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Abstract: In this review, the industry’s current issues regarding intelligent manufacture are presented.
This work presents the status and the potential for the I4.0 and I5.0’s revolutionary technologies.
AI and, in particular, the DRL algorithms, which are a perfect response to the unpredictability and
volatility of modern demand, are studied in detail. Through the introduction of RL concepts and the
development of those with ANNs towards DRL, the potential and variety of these kinds of algorithms
are highlighted. Moreover, because these algorithms are data based, their modification to meet the
requirements of industry operations is also included. In addition, this review covers the inclusion
of new concepts, such as digital twins, in response to an absent environment model and how it can
improve the performance and application of DRL algorithms even more. This work highlights that
DRL applicability is demonstrated across all manufacturing industry operations, outperforming
conventional methodologies and, most notably, enhancing the manufacturing process’s resilience and
adaptability. It is stated that there is still considerable work to be carried out in both academia and
industry to fully leverage the promise of these disruptive tools, begin their deployment in industry,
and take a step closer to the I5.0 industrial revolution.

Keywords: deep reinforcement learning; smart manufacturing; industry 4.0; industry 5.0; sim-to-real
transfer; path planning; scheduling; process control; robotics; maintenance; energy management

1. Introduction

Roughly a decade ago, industry 4.0 (I4.0) emerged as the term to define the fourth
industrial revolution. Its objective is the transition from the mass production automa-
tion of the third industrial revolution to more efficient and flexible production [1]. It can
be defined as a technology-driven revolution focusing on further automation and the
digitalisation of industrial processes. This results in smart factories, which make use of
improved technologies, such as artificial intelligence (AI), Internet of Things (IoT), cloud
computing and cyber-physical systems (CPS) [2]. However, it lacks a human-centric and
sustainability-centred vision. Moreover, the COVID-19 crisis revealed some deficiencies in
global industrial production, which lacks enough flexibility to deal with abrupt changes
in production demand [3]. For this reason, the term industry 5.0 (I5.0) has been intro-
duced [4]. This new concept strengthens and complements the objectives of I4.0 through a
human-centric, sustainable and resilient industry, reinforcing the contribution of industry
to worker welfare and green transition. To this end, it combines the advances in I4.0
technologies in terms of digital twins, CPS, Big Data and AI, among others, with inno-
vative technologies that have surged in the last years [5]. all in all, with a human and
sustainable-centred perspective [6].

In 2021, manufacturing recovered to pre-pandemic levels of activity, generating ap-
proximately 17% of the gross domestic product (GDP) on average around the world [7]
and 14.9% in the European Union, making it the most important industrial activity at the
economic level [8].
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Independently of the sector, manufacturing comprises many processes, from planning
and scheduling to executing physical operations in the production line until the product
is ready for distribution [9]. Among these processes, there are tasks involving production
scheduling, assembly, decision support systems and path planning. Currently, many of
them are carried out by digital systems and robots thanks to the automation of factories,
improving their efficiency [10]. However, applying artificial intelligence, in particular
machine learning (ML), takes a step forward in this enhancement. Without being explicitly
programmed, machine learning algorithms endow automatons with cognitive capabilities
that allow them to learn a task [11]. However, the bulk of these algorithms require data
in order to learn, and it is not always possible to obtain accurate data in some industrial
settings. Reinforcement learning (RL) is a machine learning paradigm that is ideal since its
algorithms immediately learn from interaction with the environment. Additionally, the use
of deep neural networks (DNNs) with RL algorithms gave rise to deep reinforcement learn-
ing (DRL), whose algorithms are capable of learning more complex tasks [12]. Furthermore,
those algorithms are relevant for both I4.0 and the upcoming I5.0 since they align with the
objective of industry 5.0 easily adapting to a more human-centred approach [13,14].

As reflected in most of the reviews concerning smart manufacturing, I4.0 and I5.0,
AI is identified as a key enabling technology. However, AI is a huge study field, and the
majority of those reviews do not go deep into how and what to implement given a specific
problem. Furthermore, the results in that direction are even scarcer when focusing on
more specific AI fields such as DRL. In this sense, the present paper provides a review
of the most commonly used DRL algorithms in manufacturing processes, including their
main characteristics and performance, real applications and implementation. Therefore, the
paper is intended to serve as a guideline for the development and improvement of factories
in line with industry 4.0 and 5.0, promoting the use of DRL techniques and algorithms.

The structure of the paper is as follows. Firstly, the fundamentals of reinforcement
learning are briefly explained. Section 2 depicts the search performed for publications on
this topic. Section 3 outlines current DRL algorithms and their classification according to
their features. Section 4 illustrates the use of DRL algorithms in manufacturing. Section 5
demonstrates the current training techniques for those algorithms and its implementation
in real-world tasks. Finally, conclusions and trendy lines of research are exposed.

Reinforcement Learning

In the early history of reinforcement learning, there were three threads; the first one
focused on learning by trial and error; the second one centred on the problem of optimal
control; and the third one surged later on, based on ideas from the first two, concerned
temporal–difference methods. All of them came together in the late 1980s to give birth to
the modern field of reinforcement learning [15]. Nowadays, reinforcement learning has
been consolidated as one of the three main machine learning paradigms, together with
supervised and unsupervised learning [16,17].

Reinforcement learning algorithms are based on an iterative learning process. The
learning process is based on trial and error and the interaction between an agent and an
environment [18]. This interaction is modelled as a Markov Decision Process (MDP), a
concept first introduced by Bellman R. E. in 1957 [19]. Through this idea, the interaction
is reduced to three signals: state s (the current situation of the environment); action a
(operation or decision taken by the agent based on the state and its experience); and reward
r (numerical feedback that the environment returns to the agent to indicate how good or
bad is the action taken by the agent) [20]. Figure 1 illustrates this interaction.

The objective of the agent is to maximise the accumulative reward in the long run,
which entails learning the task [21]. This is reflected within the policy of the agent, π,
which determines which action is more suitable to take in each state. This policy is updated
and improved as the agent interacts with the environment and gains experience [22]. The
acquired knowledge is represented in a value function, which can be defined in two ways:
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• State-value function for policy π (Vπ(s)), which assigns the expected accumulative
reward to each state as the agent will receive if the interaction starts in state s and
follows the policy π.

• Action-value function for policy π (Qπ(s, a))), which determines the expected accumu-
lative reward for each action-state pair as the agent will receive if it starts the in state s,
takes action a and follows the policy π thereafter.

In the learning process, the value function and the policy are updated and improved
regarding each other. Under this, the exploration–exploitation problem exists, and a trade-
off must be found [23,24]. On the one hand, exploration of new actions is necessary to learn
alternative paths to achieve the goal and learn the task, whereas exploitation leverages
the acquired knowledge to maximise the accumulative reward [25]. On the other hand,
exploitation consists of applying the knowledge learned and mostly taking the optimum
action known [26].
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Firstly, RL algorithms go through an exploratory phase to learn the dynamics of
the environment. In this sense, there are several exploration techniques. The most com-
mon technique is a random exploration which usually gives great results, as reflected
through impressive performances in self-driving cars [27], autonomous landing [28], Atari
games [29], Mujoco simulator [30], controller tuning [31] and much more. There are also
complex techniques, such as reward shaping [32,33], where the algorithm designer arbitrar-
ily modifies the agent’s rewards. However, this technique highly depends on the designer’s
experience and knowledge of the problem. Errors in reward shaping may lead to infinite
repetition of action [34] or no actions at all [35]. An extensive analysis concerning the
exploratory techniques and their benefits and drawbacks can be found in Pawel L. et al.’s
(2022) survey [36].

Secondly, once the agent explores the environment and learns the consequence of its
actions, it passes to exploit that knowledge. However, depending on the problem handled,
the agent usually maintains part of its exploratory behaviour just to ensure that the policy
of actions followed is still the best. The balance between exploration and exploitation is
still an open issue under investigation since there is no unique and perfect solution, but
every problem has its own solution [37–39].

2. Paper Research and Evaluation

Given the plethora of DRL applications in manufacturing, a robust methodology
that allows for the gathering and analysis of all of them becomes necessary in order to
obtain a complete review of the current situation in this field. For the elaboration of
this review, a cutting-edge method of bibliometric analysis has been performed. This
method enables obtaining numerous statistics and connections between the publications,
detecting the most relevant DRL applications in manufacturing together with the most
active researchers. These publications address the current trends in this field, which deal
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with crucial challenges and limitations in manufacturing. Thanks to this methodology,
striking DRL techniques and algorithms are identified, which will lead to the improvement
in the efficiency of industrial processes in the near future.

Bibliometric analysis is a type of research that aids in the understanding of trends in
the scientific publications field [40]. This analysis enables extracting useful information,
such as growth rates, co-occurrences, co-authorship, outputs per country and collaborations.
Thanks to this information, it is possible to predict where the industry is heading and how.

To better aid in the comprehension and extraction of information from the bibliometric
research, a visual analysis has been performed in the form of a citation network [41]. This
tool provides a visual understanding of the connection between publications, as well as
other metrics related to the references of each paper, such as most cited publications and
the appearance of keywords in the papers [42]. The citation network complements the
bibliometric analysis, achieving a more holistic approach to the research.

2.1. Methodology

• To perform the bibliometric analysis, the Bibliometrix tool was used [43], which allows
for the quick extraction of bibliographic information from a given bibliographic export.
Such bibliographic export is obtained from a search engine of the academic publisher
https://www.scopus.com (accessed on the 15 November 2022). To this end, the main
research question must be formulated to define the bibliometric analysis: What are
the main deep reinforcement learning approaches used in manufacturing processes? Thus,
this question must be translated in a search through this engine. This search must be
carried out with keywords and logic operators that delimit the search field on which
this review focuses. The most accurate search was performed on 1 November 2022
with the following query: TITLE-ABS-KEY ((“DEEP REINFORCEMENT LEARNING”
OR DRL OR “DEEP RL”) AND (MANUFACTURING OR ROBOTS OR “PRODUCTION
SYSTEM” OR AUTOMATION) AND (“MODEL-FREE” OR “MODEL-BASED” OR
“ON-POLICY” OR “OFF-POLICY”)).

• In this way, the result of the search will return documents that focus on the different
approaches based on DRL algorithms and techniques in manufacturing processes,
such as model-free, model-based, on-policy or off-policy algorithms. The list of
scientific publications contains the necessary information to answer the previous
research question.

• The next step involves creating the citation network, for which the bibliographic
export is processed through a script programmed in R [44]. For its visualisation, an
open-source software, Cytoscape [45] was employed. Furthermore, the methodology
to remove unwanted information, based on Zuluaga et al.’s (2016) article [46] was
implemented to achieve a cleaner visualisation of the results.

2.2. Bibliometric Analysis

From the previous query, a total of 244 documents were returned (of which one
was excluded due to it not staying within the topic), ranging in publication date from
2016 to 2023. From the initial period up to 2021, an annual growth rate of 133.22% was
found, making this research topic very important to the field, as illustrated by Figure 2.
Furthermore, from the entire range of publication dates, it was found that there is an
international co-authorship of 25.1%. In addition to measuring the co-authorship, this
indicator includes hidden relationships between the co-authors of a scientific paper, such
as motivation and the research rank of their institutions [47]. This level of international co-
authorship involves a high degree of international collaboration and a positive contribution
to the citation impact [48]. As a result, there is a noteworthy flow of researchers between
institutions in different parts of the world, enabling deep investigation of DRL applications
in manufacturing. This is illustrated in Figure 3, where the most active researchers in
the field are linked to the most relevant topics they have investigated and the research
institutions they belong to. It can be noted that most of the researchers have belonged to

https://www.scopus.com
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several research institutions, showing the close collaboration between them, and they have
participated in several scientific publications on different topics within this field. These
collaborations allow progress in the development of new DRL technologies in the industry.
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Figure 3. Three-field plot: author keywords on the left, authors in the middle and affiliations on
the right.

The institutions shown in Figure 2 are leading in deep reinforcement learning research.
If this is translated geographically, it can be observed that most of them belong, in this order,
to China, the United States and the United Kingdom. Figure 4 depicts the collaborations
between institutions by country, where the strongest research relationships in this field
emerge. The strong and stable relationship between American and Chinese institutions
is noteworthy, with a flow of researchers in both directions. In fact, for China, the United
States is the only country with which close collaboration is observed. However, the United
States does have collaborations with institutions in European countries, such as Imperial
College London and Oxford University from the United Kingdom and the Robotic Systems
Lab belonging to ETH Zürich (Switzerland). Lastly, although not many active researchers
from Canadian institutions have been detected, the analysis shows a large number of
collaborations between those countries.
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Finally, an analysis of the journals was carried out following Bradford’s Law, a law
of diminishing returns in which journals are divided into three zones depending on the
frequency of citation [49]. Figure 5 shows in descending order the essential sources of
information when looking for DRL knowledge.
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The most cited document was published by Gu et al. (2016) [50], which presents a DRL
algorithm applied to robot manipulation tasks. It was cited globally 701 times, making it
the most prolific document in the search.

Regarding the appearance of the main approaches to DRL, of the 243 documents:
131 of them mention a model-free approach (53.91%), 113 model-based (46.50%), 30 off-
policy (12.35%) and 14 on-policy (5.76%) approaches. Moreover, 35 documents mention
both model-based and model-free approaches (14.40%); one mentions both model-based
and on-policy approaches (0.41%); one mentions model-free and on-policy approaches;
four mention model-free and off-policy approaches (1.65%); and four mention on-policy
and off-policy approaches. Overall, it seems that the DRL applications in the industry are
more focused on the need for a model of the environment, highlighting the vast presence
of model-free and model-based approaches. Nonetheless, although any algorithm can
be classified as on-policy and off-policy, this characteristic is not highlighted in the title,
abstract or keywords of the scientific publications analysed. These data are illustrated in
the form of a Venn diagram in Figure 6:
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2.3. Citation Network

To create the citation network, data from the references of each document in the search
were used, making each publication a node in the network. Two nodes are linked with
an edge if one of the corresponding documents cites the other one. The resulting citation
network comprises 485 nodes (documents) and 863 edges (citations). It is shown in Figure 7,
where colour indicates the year of publication of the document pertaining to that node, and
size indicates the number of times it has been cited:
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The most cited document in the network was by Mnih et al. (2015) [29], cited 25 times
locally (within the citation network) and 12,691 times globally (in the database search).
They used a Deep Q-Network to demonstrate its capabilities against previous algorithms in
beating Atari 2600 games. The second most cited document was by Levine et al. (2016) [51],
cited locally 14 times and globally 1354 times. They developed a method to learn certain
deep convolutional neural network policies to determine whether it is better to train the
perception and control systems jointly end-to-end or train each component separately.
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The oldest document in the network was by Uhlenbeck et al. (1930) [52], in
which they discussed the Brownian motion. The second oldest document was by
Maciejewski et al. (1985) [53], published in 1985, in which they discussed dynamic obstacle
avoidance for manipulators with motion control and multiple goals.

To analyse the appearance of keywords in the citation network, the following search
queries were performed and grouped accordingly: (i) manufactur* or automat* or “production
system”, (ii) robot*, (iii) *polic* and (iv) “reinforcement learning”. Note that the asterisks are
used to replace multiple characters anywhere in a word. For example, the query “*polic*”
would return documents containing any of the following terms: policy, policies, on-policy
and off-policy, among others.

The results can be seen in Figure 8, where size indicates the number of times the
pertinent document has been cited and colours are chosen based on the grouping of the
Venn diagram:
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Of the 485 documents in the network, 402 satisfy any of the previous search queries.
Overall, 71 documents (14.64%) belong to the first group, 267 (55.05%) to the second group,
162 (33.40%) to the third group and 297 (61.24%) to the fourth group. Only 17 documents
(3.51%) are part of the four groups simultaneously. As can be seen, the documents from
the original search query rely mainly on other documents that encompass robotics and
reinforcement learning, meaning that the application of DRL in manufacturing processes
is a relatively new topic that is being developed from the ground up with its base built
upon previous works in robotics and reinforcement learning. This is also demonstrated
by the fact that the original bibliographic export comprised mainly documents from 2016
onwards. Then, it is to be expected that in the following years, future work will be built
upon today’s works with exponential growth as new developments in DRL occur.

2.4. Analysis of Results

The bibliometric analysis reveals that deep reinforcement learning is being increasingly
applied to manufacturing processes each year, thus making this a very prolific research
field with many novel applications to I4.0 and I5.0, which are of international interest. This
field sparks collaboration between institutions of different countries, making knowledge a
global resource with which new and improved methods arise. As such, the necessity to
keep researching, expanding and improving this field is of crucial importance.

Of the studied algorithms, it was found that both model-based and model-free ap-
proaches equally appear in scientific publications. Nonetheless, the on-policy/off-policy
feature seems to be less relevant as it is less present in the analysis. Therefore, it can be
deduced that the latter classification is important at a theoretical level, and the classifi-
cation according to the availability of a model of the environment is more related to the
applicability of the algorithm to the industry

Regarding the most important document of the research output for the query in terms
of citations, it was an article by Gu et al. (2016) [50], demonstrating the use of an off-policy
DRL method that enables the use of robotic manipulators in complex 3D environments,
as well as making it possible to test on real physical robots. Understandably, this is a key
document, as it discusses the application of DRL in complex and real systems.

As per the citation network, it was found that the most important document was by
Mnih et al. (2015) [29] due to the fact that it was the most cited document locally and very
prolific globally. As it compares the back-then novel Deep Q-Network (DQN) to previous
algorithms, it is a critical document when arguing why a DQN is used compared to other
methods, so it should be taken into account for future developments.

It has been seen from the oldest documents concerning Brownian motion and dynamic
obstacle avoidance of manipulators, from which a base was erected, to advances in DQN
and DRL applied to manipulators in complex 3D environments. All in all, as a crucial topic
to research, DRL keeps growing at an accelerating pace in manufacturing environments
internationally. As such, it is essential to learn about the inner workings of the main DRL
algorithms and their place in the industry, a topic that will be discussed in the following
sections.

3. Deep Reinforcement Learning

To address higher dimensional and more complex problems, deep neuronal networks
(DNNs) were incorporated into RL, leading to deep RL (DRL) [54]. DNNs are used as
function approximators to estimate the policy and value function. Moreover, leveraging
their capacity to compact input data dimensionality, hence more complex observations,
such as images and non-linear problems, can be processed [55–57]. This DRL field started
with the Deep Q-Networks (DQN) algorithm [29] which has exponentially increased over
the last few years. This section describes the catalogue of DRL algorithms, including their
primary properties and classification schemes, illustrated in Figure 9.
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Figure 9 depicts the most extended classification of DRL algorithms [58]. The main
grouping is based on the available information about the dynamics of the environment,
which determines the learning process of the agent.

On the one hand, model-based algorithms can be distinguished. These algorithms
have access to information on the environment dynamics, including the reward function,
which allows the agent to estimate how the environment will react to an action [59]. Typi-
cally, these algorithms are integrated with metaheuristics and optimisation techniques [60].
Moreover, they are particularly good at solving high-dimensional problems, as reflected
in Aske P. et al. (2020) [61] survey. Furthermore, those methods reflect a higher sample
efficiency, as reflected through empirical [62,63] and theoretical [64] studies. A complete
overview concerning model-based DRL is presented by Luo, F. et al. (2022) [65] in their sur-
vey. Inside model-based DRL algorithms [59], there are two different situations depending
on if the model is known or not.

Concerning the first group, if the model is known, this knowledge is used to improve
the learning process, and the algorithm is integrated with metaheuristics, planning and
optimisation techniques. However, since the environments usually have large action
spaces, the application of these techniques is highly resource demanding. Thus, a complete
optimisation of the learning process cannot be carried out. Moreover, although there are no
algorithms defined as such, except for well-known algorithms such as Alpha Zero [66] and
Single Agent [67], most of them are adapted to the application and the characteristics of the
model environment. In recent years, DRL model-based algorithms that make use of digital
twin models may be highlighted, such as the algorithms presented by Matulis and Harvey
(2021) [68] and Xia et al. (2021) [69]. Therefore, in the implementation of the model-based
algorithms, the following aspects must be addressed:

• In which state the planning starts;
• How many computational resources are assigned to it;
• Which optimisation or planning algorithm is used;
• What is the relation between the planning and the DRL algorithm.

In the other group of model-based algorithms, the model of the environment is not
fully known, and the algorithms train with a learned model [70]. Normally, a representation
of the environment is extracted by using supervised/unsupervised algorithms, which is car-
ried out in a previous step as a model learning process [71–73]. Algorithms such as World
Models [74] and Imagination-Augmented Agents (I2A) [75] belong to this group. Nonethe-
less, the accuracy of the model depends on the observable information and the capacity to
adapt to changes in the model dynamics. For this reason, these algorithms are more suitable
for dealing with deterministic environments. Based on the experience acquired through
the interaction with the environment, three model approaches can be obtained [76,77]:
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• Forward model: based on the current state and the selected action by the agent, it
estimates the next state;

• Backward model: a retrospective model that predicts which state and action led to the
current state;

• Inverse model: it assesses which action makes moving from one state to another.

On the other hand, model-free algorithms cannot anticipate the evolution of the envi-
ronment after an action because the dynamics of the environment is unknown [78]. Thus,
the algorithm estimates the most suitable action at the current state based on the acquired
experience through interaction. This latter is the most frequent scenario in practice; hence,
more algorithms exist [79]. The model-free DRL algorithms focus on the management of
acquired experience by algorithms and how they use this information to learn a policy. This
distinguishes on-policy algorithms from off-policy algorithms [80]. In the former case, the
agent applies its policy generating short-term experience, which frequently consists of a
fixed number of transitions (trajectory) [81,82]. Based on this information, the policy is up-
dated, and then the experience is discarded. On the other hand, off-policy algorithms have
a memory that stores the transitions created by several past policies [83]. This memory is
finite and has a memory management method, for instance, FIFO (first-in, first-out) [84]. In
this case, the policy is updated with a sampled batch of the stored transitions, considering
the experience generated with old policies [85].

Although this latter classification is not exclusive to model-free algorithms, there
is a certain parallelism with the two families of model-free algorithms represented in
Figure 9, policy optimisation (PO) and Q-learning families. The first family began with
the Policy Gradient algorithm and was later expanded to include the Advantage Actor
Critic (A2C) [86], Asynchronous Advantage Actor Critic (A3C) [87], and proximal policy
optimization (PPO) [88] algorithms. This class of algorithms is capable of handling continu-
ous and discrete action spaces, and the action at each state is determined by a probability
distribution. The second family was derived from Deep Q-Networks (DQN) [89], and algo-
rithms such as Quantile Regression DQN (QR-DQN) [90] and hindsight experience replay
(HER) [91] belong to it. In contrast to the other family, they can only deal with discrete
action space environments, and the policy calculates the Q-value of each state-action pair
to take a decision.

Lastly, it should be highlighted that these classifications are not exclusive, and there
are algorithms that integrate features and techniques of different groups, such as the hybrid
algorithms that are halfway between policy optimisation and Q-learning families (see
Figure 9). Some algorithms of this group are Soft Actor-Critic (SAC) [92], Deep Determin-
istic Policy Gradient (DDPG) [93] and Twin Delayed Deep Deterministic Policy Gradient
(TD3) [94]. These algorithms address some of the weaknesses of the other algorithms
that allow the implementation of approaches to more complex problems. In addition,
combinations of algorithms from different groups can be found in the literature, such as
DDPG + HER [95] and model-free and model-based algorithms [61].

Integration in the Industry

Manufacturing involves a set of tasks that generally entail decision making by plant
operators. These tasks are related to scheduling [96] (e.g., predicting the production
based on future demand, guaranteeing the supply chain, planning processes to optimise
production and energy consumption); process control [97] (i.e., automated processes such
as assembly lines, pick-and-place and path planning); and monitoring [10] (e.g., decision
support systems, calibration and quality control) [12]. As can be observed, most of these
tasks are complex, and their efficient performance needs expert knowledge and time to
be programmed. In the manufacturing sector, the former exists for many tasks, but the
availability of time is limited even more if flexible production wants to be achieved under
the framework of I4.0. Moreover, for smart factories of I5.0, other factors, such as benefits
for the well-being of workers and the environment, must be considered. All in all, the
automation of manufacturing tasks is a complex optimisation problem that requires novel
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technologies to be addressed, such as ML. Based on a few investigations [11,98,99], below
the main requirements of an ML application in the industry are listed:

• Dealing with high-dimensional problems and datasets with moderate effort;
• Capability to simplify potentially difficult outputs and establish an intuitive interaction

with operators;
• Adapting to changes in the environment in a cost-effective manner, ideally with some

degree of automation;
• Expanding the previous knowledge with the acquired experience;
• Ability to deal with available manufacturing data without particular needs for the

initial capture of very detailed information;
• Capability to discover relevant intra- and inter-process relationships and, preferably,

correlation and/or causation.

Among ML paradigms, reinforcement learning is suitable for this type of task. The
trial-and-error learning through the interaction with the environment and not requiring
pre-collected data and prior expert knowledge allow RL algorithms to adapt to uncertain
conditions [12]. Moreover, thanks to the capacity of ANNs to create simple representations
of complex inputs and functions, DRL algorithms can address complex tasks, maintaining
adaptability and robustness [100]. Indeed, some applications can be found in manufactur-
ing, for instance, in scheduling tasks [101,102] and robot manipulation [103,104].

However, the application of DRL in industrial processes presents some challenges that
must be considered during the implementation. A complete list of challenges is gathered
in studies such as [11,105]; however, the most common ones perceived by the authors in
real-world implementations are described below.

• Stability. In industrial RL applications, the sample efficiency of off-policy algorithms
is desirable. However, these show an unstable performance in high-dimensional
problems, which worsens if the state and action spaces are continuous. To mitigate
this deficiency, two approaches predominate: (i) reducing the brittleness to hyper-
parameter tuning and (ii) avoiding local optima and delayed rewards. The former
can be solved by using tools that optimise the selection of hyperparameters values,
such as Optuna [106], or employing algorithms that internally optimise some hyper-
parameters, such as SAC [107]. The other approach can be addressed by stochastic
policies, for example, introducing entropy maximisation such as SAC and improved
exploration strategies [108].

• Sample efficiency. Learning better policies with less experience is key for efficient RL
applications in industrial processes. This is because, in many cases, the data availability
is limited, and it is preferable to train an algorithm in the shortest possible time. As
stated before, among model-free DRL algorithms, off-policy algorithms are more
sample efficient than on-policy ones. In addition, model-based algorithms have better
performance, but obtaining an accurate model of the environment is often challenging
in the industry. Other alternatives to enhance sample efficiency are input remapping,
which is often implemented with high-dimensional observations [109], and offline
training, which consists of training the algorithm with a simulated environment [110].

• Training with real processes. Albeit training directly with the real systems is possible,
it is very time consuming and entails the wear and tear of robots and automatons [105].
Moreover, human supervision is needed to guarantee safety conditions. Therefore,
simulated environments are used in practice, allowing the generation of much ex-
perience at a lower cost and faster training. Nonetheless, a real gap exists between
simulated and real-world environments, making applying the policy learned during
the training difficult [111]. Some techniques to overcome this issue are presented
in Section 5.

• Sparse reward. Manufacturing tasks usually involve a large set of steps until reaching
their goal. Generally, this is modelled with a zero-reward most of the time and a
high reward at the end if the goal is reached [112]. This can discourage the agent
in the exploration phase, thus attaining a poor performance. To this end, some
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solutions are aggregating demonstration data to the experience of the agent in a model-
based RL algorithm to learn better models; including scripted policies to initialise the
training, such as in QT-Opt [113] and reward shaping provides additional guidance to
exploration, boosting the learning process.

• Reward function. The reward is the most important signal the agent receives because
it guides the learning process [114]. For this reason, clearly specifying the goals and re-
wards is key to achieving a successful learning process. This becomes more complex as
the task and the environment becomes more complicated, e.g., industrial environments
and manufacturing tasks. To mitigate this problem, some alternatives are integrat-
ing intelligent sensors to provide more information, using heuristics techniques and
replacing the reward function with a model that predicts that reward [115].

4. Deep Reinforcement Learning in the Production Industry

Nowadays, manufacturing industries face major challenges, such as mass customi-
sation and shorter development cycles. Moreover, there is a need to meet the ever-rising
bar for product quality and sustainability in the shortest amount of time through an
ambiguous and fluctuant market demand [99]. However, those challenges also open
up new opportunities for innovative technologies brought by the I4.0 and I5.0 [13,116].
Among those, AI plays a special role, and furthermore, DRL, after the outstanding re-
sults presented by OpenAI [117] and DeepMind [118], among others, is progressively
shifted to the production industry [119]. In this sense, some of the main DRL features,
such as the adaptability and ability to generalise and extract information from past expe-
riences, have already been demonstrated in a few sectors, as reflected in other reviews.
Among them are robotics [103,120], scheduling [121,122], cyber-physical systems [123] and
energy systems [124].

Further on, in the following subsections, an overview of DRL applications in the main
disciplines within the production industry is presented. These applications are usually
developed in deterministic environments due to the fact that they can be modelled along
with the effectiveness of DRL algorithms in them. We detail the challenges of the disciplines,
frequently DRL implemented, how those are implemented and the main results. All in all,
the main objective is to present the lector with different DRL solutions for the expected
challenges in some of the main production industries’ activities.

4.1. Path Planning

In manufacturing, path planning is crucial for machines such as computer numerical
control (CNC) machines [125] and robot manipulation [126] to perform tasks such as
painting, moving in space and welding, and additive manufacturing [110,127]. Moreover,
path planning is part of the mobile robot navigation system that has an increasing presence
in factories [128]. The main objective of this task is to find the optimal trajectory to move the
robot or part of it from one point in space to another while maybe performing an operation.
In industrial environments, other factors must be considered due to the features of the task
or the environment or the potentially severe consequences of a failure. These make path
planning more complex, and some of the most popular ones are the avoidance of obstacles,
dynamic environments and constraints of the movements of the robots and systems.

For this application, model-free DRL algorithms are predominant, probably due to
the complexity of modelling a dynamic environment [129]. Based on the analysed research
articles, DQN, together with its variants, is the most used one [130–132]. Despite some
issues, such as overestimating q-values and instability, DQN applications are widely used
in path planning. An important task of this field is active object detection (AOD), whose
purpose is to determine the optimal trajectory so that a robot has the viewpoints that allow
it to gather the necessary visual information to recognise an object. DQN is still used for this
purpose, outperforming other AOD methods. Fang et al. (2022) [133] recently presented
a self-supervised DQN-based algorithm that improves the success rate and reduces the
average trajectory length. Moreover, the developed algorithm was successfully tested with
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a real robot arm. However, the applications of DQN variants need to become popular in
order to overcome the aforementioned drawbacks.

Prioritised DQN (P-DQN) is used to upgrade the convergence speed of DQN, assigning
more priority to those samples that contain more information in comparison with the
experience [134]. These samples are more likely to be selected to update the parameters
of the ANNs. Liu et al. (2022) [135] present a P-DQN-based path-planning algorithm to
address path planning in very complex environments with many obstacles. This priority
assignment can be detached, constituting a technique called priority experience replay
(PER). This technique is combined with Double DQN (DDQN) in [136], increasing the
stability of the learning process. Moreover, DDQN also offers satisfactory performance
without PER. An example is the path planning application presented in [56], where the
DDQN agent is pre-trained in a virtual environment with a 2D-LiDAR and then tested in a
real environment using a monocular camera.

In line with I5.0, path planning has a challenge in robotic applications to achieve the
estimation of time-efficient and free-collision paths. In this context, crowd navigation of
mobile robots can be highlighted due to the need to predict the movement of other objects
in the environment, such as humans. For this purpose, the DQN variant of Dueling DQN in
combination with an online planner proposed in [137] results in equivalent or even better
performance of the state-of-the-art methods (95% of success in complex environments) with
less than half the computational cost. Furthermore, based on Social Spatial–Temporal Graph
Convolution Network (SSTGCN), a model-based DRL algorithm is developed in [138],
highlighting its robustness to changes in the environment.

Lastly, the use of hybrid DRL algorithms should be remarked on because they can
work with continuous action space and are not like DQN, which is limited to discrete spaces.
For example, Gao et al. (2020) [139] present a novel path planner for mobile robots that
combines TD3 and the traditional path planning algorithm Probabilistic Roadmap (PRM).
PRM + TD3 is trained in an incremental way, achieving an outstanding generalisation for
planning long-distance paths. In addition, a variant of DDPG called mixed experience
multi-agent DDPG (ME-MADDPG) is applied to coordinate the displacement of several
mobile robots. This algorithm enhances the convergence properties of other DRL algorithms
in this field [140].

4.2. Process Control

With the automation of factories, process control became a key element in manufactur-
ing. This control is scalable from large SCADA panels that monitor the whole production
chain of a factory to specific processes [141]. Moreover, this manufacturing task addresses
simple control operations, such as opening valves, and complex control operations, such
as coordinating several robot arms for assembling. For this purpose, control strategies
have typically been applied; however, the application of artificial intelligence methods,
such as neural networks, is growing thanks to the development of smart factories [10].
Given the plethora of process control tasks, this section focuses on the most recent DRL
applications in this field. In addition, a subsection is dedicated to robotic control, especially
robot manipulation, due to its significant role in manufacturing [142].

The literature search reflects that DRL algorithms are generally applied to control
specific processes and that model-free algorithms predominate. Since control tasks usu-
ally involve continuous variables, the algorithms from the policy optimisation family
and hybrid algorithms are the most used ones. Regarding the former, PPO is widely ap-
plied because it is the most cutting-edge and established algorithm within the PO family.
Szarski et al. (2021) apply PPO to control the temperature in a composite curing process
to reduce the cycle time [143]. The developed controller is tested with the simulation of
a complex curing process in two realistic different aerospace parts, reducing up to 40%
of the ramp time. Moreover, this test demonstrates the controller’s applicability because
it was only trained for one of the parts. Other PPO applications can be found in other
manufacturing processes, such as controlling the power and velocity of a laser in charge
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of melting via powder bed fusion [64] and controlling the rolls of a strip rolling process
to achieve the desired flatness [144]. It should be noted that this last application is also
compared with DRL hybrid algorithms, outperforming them regarding results and stability.

Although PPO has been applied to some control tasks, its on-policy nature generally
entails larger training. Off-policy DRL algorithms improve it thanks to being more sample
efficient [145], and DDPG is the most popular off-policy hybrid algorithm for control
applications. This algorithm is an extension of DQN for continuous action spaces, and
it is the first off-policy algorithm for this type of space, showing positive performance in
the control of complex systems. Fusayasu et al. (2022) [146] present a novel application
of DDPG in the control of multi-degree-of-freedom spherical actuators, characterised by
their difficult control due to their strong non-linearities of torque. DDPG achieves a highly
accurate and robust control, outperforming PID and neural network controllers. In the
chemical process control, Ma et al. (2019) [147] demonstrate how a DDPG controller can
control a polymerisation system, which is a complex, multi-input, non-linear chemical
reaction system with a large time delay and noise tolerance. In this case, the main adaptation
of the original algorithm is the inclusion of historical experience to deal with time delay.
Another application of DDPG in the optimisation of chemical reactions is [148], where the
maximisation of hydrogen production through the partial oxidation reaction of methane
is reached. Moreover, TD3, as an improved version of DDPG, is also applied in this type
of process, for instance, the multivariable control of a continuous stirred tank reactor
(CSTR) [149]. The importance of DDPG and TD3 in process control in the chemical industry
is shown in [150], where hybrid and PO algorithms are compared for five use cases, and
DDPG and TD3 outperform all of them in all use cases.

4.3. Robotics

Robot manipulation encompasses a wide range of tasks, from assembly operations,
such as screwing and peg-in-hole, to robot grasping and pick-and-place operations [151,152].
The characteristics of DRL make it very suitable for robotic tasks, which has produced a
close relationship between both fields for many years, leading to promising results in the
future [50,120]. This section includes a mini-review of the most recent DRL applications in
this vast field.

Firstly, this review starts with the peg-in-hole assembly, the robotic manipulation task
with the most DRL applications according to the literature search, and its high precision
characterises it. For this task, PPO is the most commonly applied algorithm with applica-
tions such as [103,153,154]. Among them, the PPO controller developed by Leyendecker
et al. (2021) [103] should be noted, where the algorithm is trained through curriculum
learning. This technique consists of dividing the learning problem into several subtasks and
learning them in ascending order of complexity, which allows the learning of the simpler
tasks to be used to learn the more complex ones and improves generalisation skills [155].

Although PPO applications abound, other DRL algorithms can be found. For example,
Deng et al. (2021) propose an actor-critic-based algorithm that improves the stability and
sample efficiency of other state-of-the-art algorithms such as DDPG and TD3 [103,104].
In addition, training this algorithm with hierarchical reinforcement learning (HRL) no-
tably increases the generalisation capability to other assembly tasks. HRL consists of
decomposing tasks into simpler and simpler sub-tasks, establishing levels of hierarchy
in which more complex parent tasks are formed by simpler child tasks. With this tech-
nique, the most basic tasks are learned, which allow for the development of more com-
plex tasks [156]. Furthermore, among the applications of hybrid algorithms, the work of
Beltran-Hernández et al. (2020) [104], which uses SAC to learn contact-rich manipulation
tasks and tests the algorithm with a real robot arm, and the proposed uses of DDPG to
control the force in contact-rich manipulation in [157] and to enhance the flexibility of
assembly lines in [158] are noteworthy. The latter is particular in that it uses a digital twin
model of the assembly line to train the DDPG algorithm, and once trained, this model is
used to monitor the assembly lines and predict failures during the production stage.
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Digital twins are a technology that is increasingly important in I.40 and I.5.0, which
seems to be crucial to the development of smart manufacturing. Indeed, some DRL control
applications, such as [158], leverages this technology to increase their data efficiency and
robustness. Liu et al. (2022) train a DQN algorithm with the digital twin model of a robot
arm that has to perform a grasping task [159]. In this line, Xia et al. (2021) do the same
with DQN and DDQN + PER for a pick-and-place task [69]. Both cases highlighted the
smoother transfer of knowledge from the simulation to the real environment thanks to
digital twin models.

Finally, another robot manipulation task to which DRL is currently applied is pick-and-
place, which in turn includes other tasks such as motion planning, grasping and reaching a
point in space [50]. As in other robotic tasks, the use of DDPG is predominant [160]. Some
recent examples are [161], whose objective is reaching a point and measuring the influence
of different reward functions, and [162], where the application of DDPG results in robust
grasping in pick-and-place operations. In addition, the joint use of DDPG and HER is
common, highlighting the work of Marzari et al. (2021), that DDPG + HER is used together
with HRL to learn complex pick-and-place tasks [163]. Nonetheless, other state-of-the-art
algorithms are used in this field, such as TD3 + HER for the motion planning of robot
manipulators [164] and PPO and SAC for a grasping task with an outstanding success
rate [165]. In this latter work, it should be noted that SAC training requires fewer episodes,
but they last longer.

4.4. Scheduling

The aim of scheduling is to optimise the use of time to reduce the consumption of
resources in all senses, hence improving the overall efficiency of the industrial processes. In
this, several sub-objectives must be considered. It plays an essential role within any kind of
industry and has always been a significant research topic approached from different fields.
However, due to its interdisciplinary nature, the size of the problem can easily scale up.
Consequently, the optimisation problem has multiple objectives and is usually complex
given the uncertainties that must be faced and the high interconnectivity of the elements
involved [166]. In this sense, DRL arises as an enabling technology, as reflected in literature
reviews concerning smart scheduling in the industry 4.0 framework [167].

On the one hand, in order to solve the multi-objective optimisation problem, a com-
mon approach is the implementation of multi-agent DRL algorithms. Several successful
studies can be found about this in different production sectors [12]. Lin et al. (2019) [101]
implemented a multi-agent DQN algorithm for a semiconductor manufacturing industry
in order to cover the human-based decisions and reduce the complexity of the problem,
resulting in enhanced performance. Through a similar approach, Ruiz R. et al. (2022) [102]
focus on the maintenance scheduling of several machines presenting up to ≈ 75% improve-
ment in overall performance. Other studies combine those algorithms with IoT devices for
smart resource allocation [168] or with other algorithms, such as Lamarckian local search
for emergency scheduling activities [169]. For the latter, Baer et al. (2019) [170] propose an
interesting approach by implementing a multi-stage learning strategy, training different
agents individually but optimising them together towards the global goal, presenting great
results. On the other hand, in order to face the increasing fluctuation in production demand
and product customisation, actor-critic DRL approaches are usually implemented [171].

The actor-critic approach is characterised by its robustness [172] and acts as an upgrade
of the traditional Q-learning, which could act as a decision-support system easing operators
scheduling tasks [173,174]. Through the actor-critic approach, the policy is periodically
checked and recalibrated to the situation, which highly increases the adaptability and eases
the implementation in real-time scheduling [96,175]. In addition, several studies reflect
that it can be implemented with cloud-fog computing services [176,177]. Furthermore, the
performance can be increased by implementing a processing approach divided into batches,
as reflected in Palombarini et al. (2018, 2019) studies [178,179]. There are also some novel
approaches integrating different neuronal networks that aim to cope with complexity and
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expand the applications. For example, Park et al. (2020) implemented a proximal policy
optimisation (PPO) neuronal network trained with relevant information from scheduled
processes, such as the setup status [180].

For latter, despite the great results presented by the research, unfortunately, most of
those approaches are not adopted in a practical context. Due to the scheduling policies
already established in the production industries, it is quite complex to introduce novel
approaches even if the research shows good results. Consequently, increasing research
efforts are required in this direction.

4.5. Maintenance

The maintenance objective is to reduce breakdowns and promote overall reliability
and efficiency [181]. The term mainly refers to tasks required to restore full operability, such
as repairing or replacing damaged components. It significantly impacts the operational
reliability and service life of the machinery in any industry. There are four types of
maintenance: reactive, preventive, predictive and reliability-centred [182,183]. Historically,
reactive maintenance has predominated, which was performed after the failure of the
machine, mainly due to limited knowledge about their operation and failures. Nowadays,
this strategy is still in use for unpredictable failures and failures of cheap objects. Over
time, the understanding of the process has increased, and preventive maintenance has
come up. Further on, I4.0 technologies and advances in AI have enabled predictive and
reliability-centred maintenance [184].

As part of AI advances for maintenance activities in the industry, RL algorithms play
an important role due to their self-learning capability [185]. Moreover, the integration of
neuronal networks, resulting in DRL, expands the applications and performances even
further [186]. Their application can help anticipate failures by predicting key parameters
and also prevent failures through in-line maintenance, enlarging the lifetime of components.

The anticipation of failures is usually combined with scheduling optimisation to
maximise the results [187,188]. In order to speed up the learning phase, Ong, K.S.H, et al.
(2022) boards the predictive maintenance problem with a model-free DRL conjoined with
the transfer learning method to assist the learning by incorporating expert demonstrations,
reducing the training phase time by 58% compared with baseline methods [189]. On the
other hand, Acernese, A. et al. board fault detection for a steel plant through a double
deep-Q network (DDQN) with prioritised experience replay to enhance and speed up
the training [190].

There are also hybrid approaches, such as the one proposed by Chen Li et al. (2022) [191],
where feedback control is implemented based on an advantage actor-critic (A2C) RL
algorithm to predict the machine status and control the cycle time accordingly. In addition,
Yousefi, N. et al. (2022), in their study, propose a dynamic maintenance model based on
a Deep Q-learning algorithm to find the optimal maintenance policy at each degradation
level of the machine’s components [192].

4.6. Energy Management

Nowadays, and especially with the I5.0 and worldwide policies (e.g., Paris agree-
ment [193]), energy consumption and environmental impact are in the spotlight. In this
sense, AI algorithms such as DRL can boost energy efficiency and reduce the environmental
impact of the manufacturing industry [194]. The algorithms are usually implemented
into the energy market to reduce costs and energy flow control in storage and machines
operation to increase their energy consumption effectiveness [195]. In resource- and energy-
intensive industries such as printed circuit boards (PCB) fabrication, Leng et al. demon-
strated that the DRL algorithm was able to improve lead time and cost while increasing
revenues and reducing carbon use when compared to traditional methods (FIFO, random
forest) [196]. Lu R. et al. (2020) faced a multi-agent DRL algorithm against a conventional
mathematical modelling method simulating the manufacturing of a lithium–ion battery.
The benchmark presents a 10% reduction in energy consumption [197].
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5. Simulation-to-Reality Transfer

Deep reinforcement learning is a relatively novel technology with a promising future
in the industry field. However, its major challenge is the implementation in real-world tasks,
which demands an increase in the stability, sample efficiency and generalisation of DRL
algorithms [198]. To improve these aspects and avoid the drawbacks of training with real
environments, the current trend is to first train the algorithm in simulated environments
and then test it in real environments [199]. Nonetheless, the knowledge transfer from
simulation to reality is not straightforward. To this end, there is an area in reinforcement
learning called sim-to-real transfer that encompasses a whole ream of techniques to achieve
an effective learning transfer [200]. This section presents the most used ones in industrial
DRL applications.

The selection of the simulator is crucial for attaining a successful transfer from sim-
ulation to reality [200]. The more realistic a simulation is, the better performance of the
algorithm may be expected in real-world tasks. Additionally, in industrial use cases, many
factors must be considered due to their complexity, such as physic simulations, virtual rep-
resentations of objects, recreations of sensor data and artificial lightning [201]. Gazebo [202],
Unity3D [203], PyBullet [204] and MuJoCo [205] are the most popular simulators in the
literature thanks to their accurate physics engine and customisable environments. These
platforms allow for creating customised environments, loading pre-existing models of
robots and systems and simulating the interaction between them and other elements. In
addition, benchmark suites can be loaded into those platforms, such as Arena-bench [206],
which allows training, testing and evaluating navigation algorithms for dynamic obstacle
avoidance. Regarding the performance of the aforementioned simulators, Gazebo and
Unity3D offer highly realistic simulations of complex scenarios, while PyBullet and MuJoCo
slightly reduce these features in exchange for faster simulations. Table 1 gathers some
examples of DRL applications trained to learn industrial tasks in those simulators. Lastly,
although they are not simulators as such, special mention should be made of digital twin
models for training, as they improve the performance of the algorithm in real-world tasks
by improving the simulation environment [159].

Table 1. DRL applications trained in different simulators.

Simulator Example

Gazebo

• Robotic Grasping using Deep Reinforcement Learning [207]
• End-To-End Autonomous Exploration for Mobile Robots in Unknown Environments through Deep

Reinforcement Learning [208]
• An Efficient Deep Reinforcement Learning Framework for UAVs [209]
• Path Planning of Mobile Robot Using Reinforcement Learning [210]

Unity3D

• Goal-Oriented Obstacle Avoidance by Two-Wheeled Self Balancing Robot [211]
• KIcker: An Industrial Drive and Control Foosball System automated with Deep Reinforcement Learning [212]
• Research on Autonomous Navigation Control of Unmanned Ship Based on Unity3D [213]
• Crowd Navigation in an Unknown and Dynamic Environment Based on Deep Reinforcement Learning [214]
• Research on robot arm control based on Unity3D machine learning [215]

PyBullet
• Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints [216]
• Robotic Lever Manipulation using Hindsight Experience Replay and Shapley Additive Explanations [217]
• Robust Quadruped Jumping via Deep Reinforcement Learning [218]

MuJoCo
• Learning Continuous Control Actions for Robotic Grasping with Reinforcement Learning [219]
• MANGA: Method Agnostic Neural-policy Generalization and Adaptation [220]
• Diversity-Driven Exploration Strategy for Deep Reinforcement Learning [221]

In most cases, training with a realistic simulated environment and an appropriate hy-
perparameter setting of the algorithm does not guarantee the successful performance of the
algorithm in the real task. For this purpose, there are numerous sim-to-real techniques that
help to bridge the gap between simulation and reality. Based on the literature search, three
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techniques have been found to be used in DRL applications in manufacturing, of which
domain randomisation is the most extended. These techniques are briefly described below,
along with a list of applications in which they are used both solely and in combination
(see Table 2).

• System identification. This is a wide field that involves creating a precise mathe-
matical representation of the actual world in order to increase the realism of the
simulation [222]. To this end, the observed data (inputs and outputs) and the knowl-
edge of the process dynamics are used to build the model [223]. This approach has
certain drawbacks, which are exacerbated when applied to industrial processes, such
as the need for parameter calibration, data gathering and modelling of how external
influences affect the operation of the robot (e.g., the wear-and-tear of its joints) [224].
Nonetheless, as observed in the aforementioned applications [69,158,159], the devel-
opment of digital twin models is trending in the building of accurate mathematical
models, becoming a fundamental pillar in smart manufacturing [225].

• Domain randomisation. To accommodate a wider variety of environmental setups
and potential scenarios, simulation parameters are randomly generated [226]. This
includes two groups of techniques that bridge the gap between the actual world and
the virtual one. On the one hand, visual randomisation addresses the inclusion of
randomness in the observation, such as changing the camera location, artificial light,
and textures [227]. On the other hand, dynamics randomisation entails changing
the simulator’s physical settings, such as item sizes, friction factors, or joint motor
characteristics [228]. Further, the variation of these parameters is not simply random,
and its distribution affects the performance of the algorithm [229]. Indeed, many
variants are proposed to obtain more robust performance, such as Active Domain
Randomisation [230] and Neural Posterior Domain Randomisation (NPDR) [231].

• Domain adaptation. It aims to harmonise the spaces in order to bridge the gap
between the simulated and actual environments. Although action, reward and tran-
sition spaces are often similar in simulation and reality, state spaces show more
pronounced differences [232]. This is mainly due to the tools for perception and fea-
ture extraction employed [233]. For this reason, this technique can be found in many
applications as state adaptation. Among the most popular domain adaptation meth-
ods, the discrepancy-based [234], adversarial-based [235] and reconstruction-based
approaches [236] are noteworthy.

Table 2. Sim-to-real transfer methods used in DRL applications in manufacturing.

Domain
Randomisation

Domain
Adaptation

System
Identification

Deep Reinforcement Learning for Robotic Control in High-Dexterity
Assembly Tasks—A Reward Curriculum Approach [103] X

Towards Real-World Force-Sensitive Robotic Assembly through Deep
Reinforcement Learning in Simulations [154] X

Variable Compliance Control for Robotic Peg-in-Hole Assembly: A
Deep-Reinforcement-Learning Approach [104] X

A flexible manufacturing assembly system with deep
reinforcement learning [158] X

A digital twin-based sim-to-real transfer for deep reinforcement
learning-enabled industrial robot grasping [159] X

A digital twin to train deep reinforcement learning agent for smart
manufacturing plants: Environment, interfaces and intelligence [69] X

Learning to Centralise Dual-Arm Assembly [237] X
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Table 2. Cont.

Domain
Randomisation

Domain
Adaptation

System
Identification

Sim-to-Real Visual Grasping via State Representation Learning Based
on Combining Pixel-Level and Feature-Level Domain Adaptation [238] X

Reinforcement Learning Experiments and Benchmark for Solving
Robotic Reaching Tasks [110] X

Preparing for the Unknown: Learning a Universal Policy with Online
System Identification [239] X

MANGA: Method Agnostic Neural-policy Generalisation
and Adaptation [220] X

Sim-to-real transfer reinforcement learning for control of thermal
effects of an atmospheric pressure plasma jet [240] X

Policy Transfer via Kinematic Domain Randomisation
and Adaptation [241] X X

Latent Attention Augmentation for Robust Autonomous
Driving Policies [242] X

6. Conclusions and Future Work

Within this review, the challenges the manufacturing industry faces nowadays have
first been introduced. However, those challenges also open up new opportunities for the
innovative technologies raised with the I4.0 and I5.0. Among those, the AI and particularly
the DRL algorithms have been remarked on, an ideal solution for the unpredictable and
fluctuant changes in the current demand. Through the introduction of the RL concepts
and expansion of those with the DNNs towards DRL, the potential and variability of those
kinds of algorithms have been highlighted. Furthermore, since those algorithms are data
based, they can be easily reconfigured to adapt to the industry processes’ needs. The
main requirement is access to data from the environment, which, nowadays, with the IoT
devices and monitoring systems, is not a problem in most of the manufacturing industries.
Moreover, the implementation of new concepts, such as the digital twins, in response to
a missing model of the environment, will boost the performance and application of DRL
algorithms even further.

The application of DRL algorithms is found all across the manufacturing industry
activities. In one of the major fields, robotics, the review reflects that the performance
has improved significantly by implementing DRL and shows tremendous promise for
completing challenging robotic manipulation tasks. Nevertheless, because of the potentially
dangerous but insufficient interactions, a significant amount of work is still required
before DRL algorithms can be used directly in real-world jobs. Analysis of the sample
efficiency, stability and generalisability of RL algorithms is also still lacking. Sim-to-real
has emerged as a promising option as a result of its analysis of RL algorithms in simulation
and subsequent implementation in real-world activities.

Nevertheless, there are still a few challenges to face in order to fully exploit the
potential of the DRL algorithms. The first challenge is the selection of algorithm. As
reflected in the review, there are many different algorithms, and selecting the most suitable
one for the problem is not easy. In this sense, this review aims to ease the selection of the
most suitable algorithms by presenting to the lector several examples of problems within a
manufacturing industry and how they have been solved by implementing DRL approaches.
The second challenge is the implementation in the production. Unfortunately, the results
presented in most of the investigations come from simulations, and they are not transferred
to real-world scenarios due to industries’ working policies. Therefore, despite the great
results presented, it is important to bear in mind that the performance would probably
reduce when transferring to a real-world scenario. Moreover, an update of the industrial
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digital infrastructure is also required in order to ease the integration of novel digital tools
such as the DRL algorithms. Concerning this challenge, the review presented in Section 5
in regard to sim-to-real transfer tools could help the reader-developers go one step further
in their validation process and boost the transfer to a real-world scenario.

Overall, to face the existing challenges and fully exploit DRL capacity, the next steps
have been proposed. In the first instance, and this is the main point, validations need to be
close to real environments: enhance the simulation of the real environment to ensure the
fulfilment of the problem’s specifications, improve the training phase and accelerate the
deployment. In this sense, tools such as digital twins could help. Moreover, DRL algorithms
have to include an evaluation of policy safety and robustness. In the second instance,
standardise the implementation process. Defining common and easily understandable
guides on how to implement and test DRL algorithms in a real environment will boost the
validation and help the industries understand the DRL algorithms easing their deployment
in testing in their facilities. In conclusion, the next steps should focus on accelerating and
facilitating the validation of the algorithms in real environments to boost their deployment.

In a nutshell, the review spotlights that DRL applicability is observed across all
activities within the manufacturing industries, outperforming the conventional techniques
and, most importantly, boosting the resilience and adaptability of the manufacturing
process. However, there is still much work to be carried out, in both academics and
industries, to fully exploit the potential of those disruptive tools, start the deployment in
the industries, and take a further step towards the I5.0 transformation of industries.
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A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
AI Artificial intelligence
ANN Artificial neural network
AOD Active object detection
CNC Computer numerical control
CPS Cyber-physical Systems
CSTR Continuous stirred tank reactor
DDPG Deep Deterministic Policy Gradient
DDQN Double DQN
DNN Deep neural network
DQN Deep Q-Networks
DRL Deep reinforcement learning
FIFO First-in first-out
GDP Gross domestic product
HER Hindsight experience replay
HRL Hierarchical reinforcement learning
I2A Imagination-Augmented Agents
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I4.0 Industry 4.0
I5.0 Industry 5.0
IoT Internet of Things
MDP Markov Decision Process
ME-MADDPG Mixed Experience Multi-agent DDPG
ML Machine learning
NPDR Neural Posterior Domain Randomisation
PCB Printed circuit board
P-DQN Prioritised DQN
PER Priority experience replay
PID Proportional-integral-derivative
PO Policy optimisation
PPO Proximal policy optimisation
PRM Probabilistic Roadmap
QR-DQN Quantile Regression DQN
RL Reinforcement learning
SAC Soft Actor-Critic
SSTGCN Social Spatial–Temporal Graph Convolution Network
TD3 Twin Delayed Deep Deterministic Policy Gradient
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82. Andrychowicz, M.; Raichuk, A.; Stańczyk, P.; Orsini, M.; Girgin, S.; Marinier, R.; Hussenot, L.; Geist, M.; Pietquin, O.; Michalski,
M.; et al. What matters in on-policy reinforcement learning? a large-scale empirical study. arXiv 2020, arXiv:2006.05990.

83. Agarwal, R.; Schuurmans, D.; Norouzi, M. Striving for Simplicity in Off-Policy Deep Reinforcement Learning. 2019. Available
online: https://openreview.net/forum?id=ryeUg0VFwr (accessed on 14 October 2022).

84. Zimmer, M.; Boniface, Y.; Dutech, A. Off-Policy Neural Fitted Actor-Critic. In Proceedings of the Deep Reinforcement Learning
Workshop (NIPS 2016), Barcelona, Spain, 5–10 December 2016.

85. Fujimoto, S.; Meger, D.; Precup, D. Off-policy deep reinforcement learning without exploration. In Proceedings of the 36th
International Conference on Machine Learning (ICML 2019), Long Beach, CA, USA, 9–15 June 2019.

86. Clemente, A.V.; Castejón, H.N.; Chandra, A. Efficient Parallel Methods for Deep Reinforcement Learning. arXiv 2017,
arXiv:1705.04862.

87. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.

88. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Openai, O.K. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

89. Huang, Y. Deep Q-networks. In Deep Reinforcement Learning: Fundamentals, Research and Applications; Dong, H., Ding, Z., Zhang,
S., Eds.; Springer Nature: Singapore, 2020.

90. Dabney, W.; Rowland, M.; Bellemare, M.G.; Munos, R. Distributional Reinforcement Learning with Quantile Regression. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, Hilton New Orleans Riverside, New Orleans,
LA, USA, 2–7 February 2018; pp. 2892–2901.

91. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W.
Hindsight Experience Replay. Available online: https://goo.gl/SMrQnI (accessed on 4 October 2022).

92. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. January 2018. Available online: http://arxiv.org/abs/1801.01290 (accessed on 4 October 2022).

93. Casas, N. Deep deterministic policy gradient for urban traffic light control. arXiv 2017, arXiv:1703.09035.
94. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the

35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; pp. 2587–2601.
95. Saeed, M.; Nagdi, M.; Rosman, B.; Ali, H.H.S.M. Deep Reinforcement Learning for Robotic Hand Manipulation. In Proceedings

of the 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE 2020), Khartoum,
Sudan, 26 February–1 March 2021. [CrossRef]

96. Serrano-Ruiz, J.C.; Mula, J.; Poler, R. Smart manufacturing scheduling: A literature review. J. Manuf. Syst. 2021, 61, 265–287.
[CrossRef]

97. Kuo, R.J.; Cohen, P.H. Manufacturing process control through integration of neural networks and fuzzy model. Fuzzy Sets Syst.
1998, 98, 15–31. [CrossRef]

98. Chien, C.F.; Dauzère-Pérès, S.; Huh, W.T.; Jang, Y.J.; Morrison, J.R. Artificial intelligence in manufacturing and logistics systems:
Algorithms, applications, and case studies. Int. J. Prod. Res. 2020, 58, 2730–2731. [CrossRef]

99. Morgan, J.; Halton, M.; Qiao, Y.; Breslin, J.G. Industry 4.0 smart reconfigurable manufacturing machines. J. Manuf. Syst. 2020, 59,
481–506. [CrossRef]

100. Oliff, H.; Liu, Y.; Kumar, M.; Williams, M.; Ryan, M. Reinforcement learning for facilitating human-robot-interaction in manufac-
turing. J. Manuf. Syst. 2020, 56, 326–340. [CrossRef]

101. Lin, C.C.; Deng, D.J.; Chih, Y.L.; Chiu, H.T. Smart Manufacturing Scheduling with Edge Computing Using Multiclass Deep Q
Network. IEEE Trans. Ind. Inform. 2019, 15, 4276–4284. [CrossRef]

102. Rodríguez, M.L.R.; Kubler, S.; de Giorgio, A.; Cordy, M.; Robert, J.; Le Traon, Y. Multi-agent deep reinforcement learning based
Predictive Maintenance on parallel machines. Robot. Comput. Integr. Manuf. 2022, 78, 102406. [CrossRef]

103. Leyendecker, L.; Schmitz, M.; Zhou, H.A.; Samsonov, V.; Rittstieg, M.; Lutticke, D. Deep Reinforcement Learning for Robotic
Control in High-Dexterity Assembly Tasks-A Reward Curriculum Approach. In Proceedings of the 2021 Fifth IEEE International
Conference on Robotic Computing (IRC), Taichung, Taiwan, 15–17 November 2021; pp. 35–42. [CrossRef]

104. Beltran-Hernandez, C.C.; Petit, D.; Ramirez-Alpizar, I.G.; Harada, K. Variable Compliance Control for Robotic Peg-in-Hole
Assembly: A Deep-Reinforcement-Learning Approach. Appl. Sci. 2020, 10, 6923. [CrossRef]

105. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to train your robot with deep reinforcement learning:
Lessons we have learned. Int. J. Robot. Res. 2021, 40, 698–721. [CrossRef]

106. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In
Proceedings of the Proceedings of the 25th International Conference on Knowledge Discovery and Data Mining, Anchorage, AK,
USA, 4–8 August 2019.

107. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
Algorithms and Applications. arXiv 2018, arXiv:1812.05905.

108. Yang, T.; Tang, H.; Bai, C.; Liu, J.; Hao, J.; Meng, Z.; Liu, P.; Wang, Z. Exploration in Deep Reinforcement Learning: A Comprehen-
sive Survey. arXiv 2021, arXiv:2109.06668.

https://openreview.net/forum?id=ryeUg0VFwr
https://goo.gl/SMrQnI
http://arxiv.org/abs/1801.01290
http://doi.org/10.1109/ICCCEEE49695.2021.9429619
http://doi.org/10.1016/j.jmsy.2021.09.011
http://doi.org/10.1016/S0165-0114(96)00382-X
http://doi.org/10.1080/00207543.2020.1752488
http://doi.org/10.1016/j.jmsy.2021.03.001
http://doi.org/10.1016/j.jmsy.2020.06.018
http://doi.org/10.1109/TII.2019.2908210
http://doi.org/10.1016/j.rcim.2022.102406
http://doi.org/10.1109/IRC52146.2021.00012
http://doi.org/10.3390/app10196923
http://doi.org/10.1177/0278364920987859


Appl. Sci. 2022, 12, 12377 26 of 30

109. He, L.; Aouf, N.; Whidborne, J.F.; Song, B. Integrated moment-based LGMD and deep reinforcement learning for UAV obstacle
avoidance. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 7491–7497. [CrossRef]

110. Aumjaud, P.; McAuliffe, D.; Rodríguez-Lera, F.J.; Cardiff, P. Reinforcement Learning Experiments and Benchmark for Solving
Robotic Reaching Tasks. Adv. Intell. Syst. Comput. 2021, 1285, 318–331. [CrossRef]

111. Salvato, E.; Fenu, G.; Medvet, E.; Pellegrino, F.A. Crossing the reality gap: A survey on sim-to-real transferability of robot
controllers in reinforcement learning. IEEE Access 2021, 9, 153171–153187. [CrossRef]

112. Sutton, R.; Barto, A. Frontiers. In Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, CA, USA, 2020;
pp. 459–475. Available online: http://incompleteideas.net/book/RLbook2020.pdf (accessed on 1 October 2022).

113. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. arXiv 2018, arXiv:1806.10293.

114. Matignon, L.; Laurent, G.J.; le Fort-Piat, N. Reward function and initial values: Better choices for accelerated goal-directed
reinforcement learning. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 840–849. [CrossRef]

115. Eschmann, J. Reward Function Design in Reinforcement Learning. Stud. Comput. Intell. 2021, 883, 25–33. [CrossRef]
116. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]
117. OpenAI. Available online: https://openai.com (accessed on 1 November 2022).
118. DeepMind. Available online: https://www.deepmind.com (accessed on 1 November 2022).
119. Azeem, M.; Haleem, A.; Javaid, M. Symbiotic Relationship between Machine Learning and Industry 4.0: A Review. J. Ind. Integr.

Manag. 2021, 7. [CrossRef]
120. Nguyen, H.; La, H. Review of Deep Reinforcement Learning for Robot Manipulation. In Proceedings of the 2019 Third IEEE

International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019. [CrossRef]
121. Liu, Y.; Ping, Y.; Zhang, L.; Wang, L.; Xu, X. Scheduling of decentralized robot services in cloud manufacturing with deep

reinforcement learning. Robot. Comput.-Integr. Manuf. 2023, 80, 102454. [CrossRef]
122. Xing, Q.; Chen, Z.; Zhang, T.; Li, X.; Sun, K.Y. Real-time optimal scheduling for active distribution networks: A graph reinforce-

ment learning method. Int. J. Electr. Power Energy Syst. 2023, 145, 108637. [CrossRef]
123. Rupprecht, T.; Wang, Y. A survey for deep reinforcement learning in markovian cyber–physical systems: Common problems and

solutions. Neural Netw. 2022, 153, 13–26. [CrossRef] [PubMed]
124. Cao, D.; Hu, W.; Zhao, J.; Zhang, G.; Zhang, B.; Liu, Z.; Chen, Z.; Blaabjerg, F. Reinforcement Learning and Its Applications in

Modern Power and Energy Systems: A Review. J. Mod. Power Syst. Clean Energy 2020, 8, 1029–1042. [CrossRef]
125. Sun, Y.; Jia, J.; Xu, J.; Chen, M.; Niu, J. Path, feedrate and trajectory planning for free-form surface machining: A state-of-the-art

review. Chin. J. Aeronaut. 2022, 35, 12–29. [CrossRef]
126. Sánchez-Ibáñez, J.R.; Pérez-Del-Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors

2021, 21, 7898. [CrossRef]
127. Jiang, J.; Ma, Y. Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing:

A review. Micromachines 2020, 11, 633. [CrossRef]
128. Patle, B.; L, G.B.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def.

Technol. 2019, 15, 582–606. [CrossRef]
129. Qiu, T.; Cheng, Y. Applications and Challenges of Deep Reinforcement Learning in Multi-robot Path Planning. J. Electron. Res.

Appl. 2021, 5, 25–29. [CrossRef]
130. Zhao, Y.; Zhang, Y.; Wang, S. A Review of Mobile Robot Path Planning Based on Deep Reinforcement Learning Algorithm. J. Phys.

Conf. Ser. 2021, 2138, 012011. [CrossRef]
131. Huo, Q. Multi-objective vehicle path planning based on DQN. In Proceedings of the International Conference on Cloud

Computing, Performance Computing, and Deep Learning (CCPCDL 2022), Wuhan, China, 11–13 March 2022; p. 12287.
132. Wang, J.; Zhang, T.; Ma, N.; Li, Z.; Ma, H.; Meng, F.; Meng, M.Q. A survey of learning-based robot motion planning. IET

Cyber-Syst. Robot. 2021, 3, 302–314. [CrossRef]
133. Fang, F.; Liang, W.; Wu, Y.; Xu, Q.; Lim, J.-H. Self-Supervised Reinforcement Learning for Active Object Detection. IEEE Robot.

Autom. Lett. 2022, 7, 10224–10231. [CrossRef]
134. Lv, L.; Zhang, S.; Ding, D.; Wang, Y. Path Planning via an Improved DQN-Based Learning Policy. IEEE Access 2019, 7, 67319–67330.

[CrossRef]
135. Liu, Y.; Chen, Z.; Li, Y.; Lu, M.; Chen, C.; Zhang, X. Robot Search Path Planning Method Based on Prioritized Deep Reinforcement

Learning. Int. J. Control. Autom. Syst. 2022, 20, 2669–2680. [CrossRef]
136. Wang, Y.; Fang, Y.; Lou, P.; Yan, J.; Liu, N. Deep Reinforcement Learning based Path Planning for Mobile Robot in Unknown

Environment. J. Phys. Conf. Ser. 2020, 1576, 012009. [CrossRef]
137. Zhou, Z.; Zhu, P.; Zeng, Z.; Xiao, J.; Lu, H.; Zhou, Z. Robot Navigation in a Crowd by Integrating Deep Reinforcement Learning

and Online Planning. Appl. Intell. 2022, 52, 15600–15616. [CrossRef]
138. Lu, Y.; Ruan, X.; Huang, J. Deep Reinforcement Learning Based on Social Spatial&ndash;Temporal Graph Convolution Network

for Crowd Navigation. Machines 2022, 10, 703. [CrossRef]

http://doi.org/10.1109/ICRA40945.2020.9197152
http://doi.org/10.1007/978-3-030-62579-5_22/TABLES/2
http://doi.org/10.1109/ACCESS.2021.3126658
http://incompleteideas.net/book/RLbook2020.pdf
http://doi.org/10.1007/11840817_87/COVER
http://doi.org/10.1007/978-3-030-41188-6_3
http://doi.org/10.1016/j.mfglet.2014.12.001
https://openai.com
https://www.deepmind.com
http://doi.org/10.1142/S2424862221300027
http://doi.org/10.1109/IRC.2019.00120
http://doi.org/10.1016/j.rcim.2022.102454
http://doi.org/10.1016/j.ijepes.2022.108637
http://doi.org/10.1016/j.neunet.2022.05.013
http://www.ncbi.nlm.nih.gov/pubmed/35689878
http://doi.org/10.35833/MPCE.2020.000552
http://doi.org/10.1016/j.cja.2021.06.011
http://doi.org/10.3390/s21237898
http://doi.org/10.3390/mi11070633
http://doi.org/10.1016/j.dt.2019.04.011
http://doi.org/10.26689/jera.v5i6.2809
http://doi.org/10.1088/1742-6596/2138/1/012011
http://doi.org/10.1049/csy2.12020
http://doi.org/10.1109/LRA.2022.3193019
http://doi.org/10.1109/ACCESS.2019.2918703
http://doi.org/10.1007/s12555-020-0788-8
http://doi.org/10.1088/1742-6596/1576/1/012009
http://doi.org/10.1007/s10489-022-03191-2
http://doi.org/10.3390/MACHINES10080703


Appl. Sci. 2022, 12, 12377 27 of 30

139. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5493.
[CrossRef]

140. Wu, D.; Wan, K.; Gao, X.; Hu, Z. Multiagent Motion Planning Based on Deep Reinforcement Learning in Complex Environments.
In Proceedings of the 2021 6th International Conference on Control and Robotics Engineering (ICCRE 2021), Beijing, China, 16–18
April 2021; pp. 123–128. [CrossRef]

141. Nolan, D.P. Process Controls. In Handbook of Fire and Explosion Protection Engineering Principles, 2nd ed.; Elsevier: Amsterdam, The
Netherlands, 2011; pp. 113–118. [CrossRef]

142. Karigiannis, J.N.; Laurin, P.; Liu, S.; Holovashchenko, V.; Lizotte, A.; Roux, V.; Boulet, P. Reinforcement Learning Enabled
Self-Homing of Industrial Robotic Manipulators in Manufacturing. Manuf. Lett. 2022, 33, 909–918. [CrossRef]

143. Szarski, M.; Chauhan, S. Composite temperature profile and tooling optimization via Deep Reinforcement Learning. Compos. Part
A Appl. Sci. Manuf. 2021, 142, 106235. [CrossRef]

144. Deng, J.; Sierla, S.; Sun, J.; Vyatkin, V. Reinforcement learning for industrial process control: A case study in flatness control in
steel industry. Comput. Ind. 2022, 143, 103748. [CrossRef]

145. Li, Y. Deep Reinforcement Learning: An Overview. arXiv 2017, arXiv:1701.07274.
146. Fusayasu, H.; Heya, A.; Hirata, K. Robust control of three-degree-of-freedom spherical actuator based on deep reinforcement

learning. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 749–756. [CrossRef]
147. Ma, Y.; Zhu, W.; Benton, M.G.; Romagnoli, J. Continuous control of a polymerization system with deep reinforcement learning.

J. Process. Control. 2019, 75, 40–47. [CrossRef]
148. Neumann, M.; Palkovits, D.S. Reinforcement Learning Approaches for the Optimization of the Partial Oxidation Reaction of

Methane. Ind. Eng. Chem. Res. 2022, 61, 3910–3916. Available online: https://doi.org/10.1021/ACS.IECR.1C04622/ASSET/
IMAGES/LARGE/IE1C04622_0010.JPEG (accessed on 31 October 2022).

149. Yifei, Y.; Lakshminarayanan, S. Multi-Agent Reinforcement Learning System for Multiloop Control of Chemical Processes. In
Proceedings of the 2022 IEEE International Symposium on Advanced Control of Industrial Processes (AdCONIP), Vancouver, BC,
Canada, 7–9 August 2022; pp. 48–53. [CrossRef]

150. Dutta, D.; Upreti, S.R. Upreti. A survey and comparative evaluation of actor-critic methods in process control. Can. J. Chem. Eng.
2022, 100, 2028–2056. [CrossRef]

151. Suomalainen, M.; Karayiannidis, Y.; Kyrki, V. A survey of robot manipulation in contact. Robot. Auton. Syst. 2022, 156, 104224.
[CrossRef]

152. Mohammed, M.Q.; Kwek, L.C.; Chua, S.C.; Al-Dhaqm, A.; Nahavandi, S.; Eisa, T.A.E.; Miskon, M.F.; Al-Mhiqani, M.N.; Ali, A.;
Abaker, M.; et al. Review of Learning-Based Robotic Manipulation in Cluttered Environments. Sensors 2022, 22, 7938. [CrossRef]

153. Zhou, Z.; Ni, P.; Zhu, X.; Cao, Q. Compliant Robotic Assembly based on Deep Reinforcement Learning. In Proceedings of the 2021
International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), Chongqing, China, 9–11 July 2021.
[CrossRef]

154. Hebecker, M.; Lambrecht, J.; Schmitz, M. Towards real-world force-sensitive robotic assembly through deep reinforcement
learning in simulations. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Delft, The Netherlands, 12–16 July 2021; pp. 1045–1051. [CrossRef]

155. Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor, M.E.; Stone, P. Curriculum learning for reinforcement learning domains:
A framework and survey. arXiv 2020, arXiv:2003.04960.

156. Bosch, A.V.D.; Hengst, B.; Lloyd, J.; Miikkulainen, R.; Blockeel, H. Hierarchical Reinforcement Learning. In Encyclopedia of Machine
Learning; Springer: Boston, MA, USA, 2011; pp. 495–502. [CrossRef]

157. Wang, C.; Lin, C.; Liu, B.; Su, C.; Xu, P.; Xie, L. Deep Reinforcement Learning with Shaping Exploration Space for Robotic
Assembly. In Proceedings of the 2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT),
Changzhou, China, 24–26 September 2021. [CrossRef]

158. Li, J.; Pang, D.; Zheng, Y.; Guan, X.; Le, X. A flexible manufacturing assembly system with deep reinforcement learning. Control
Eng. Pract. 2022, 118, 104957. [CrossRef]

159. Liu, Y.; Xu, H.; Liu, D.; Wang, L. Wang. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled
industrial robot grasping. Robot. Comput. Integr. Manuf. 2022, 78, 102365. [CrossRef]

160. Lobbezoo, A.; Qian, Y.; Kwon, H.-J. Reinforcement Learning for Pick and Place Operations in Robotics: A Survey. Robotics 2021,
10, 105. [CrossRef]

161. Zeng, R.; Liu, M.; Zhang, J.; Li, X.; Zhou, Q.; Jiang, Y. Manipulator Control Method Based on Deep Reinforcement Learning.
In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 415–420.
[CrossRef]

162. Dai, J.; Zhu, M.; Feng, Y. Stiffness Control for a Soft Robotic Finger based on Reinforcement Learning for Robust Grasping. In
Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China,
26–28 November 2021; pp. 540–545. [CrossRef]

163. Marzari, L.; Pore, A.; Dall’Alba, D.; Aragon-Camarasa, G.; Farinelli, A.; Fiorini, P. Towards Hierarchical Task Decomposition
using Deep Reinforcement Learning for Pick and Place Subtasks. In Proceedings of the 2021 20th International Conference on
Advanced Robotics (ICAR 2021), Virtual Event, 6–10 December 2021; pp. 640–645.

http://doi.org/10.3390/s20195493
http://doi.org/10.1109/ICCRE51898.2021.9435656
http://doi.org/10.1016/B978-1-4377-7857-1.00010-0
http://doi.org/10.1016/j.mfglet.2022.07.111
http://doi.org/10.1016/j.compositesa.2020.106235
http://doi.org/10.1016/j.compind.2022.103748
http://doi.org/10.1002/tee.23563
http://doi.org/10.1016/j.jprocont.2018.11.004
https://doi.org/10.1021/ACS.IECR.1C04622/ASSET/IMAGES/LARGE/IE1C04622_0010.JPEG
https://doi.org/10.1021/ACS.IECR.1C04622/ASSET/IMAGES/LARGE/IE1C04622_0010.JPEG
http://doi.org/10.1109/ADCONIP55568.2022.9894204
http://doi.org/10.1002/cjce.24508
http://doi.org/10.1016/j.robot.2022.104224
http://doi.org/10.3390/s22207938
http://doi.org/10.1109/MLISE54096.2021.00009
http://doi.org/10.1109/AIM46487.2021.9517356
http://doi.org/10.1007/978-0-387-30164-8_363
http://doi.org/10.1109/ISRIMT53730.2021.9596687
http://doi.org/10.1016/j.conengprac.2021.104957
http://doi.org/10.1016/j.rcim.2022.102365
http://doi.org/10.3390/robotics10030105
http://doi.org/10.1109/CCDC49329.2020.9164440
http://doi.org/10.1109/M2VIP49856.2021.9665056


Appl. Sci. 2022, 12, 12377 28 of 30

164. Kim, M.; Han, D.-K.; Park, J.-H.; Kim, J.-S. Motion Planning of Robot Manipulators for a Smoother Path Using a Twin Delayed
Deep Deterministic Policy Gradient with Hindsight Experience Replay. Appl. Sci. 2020, 10, 575. [CrossRef]

165. Shahid, A.A.; Piga, D.; Braghin, F.; Roveda, L. Continuous control actions learning and adaptation for robotic manipulation
through reinforcement learning. Auton. Robot. 2022, 46, 483–498. [CrossRef]

166. Wang, L.; Pan, Z.; Wang, J. A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling.
Complex Syst. Model. Simul. 2022, 1, 257–270. [CrossRef]

167. Prashar, A.; Tortorella, G.L.; Fogliatto, F.S. Production scheduling in Industry 4.0: Morphological analysis of the literature and
future research agenda. J. Manuf. Syst. 2022, 65, 33–43. [CrossRef]

168. Rosenberger, J.; Urlaub, M.; Rauterberg, F.; Lutz, T.; Selig, A.; Bühren, M.; Schramm, D. Deep Reinforcement Learning Multi-Agent
System for Resource Allocation in Industrial Internet of Things. Sensors 2022, 22, 4099. [CrossRef]

169. Hu, C.; Wang, Q.; Gong, W.; Yan, X. Multi-objective deep reinforcement learning for emergency scheduling in a water distribution
network. Memetic Comput. 2022, 14, 211–223. [CrossRef]

170. Baer, S.; Bakakeu, J.; Meyes, R.; Meisen, T. Multi-agent reinforcement learning for job shop scheduling in flexible manufacturing
systems. In Proceedings of the 2019 Second International Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills,
CA, USA, 25–27 September 2019. [CrossRef]

171. Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement learning applied to production planning and control. Int.
J. Prod. Res. 2022. [CrossRef]

172. Liu, L.; Zhu, J.; Chen, J.; Ye, H. Cooperative optimal scheduling strategy of source and storage in microgrid based on soft
actor-critic. Dianli Zidonghua Shebei/Electr. Power Autom. Equip. 2022, 42. [CrossRef]

173. Andreiana, D.S.; Galicia, L.E.A.; Ollila, S.; Guerrero, C.L.; Roldán, Á.O.; Navas, F.D.; Torres, A.D.R. Steelmaking Process Optimised
through a Decision Support System Aided by Self-Learning Machine Learning. Processes 2022, 10, 434. [CrossRef]

174. Roldán, Á.O.; Gassner, G.; Schlautmann, M.; Galicia, L.E.A.; Andreiana, D.S.; Heiskanen, M.; Guerrero, C.L.; Navas, F.D.;
Torres, A.D.R. Optimisation of Operator Support Systems through Artificial Intelligence for the Cast Steel Industry: A Case
for Optimisation of the Oxygen Blowing Process Based on Machine Learning Algorithms. J. Manuf. Mater. Process. 2022, 6, 34.
[CrossRef]

175. Fu, F.; Kang, Y.; Zhang, Z.; Yu, F.R. Transcoding for live streaming-based on vehicular fog computing: An actor-critic DRL
approach. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Toronto, ON, Canada, 6–9 July 2020. [CrossRef]

176. Xu, Y.; Zhao, J. Actor-Critic with Transformer for Cloud Computing Resource Three Stage Job Scheduling. In Proceedings of the
2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 22–24 April 2022;
pp. 33–37. [CrossRef]

177. Fu, F.; Kang, Y.; Zhang, Z.; Yu, F.R.; Wu, T. Soft Actor-Critic DRL for Live Transcoding and Streaming in Vehicular Fog-Computing-
Enabled IoV. IEEE Internet Things J. 2020, 8, 1308–1321. [CrossRef]

178. Palombarini, J.A.; Martinez, E.C. Automatic Generation of Rescheduling Knowledge in Socio-technical Manufacturing Systems
using Deep Reinforcement Learning. In Proceedings of the 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel
de Tucuman, Argentina, 6–8 June 2018. [CrossRef]

179. Palombarini, J.A.; Martínez, E.C. Closed-loop rescheduling using deep reinforcement learning. IFAC-PapersOnLine 2019, 52,
231–236. [CrossRef]

180. Park, I.-B.; Huh, J.; Kim, J.; Park, J. A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing
Facilities. IEEE Trans. Autom. Sci. Eng. 2020, 17. [CrossRef]

181. Upkeep. Industrial Maintenance. Available online: https://www.upkeep.com/learning/industrial-maintenance (accessed on
28 October 2022).

182. ATS. The Evolution of Industrial Maintenance. Available online: https://www.advancedtech.com/blog/evolution-of-industrial-
maintenance/ (accessed on 28 October 2022).

183. Moubray, J. RCM II-Reliability-centered Maintenance; Butterworth-Heinemann: London, UK, 1997.
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