experiments performed on the CIC-MalMem-2022 dataset.

The studies were carried out on Google Colab using Pyspark supported by the Apache
Spark big data platform. Machine learning and deep learning models have been
established using Keras and Spark MLlib. Nine machine learning and deep learning
algorithms were compared, and their performances were evaluated. The workflow
followed in the study is shown in Figure 8.

Figure 8. Malware Detection Flowchart.

5.1. Model Parameters
In the study, the CIC-MalMem-2022 dataset was divided into 70% training set and

30% test set. To ensure that the training and test sets to be used in the established models
were the same, the seed parameter was set as “1234”. In addition, as a cross validation
procedure in the study, the training and test datasets were separated 10 times by 70% and
30%, each time containing different data, and the results obtained were averaged. In the
established models, the default parameters were generally adhered to. However, there
were parameter values entered except for the default parameters.

In the model established with the Random Forest algorithm, the maximum depth
was determined as 5. The maximum depth represents the depth of the tree. As the depth
of the trees increases, it can capture more information about the data. In the model
established with the Decision Tree algorithm, the maximum depth was specified as 5, as
in the Random Forest. Two different parameter values were given in the model

Figure 8. Malware Detection Flowchart.

5.1. Model Parameters

In the study, the CIC-MalMem-2022 dataset was divided into 70% training set and
30% test set. To ensure that the training and test sets to be used in the established models
were the same, the seed parameter was set as “1234”. In addition, as a cross validation
procedure in the study, the training and test datasets were separated 10 times by 70% and
30%, each time containing different data, and the results obtained were averaged. In the
established models, the default parameters were generally adhered to. However, there
were parameter values entered except for the default parameters.

In the model established with the Random Forest algorithm, the maximum depth was
determined as 5. The maximum depth represents the depth of the tree. As the depth of the
trees increases, it can capture more information about the data. In the model established
with the Decision Tree algorithm, the maximum depth was specified as 5, as in the Random
Forest. Two different parameter values were given in the model established with the Naive
Bayes algorithm. These parameters were smoothing and Naive Bayes model type. The
smoothing value is set to 1.0. The model type was Gaussian Naive Bayes. In the model
created using the Gradient Boosted Tree algorithm, the maximum number of iterations was
entered as 10. In the model created with the Linear Support Vector Machine algorithm,

Appl. Sci. 2022, 12, 8604 16 of 21

the maximum number of iterations was given as 10, as in the Gradient Boosted Tree. All
parameters used in the Logistic Regression model were left by default. Four layers were
used in the model created with the Multilayer Perceptron algorithm. The number of
neurons used in the input layer was 52, equal to the number of features. There were 20 and
16 nerve cells in the hidden layers, respectively. Since binary classification was made in
the study, the output layer consisted of 2 nerve cells. In addition, the maximum number of
iterations for the Multilayer Perceptron (MLP) model was 50 and the block size was 128.

There were five layers in the model established with the Deep Neural Network (DNN)
established with the Keras library. Fifty-two neurons were used in the input layer. There
were 30 nerve cells in hidden layers. Since binary classification was made, there was
1 neuron in the output layer. ReLu activation function was used in the input and hidden
layers. In the output layer, Sigmoid was used as the activation function. The loss function
used in the model was binary cross-entropy and the optimization algorithm was Adam. At
the same time, the dropout value was determined as 0.4. The model was run for 10 epochs.
The reason for choosing 10 epochs in the study was to compare the performances of the
models in shorter training periods. This is because there are rapidly changing malware
attacks or IT infrastructures that are constantly changing. Therefore, models may need to be
constantly trained against these new attacks and changes. It is evaluated that the selection
of models with high performance in short epoch numbers will shorten the re-learning
processes of the models and will provide an advantage in malware detection.

The model built with Long Short-Term Memory (LSTM) had three layers.
Fifty-two neurons were used in the input layer and the hidden layer. Since binary classi-
fication was made, there was 1 neuron in the output layer. ReLu activation function was
used in the input and hidden layers, and Sigmoid was used in the output layer. In the
model, binary cross-entropy was preferred as the loss function and Adam was preferred as
the optimization algorithm. At the same time, the dropout value was determined as 0.4.
The performance values obtained from the LSTM network were also obtained by running
10 epochs for the reasons specified in the DNN.

5.2. Results and Comparison

In the study, the performance of the models established with machine learning and
deep learning algorithms in binary classification was evaluated. Accuracy, Precision,
Recall, F1-score, Accuracy, and ROC-AUC parameters were calculated to compare the
performances. The values of performance metrics for the nine machine learning and deep
learning methods used are shown in Table 5.

Table 5. Precision, Recall, F1-Score, Accuracy, and ROC-AUC results.

Base Classifier Precision Recall F1-Score Accuracy ROC-AUC

Decision Tree 99.73% 99.85% 99.79% 99.79% 99.98%
Random Forest 99.97% 99.84% 99.90% 99.90% 99.76%

Naive Bayes 97.02% 99.85% 98.42% 98.41% 84.25%
Logistic Regression 99.98% 99.97% 99.97% 99.97% 100.00%

Gradient Boosted Tree 99.97% 99.91% 99.94% 99.94% 99.98%
Linear SVC 98.69% 99.57% 99.14% 99.14% 99.76%

MLP 96.42% 98.98% 97.68% 97.67% 99.23%
DNN 99.46% 99.64% 99.55% 99.56% 99.56%
LSTM 99.17% 99.69% 99.43% 99.43% 99.43%

According to Table 5, the algorithm that gives the best accuracy rate is Logistic Regres-
sion with 99.97%. The Gradient Boosted Tree algorithm follows a Logistic Regression with
99.94%. Looking at the comparison chart in Figure 9, it is seen that all algorithms achieve
high accuracy rates in the classification of the malware dataset. The algorithm with the
lowest accuracy rate is the Multilayer Perceptron algorithm with 97.67%.

Appl. Sci. 2022, 12, 8604 17 of 21

Appl. Sci. 2022, 12, 8604 18 of 23

According to Table 5, the algorithm that gives the best accuracy rate is Logistic
Regression with 99.97%. The Gradient Boosted Tree algorithm follows a Logistic
Regression with 99.94%. Looking at the comparison chart in Figure 9, it is seen that all
algorithms achieve high accuracy rates in the classification of the malware dataset. The
algorithm with the lowest accuracy rate is the Multilayer Perceptron algorithm with
97.67%.

Figure 9. Performance Comparison of ML and DL Models.

When we compare the AUC values of the models to evaluate their ability to
distinguish classes, it is seen that the Naive Bayes algorithm has a rate of 84.25%, which is
considerably lower than other machine learning and deep learning algorithms. Looking
at the ROC curve given in Figure 10a, it is seen that the models other than Naive Bayes
have quite high AUC values. The algorithm with the highest AUC value is Logistic
Regression with 100%. The Gradient Boosted Tree algorithm has a 99.98% AUC value.

(a) (b)

Figure 10. (a) ROC-AUC: comparison of ML and DL Models; (b) PRC-AUC: comparison of ML and
DL Models.

Figure 10b shows the PRC graph of the models. It is seen that as the Recall values of
the Naive Bayes algorithm increase, the Precision value decreases rapidly after a point
and falls below the 0.5 Precision threshold. When the Recall values of the LibSVM and
MLP algorithms decrease, it is seen that there is some fluctuation in the Precision values.
However, in general, it can be said that the algorithms have a perfect balance.

Figure 9. Performance Comparison of ML and DL Models.

When we compare the AUC values of the models to evaluate their ability to distinguish
classes, it is seen that the Naive Bayes algorithm has a rate of 84.25%, which is considerably
lower than other machine learning and deep learning algorithms. Looking at the ROC
curve given in Figure 10a, it is seen that the models other than Naive Bayes have quite high
AUC values. The algorithm with the highest AUC value is Logistic Regression with 100%.
The Gradient Boosted Tree algorithm has a 99.98% AUC value.

Appl. Sci. 2022, 12, 8604 18 of 23

According to Table 5, the algorithm that gives the best accuracy rate is Logistic
Regression with 99.97%. The Gradient Boosted Tree algorithm follows a Logistic
Regression with 99.94%. Looking at the comparison chart in Figure 9, it is seen that all
algorithms achieve high accuracy rates in the classification of the malware dataset. The
algorithm with the lowest accuracy rate is the Multilayer Perceptron algorithm with
97.67%.

Figure 9. Performance Comparison of ML and DL Models.

When we compare the AUC values of the models to evaluate their ability to
distinguish classes, it is seen that the Naive Bayes algorithm has a rate of 84.25%, which is
considerably lower than other machine learning and deep learning algorithms. Looking
at the ROC curve given in Figure 10a, it is seen that the models other than Naive Bayes
have quite high AUC values. The algorithm with the highest AUC value is Logistic
Regression with 100%. The Gradient Boosted Tree algorithm has a 99.98% AUC value.

(a) (b)

Figure 10. (a) ROC-AUC: comparison of ML and DL Models; (b) PRC-AUC: comparison of ML and
DL Models.

Figure 10b shows the PRC graph of the models. It is seen that as the Recall values of
the Naive Bayes algorithm increase, the Precision value decreases rapidly after a point
and falls below the 0.5 Precision threshold. When the Recall values of the LibSVM and
MLP algorithms decrease, it is seen that there is some fluctuation in the Precision values.
However, in general, it can be said that the algorithms have a perfect balance.

Figure 10. (a) ROC-AUC: comparison of ML and DL Models; (b) PRC-AUC: comparison of ML and
DL Models.

Figure 10b shows the PRC graph of the models. It is seen that as the Recall values
of the Naive Bayes algorithm increase, the Precision value decreases rapidly after a point
and falls below the 0.5 Precision threshold. When the Recall values of the LibSVM and
MLP algorithms decrease, it is seen that there is some fluctuation in the Precision values.
However, in general, it can be said that the algorithms have a perfect balance.

According to the Confusion matrices given in Figure 11, the Logistic Regression
algorithm misclassified only 2 benign and 3 malwares. In other words, the Logistic Re-
gression algorithm performed the most successful classification with the least number of
misclassifications.

Decision Tree and Gradient Boosted Tree algorithms both classified 3 benign as mal-
ware. However, Gradient Boosted Tree classified less malware as benign. In this way, it can
be said that the Gradient Boosted Tree performs a more successful classification than the
Decision Tree and Random Forest. In addition, Decision Tree and Naive Bayes algorithms

Appl. Sci. 2022, 12, 8604 18 of 21

also seem to misclassify the same number of malwares. However, Decision Tree has made
few misclassifications in benign classification and is more successful than Naive Bayes.

MLP algorithm misclassified 320 benign and 89 malwares, making it the most misclas-
sified algorithm. Naive Bayes and Linear SVC algorithms drew attention by misclassifying
a high number of benign. When examined in more detail, the Naive Bayes algorithm’s FN
rate is lower than FP. In other words, it can be said that the reason for the low success rate
of the Naive Bayes algorithm is its failure in classifying the benign ones.

When deep learning algorithms are evaluated in themselves, it is seen that the DNN
algorithm makes less misclassification than LSTM and MLP algorithms. It is also note-
worthy that the algorithms that fail the most in malware classification are deep learning
algorithms.

One of the deep learning approaches used in the study, LSTM networks are generally
used in solving and classifying problems specific to serialized data. However, since LSTM
networks are used in many intrusion detection or malware detection applications in the
literature, they are used in this study to compare their performance in non-serial datasets.
From the results obtained, the CIC-MalMem-2022 dataset produced relatively successful
results, although it did not have serialized data.

In general, when the FN and FP values are examined, it is seen that the Logistic
regression, Gradient Boosted Tree, and Decision Tree algorithms have low FP values.
These algorithms are more successful in benign classification. However, the remaining
six algorithms have lower FN values and higher FP values. In other words, these algorithms
are more successful in malware classification, but less successful in benign classification.

Appl. Sci. 2022, 12, 8604 19 of 23

According to the Confusion matrices given in Figure 11, the Logistic Regression
algorithm misclassified only 2 benign and 3 malwares. In other words, the Logistic
Regression algorithm performed the most successful classification with the least number
of misclassifications.

Figure 11. Confusion Matrix of (a) Decision Tree; (b) Random Forest; (c) Naive Bayes; (d) Logistic
Regression; (e) Gradient Boosted Tree; (f) Linear SVC; (g) MLP; (h) DNN; (i) LSTM.

Decision Tree and Gradient Boosted Tree algorithms both classified 3 benign as
malware. However, Gradient Boosted Tree classified less malware as benign. In this way,
it can be said that the Gradient Boosted Tree performs a more successful classification
than the Decision Tree and Random Forest. In addition, Decision Tree and Naive Bayes
algorithms also seem to misclassify the same number of malwares. However, Decision
Tree has made few misclassifications in benign classification and is more successful than
Naive Bayes.

MLP algorithm misclassified 320 benign and 89 malwares, making it the most
misclassified algorithm. Naive Bayes and Linear SVC algorithms drew attention by
misclassifying a high number of benign. When examined in more detail, the Naive Bayes
algorithm’s FN rate is lower than FP. In other words, it can be said that the reason for the
low success rate of the Naive Bayes algorithm is its failure in classifying the benign ones.

When deep learning algorithms are evaluated in themselves, it is seen that the DNN
algorithm makes less misclassification than LSTM and MLP algorithms. It is also

Figure 11. Confusion Matrix of (a) Decision Tree; (b) Random Forest; (c) Naive Bayes; (d) Logistic
Regression; (e) Gradient Boosted Tree; (f) Linear SVC; (g) MLP; (h) DNN; (i) LSTM.

Appl. Sci. 2022, 12, 8604 19 of 21

DNN and LSTM algorithms were run for 10 epochs. When the training loss-validation
loss graphs of DNN and LSTM given in Figure 12 are examined, the inconsistency in the
DNN model is remarkable. However, it tended to recover quickly after inconsistency.
According to the given graphs, the generalizability ability of LSTM is higher than the DNN
algorithm. However, in both graphs, the training loss rate is higher than the validation loss
rate. Evaluations can be repeated with a larger epoch.

Appl. Sci. 2022, 12, 8604 20 of 23

noteworthy that the algorithms that fail the most in malware classification are deep
learning algorithms.

One of the deep learning approaches used in the study, LSTM networks are generally
used in solving and classifying problems specific to serialized data. However, since LSTM
networks are used in many intrusion detection or malware detection applications in the
literature, they are used in this study to compare their performance in non-serial datasets.
From the results obtained, the CIC-MalMem-2022 dataset produced relatively successful
results, although it did not have serialized data.

In general, when the FN and FP values are examined, it is seen that the Logistic
regression, Gradient Boosted Tree, and Decision Tree algorithms have low FP values.
These algorithms are more successful in benign classification. However, the remaining six
algorithms have lower FN values and higher FP values. In other words, these algorithms
are more successful in malware classification, but less successful in benign classification.

DNN and LSTM algorithms were run for 10 epochs. When the training loss-
validation loss graphs of DNN and LSTM given in Figure 12 are examined, the
inconsistency in the DNN model is remarkable. However, it tended to recover quickly
after inconsistency. According to the given graphs, the generalizability ability of LSTM is
higher than the DNN algorithm. However, in both graphs, the training loss rate is higher
than the validation loss rate. Evaluations can be repeated with a larger epoch.

(a) (b)

Figure 12. Loss and Validation Loss Graphs for (a) DNN; and (b) LSTM.

6. Conclusions
Developing technology in the digitalizing global world brings with it an increase in

malware. The rapid increase in malware makes it necessary to take some precautions.
Static and dynamic analysis methods currently used to combat malware have some
limitations in detecting modern and advanced malware. This situation has made the
memory analysis-based approach gain importance in the detection of malware.

In this study, binary classification was performed with a big data approach to detect
malware using the balanced CIC-MalMem-2022 dataset containing memory analysis data.
The study was carried out using Apache Spark big data platform on Google Colab.
Classification models were established using nine different machine learning and deep
learning algorithms. The results of the models were compared with Accuracy, F1-score,
Precision, Recall, and AUC performance metrics. When performance metrics are
evaluated, it was seen that all models achieved high performances in malware
classification. Among these algorithms, Logistic Regression was the best performing
algorithm with 99.97% accuracy. The results show that memory analysis data contributed
to high success rates in malware detection.

The parameters used throughout the study and the results obtained are specific to
the CIC-MalMem-2022 dataset. If a different dataset is used, differences in the number of
features or classes may result in different results. This situation is considered as a
limitation of the study. However, it is thought that a successful malware detection can be

Figure 12. Loss and Validation Loss Graphs for (a) DNN; and (b) LSTM.

6. Conclusions

Developing technology in the digitalizing global world brings with it an increase in
malware. The rapid increase in malware makes it necessary to take some precautions. Static
and dynamic analysis methods currently used to combat malware have some limitations in
detecting modern and advanced malware. This situation has made the memory analysis-
based approach gain importance in the detection of malware.

In this study, binary classification was performed with a big data approach to detect
malware using the balanced CIC-MalMem-2022 dataset containing memory analysis data.
The study was carried out using Apache Spark big data platform on Google Colab. Classifi-
cation models were established using nine different machine learning and deep learning
algorithms. The results of the models were compared with Accuracy, F1-score, Precision,
Recall, and AUC performance metrics. When performance metrics are evaluated, it was
seen that all models achieved high performances in malware classification. Among these
algorithms, Logistic Regression was the best performing algorithm with 99.97% accuracy.
The results show that memory analysis data contributed to high success rates in malware
detection.

The parameters used throughout the study and the results obtained are specific to
the CIC-MalMem-2022 dataset. If a different dataset is used, differences in the number of
features or classes may result in different results. This situation is considered as a limitation
of the study. However, it is thought that a successful malware detection can be achieved by
using the machine learning and deep learning approaches used in this study with different
model parameters specific to the dataset.

This study provides a basis for classification studies using machine learning and
deep learning methods in memory analysis and malware detection. It also offers a new
perspective in memory analysis-based malware detection using a big data approach. In
future studies, the analyses can be repeated using different hyperparameters. In addition,
the CIC-MalMem-2022 dataset Category feature includes four different class labels: Benign,
Spyware, Ransomware, and Trojan. In future studies, multiclass classification is planned
using machine learning and deep learning algorithms based on the Category feature. In
addition, since there is data imbalance between Benign, Spyware, Ransomware and Trojan
classes, we plan to perform data balancing along with multiclass classification.

Appl. Sci. 2022, 12, 8604 20 of 21

Author Contributions: Conceptualization, M.D., G.O. and A.O.; methodology, M.D., G.O. and A.O.;
software, M.D., G.O. and A.O.; validation, M.D., G.O. and A.O.; formal analysis, M.D., G.O. and A.O.;
investigation, M.D., G.O. and A.O.; resources, M.D., G.O. and A.O.; data curation, M.D., G.O. and
A.O.; writing—original draft preparation, M.D., G.O. and A.O.; writing—review and editing, M.D.,
G.O. and A.O.; visualization, M.D., G.O. and A.O.; supervision, M.D.; project administration, M.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. AV-Test Institute. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 17 May 2022).
2. Yucel, C.; Koltuksuz, A. Imaging and evaluating the memory access for malware. Forens. Sci. Int. Digit. Investig. 2020, 32, 200903.

[CrossRef]
3. Banin, S.; Dyrkolbotn, G.O. Detection of Previously Unseen Malware Using Memory Access Patterns Recorded before the Entry

Point. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 2242–2253.

4. Sihwail, R.; Omar, K.; Zainol Ariffin, K.A. A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory
Analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1662–1671. [CrossRef]

5. Mosli, R.N.; Li, R.; Yuan, B.; Pan, Y. Automated malware detection using artifacts in forensic memory images. In Proceedings of
the 2016 IEEE Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 10–11 May 2016.

6. Rathnayaka, C.; Jamdagni, A. An Efficient Approach for Advanced Malware Analysis Using Memory Forensic Technique. In
Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia, 1–4 August 2017; pp. 1145–1150.

7. Sihwail, R.; Omar, K.; Ariffin, K.A.Z. An Effective Memory Analysis for Malware Detection and Classification. CMC Comput.
Mater. Contin. 2021, 67, 2301–2320. [CrossRef]

8. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.; Al Afghani, S. Malware Detection Approach Based on Artifacts in Memory Image and
Dynamic Analysis. Appl. Sci. 2019, 9, 3680. [CrossRef]

9. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

10. Aghaeikheirabady, M.; Farshchi, S.M.R.; Shirazi, H. A New Approach to Malware Detection by Comparative Analysis of Data
Structures in a Memory Image. In Proceedings of the 2014 International Congress on Technology, Communication and Knowledge
(ICTCK), Mashhad, Iran, 26–27 November 2014.

11. Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis and classification.
Comput. Secur. 2015, 52, 251–266. [CrossRef]

12. Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel Feature Extraction, Selection and Fusion for Effective
Malware Family Classification. In Proceedings of the Codaspy’16: Proceedings of the Sixth Acm Conference on Data and
Application Security and Privacy, New Orleans, LA, USA, 9–11 March 2016; pp. 183–194.

13. Kumara, M.A.A.; Jaidhar, C.D. Leveraging virtual machine introspection with memory forensics to detect and characterize
unknown malware using machine learning techniques at hypervisor. Digit. Investig. 2017, 23, 99–123. [CrossRef]

14. Mosli, R.; Li, R.; Yuan, B.; Pan, Y. A Behavior-Based Approach for Malware Detection. IFIP Adv. Inf. Commun. Technol. 2017, 511,
187–201.

15. Petrik, R.; Arik, B.; Smith, J.M. Towards Architecture and OS-Independent Malware Detection via Memory Forensics. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Ccs’18), Toronto, ON, Canada,
15–19 October 2018; pp. 2267–2269.

16. Nissim, N.; Lahav, O.; Cohen, A.; Elovici, Y.; Rokach, L. Volatile memory analysis using the MinHash method for efficient and
secured detection of malware in private cloud. Comput. Secur. 2019, 87, 101590. [CrossRef]

17. Lashkari, A.H.; Li, B.; Carrier, T.L.; Kaur, G. VolMemLyzer: Volatile Memory Analyzer for Malware Classification Using Feature
Engineering. In Proceedings of the 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge
(RDAAPS), Hamilton, ON, Canada, 18–19 May 2021; pp. 1–8.

18. Severi, G.; Leek, T.; Dolan-Gavitt, B. MALREC: Compact Full-Trace Malware Recording for Retrospective Deep Analysis. In
Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Cham, Switzerland, 2018; Volume 10885, pp. 3–23.

19. Kang, J.; Jang, S.; Li, S.; Jeong, Y.S.; Sung, Y. Long short-term memory-based Malware classification method for information
security. Comput. Electr. Eng. 2019, 77, 366–375. [CrossRef]

20. Safa, H.; Nassar, M.; Al Orabi, W.A. Benchmarking Convolutional and Recurrent Neural Networks for Malware Classification.
In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier,
Morocco, 24–28 June 2019; pp. 561–566.

https://www.av-test.org/en/statistics/malware/
http://doi.org/10.1016/j.fsidi.2019.200903
http://doi.org/10.18517/ijaseit.8.4-2.6827
http://doi.org/10.32604/cmc.2021.014510
http://doi.org/10.3390/app9183680
http://doi.org/10.1016/j.cose.2018.11.001
http://doi.org/10.1016/j.cose.2015.04.001
http://doi.org/10.1016/j.diin.2017.10.004
http://doi.org/10.1016/j.cose.2019.101590
http://doi.org/10.1016/j.compeleceng.2019.06.014

Appl. Sci. 2022, 12, 8604 21 of 21

21. Lu, X.F.; Jiang, F.S.; Zhou, X.; Yi, S.W.; Sha, J.; Lio, P. ASSCA: API sequence and statistics features combined architecture for
malware detection. Comput. Netw. 2019, 157, 99–111.

22. Sung, Y.; Jang, S.; Jeong, Y.S.; Park, J.H. Malware classification algorithm using advanced Word2vec-based Bi-LSTM for ground
control stations. Comput. Commun. 2020, 153, 342–348. [CrossRef]

23. Panker, T.; Nissim, N. Leveraging malicious behavior traces from volatile memory using machine learning methods for trusted
unknown malware detection in Linux cloud environments. Knowl. Based Syst. 2021, 226, 107095. [CrossRef]

24. Diaz, J.A.; Bandala, A. Portable Executable Malware Classifier Using Long Short Term Memory and Sophos-ReversingLabs 20
Million Dataset. In Proceedings of the TENCON 2021—2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand,
7–10 December 2021; pp. 881–884.

25. Wang, Q.H.; Qian, Q. Malicious code classification based on opcode sequences and textCNN network. J. Inf. Secur. Appl.
2022, 67, 103151. [CrossRef]

26. Arfeen, A.; Khan, M.A.; Zafar, O.; Ahsan, U. Process based volatile memory forensics for ransomware detection. Concurr. Comput.
Pract. Exp. 2022, 34, e6672. [CrossRef]

27. Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; de Geus, P. Malicious Software Classification using Transfer Learning of
ResNet-50 Deep Neural Network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014.

28. Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885.
[CrossRef]

29. Dai, Y.S.; Li, H.; Qian, Y.K.; Lu, X.D. A malware classification method based on memory dump grayscale image. Digit. Investig.
2018, 27, 30–37. [CrossRef]

30. Li, H.H.; Zhan, D.Y.; Liu, T.R.; Ye, L. Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. In
Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW),
Monterey, CA, USA, 4–7 November 2019; pp. 1–6.

31. Dai, Y.S.; Li, H.; Qian, Y.K.; Yang, R.P.; Zheng, M. SMASH: A Malware Detection Method Based on Multi-Feature Ensemble
Learning. IEEE Access 2019, 7, 112588–112597. [CrossRef]

32. Wong, W.K.; Juwono, F.H.; Apriono, C. Vision-Based Malware Detection: A Transfer Learning Approach Using Optimal
ECOC-SVM Configuration. IEEE Access 2021, 9, 159262–159270. [CrossRef]

33. Bozkir, A.S.; Tahillioglu, E.; Aydos, M.; Kara, I. Catch them alive: A malware detection approach through memory forensics,
manifold learning and computer vision. Comput. Secur. 2021, 103, 102166. [CrossRef]

34. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damasevicius, R. An Efficient DenseNet-Based Deep Learning Model for
Malware Detection. Entropy 2021, 23, 344. [CrossRef] [PubMed]

35. Tekerek, A.; Yapici, M.M. A novel malware classification and augmentation model based on convolutional neural network.
Comput. Secur. 2022, 112, 102515. [CrossRef]

36. Awan, M.J.; Masood, O.A.; Mohammed, M.A.; Yasin, A.; Zain, A.M.; Damaševičius, R.; Abdulkareem, K.H. Image-Based Malware
Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [CrossRef]

37. Yadav, P.; Menon, N.; Ravi, V.; Vishvanathan, S.; Pham, T.D. EfficientNet convolutional neural networks-based Android malware
detection. Comput. Secur. 2022, 115, 102622. [CrossRef]

38. Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-Based Classification Using Neural Networks and
Machine Learning Models for Windows PE Malware Detection. Electronics 2021, 10, 485. [CrossRef]

39. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE Malware Detection Using Ensemble Learning.
Informatics. 2021, 8, 10. [CrossRef]

40. Kim, D.; Solomon, M.G. Fundamentals of Information Systems Security; Jones & Bartlett Learning: Burlington, MA, USA, 2016.
41. Grammatikakis, K.P.; Koufos, I.; Kolokotronis, N.; Vassilakis, C.; Shiaeles, S. Understanding and Mitigating Banking Trojans:

From Zeus to Emotet. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes,
Greece, 26–28 July 2021; pp. 121–128.

42. Apache Spark. Available online: https://spark.apache.org/ (accessed on 17 May 2022).
43. Canadian Institute for Cybersecurity. Available online: https://www.unb.ca/cic/datasets/malmem-2022.html (accessed on

17 May 2022).
44. Carrier, T.; Victor, P.; Tekeoglu, A.; Lashkari, A. Detecting Obfuscated Malware using Memory Feature Engineering. In Proceedings

of the 8th International Conference on Information Systems Security and Privacy, Online Streaming, 9–11 February 2022;
pp. 177–188.

45. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011.
46. Gupta, D.; Rani, R. Improving malware detection using big data and ensemble learning. Comput. Electr. Eng. 2020, 86, 106729.

[CrossRef]
47. Gandotra, E.; Bansal, D.; Sofat, S. Tools & Techniques for Malware Analysis and Classification. Int. J. Next-Gener. Com. 2016, 7,

176–197.
48. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef]

http://doi.org/10.1016/j.comcom.2020.02.005
http://doi.org/10.1016/j.knosys.2021.107095
http://doi.org/10.1016/j.jisa.2022.103151
http://doi.org/10.1002/cpe.6672
http://doi.org/10.1016/j.cose.2018.04.005
http://doi.org/10.1016/j.diin.2018.09.006
http://doi.org/10.1109/ACCESS.2019.2934012
http://doi.org/10.1109/ACCESS.2021.3131713
http://doi.org/10.1016/j.cose.2020.102166
http://doi.org/10.3390/e23030344
http://www.ncbi.nlm.nih.gov/pubmed/33804035
http://doi.org/10.1016/j.cose.2021.102515
http://doi.org/10.3390/electronics10192444
http://doi.org/10.1016/j.cose.2022.102622
http://doi.org/10.3390/electronics10040485
http://doi.org/10.3390/informatics8010010
https://spark.apache.org/
https://www.unb.ca/cic/datasets/malmem-2022.html
http://doi.org/10.1016/j.compeleceng.2020.106729
http://doi.org/10.1093/bib/bbw068

	Introduction
	Related Works
	Malware Families
	Material and Methods
	Dataset
	Data Preprocessing
	Machine Learning and Deep Learning Algorithms

	Experiments and Evaluation
	Model Parameters
	Results and Comparison

	Conclusions
	References

