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Abstract: Automatic program repair techniques based on deep neural networks have attracted
widespread attention from researchers due to the high degree of automation and generality. However,
there is a scarcity of high-quality labeled datasets available for training program repair models. This
study proposes a method of mining reasonable program repair examples from student program
execution logs. Additionally, we introduce the Rookie Simulator (RS), which simulates the error
patterns commonly made by novice programmers and generates a large number of program repair
sample pairs. To address the issue of low repair rates for infrequent and complex error patterns
in compilation errors, the study proposes the attention-enhanced capsule network for program
repair (ACNPR), a program repair model that integrates compiler feedback information and utilizes
capsule networks to capture complex semantic features. Experimental evaluations were conducted
using publicly available datasets, including the DeepFix, TEGCER, and a real course dataset named
SUES-COJ mined in this study. The results indicate that our method consistently outperforms current
state-of-the-art models in terms of full repair rates.

Keywords: automatic program repair; capsule network; compilation error repair

1. Introduction

During the programming process, program errors are quite common and inevitable.
Specifically, syntax errors, such as the misuse of delimiters and identifiers, frequently occur
in programs written by students and novice programmers. Programming assignments
are a crucial method for practicing programming skills, and the scale of such laboratory
courses is gradually increasing [1]. Through online systems, code execution logs of stu-
dents completing programming tasks can be obtained. The execution logs comprehensively
include students’ processes, from starting to write and compile the program, discover-
ing compilation errors, finding the reasons for the errors, and making modifications to
eventually repairing the program’s errors successfully and submitting it. Hence, the logs
contain common syntax errors made by novices, as well as the modified programs. These
program samples can serve as examples for program error repair, guiding the process of
fixing programs.

Traditional automated program repair approaches mostly rely on search-based or
semantics-based techniques [2], which heavily depend on manually designed heuristic
search algorithms [3–5] or methods with semantic constraints [6,7] to generate reasonable
repair patches. These approaches have low automation levels and limited generality. In
recent years, more repair tools have been developed based on deep learning models that
extract syntactic and semantic features from program code. By training repairers on large-
scale code data, these models are capable of handling various types of code errors and have
higher levels of automation and practicality potential.

The essence of deep learning–based program error repair methods is statistical analysis–
based repair techniques, which rely on the quality of the dataset and the model’s ability
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to capture program syntactic features. It is crucial to find truly applicable code samples
from massive open-source data and meet the data quantity requirements for training deep
learning models. Currently, there is a scarcity of labeled datasets for training program repair
models, and manually annotating the corresponding correct repairs for each erroneous
program is a labor-intensive task. Several studies utilize perturbation methods to randomly
introduce, modify, or delete parts of critical code to generate a large number of erroneous
programs and their correct repairs. However, the quality of the data obtained through this
approach is inferior to real error data, leading to suboptimal repair effectiveness [8].

Relying solely on code semantics information to train repair models has limited capa-
bility in capturing features of low-frequency errors and deep semantic errors. Incorporating
compiler feedback information can assist such models in effectively extracting certain types
of error patterns, but these patterns are usually simple [9] and do not involve complex
semantic code structures.

This study aimed to overcome the aforementioned challenges by mining pairs of
samples from students’ code execution logs specifically used for program repair. By
so doing, real program repair examples were obtained. Furthermore, a deep learning–
based approach was employed to augment the quantity of program repair samples. The
augmented dataset was then used to train a program repair model capable of fixing
compilation errors. The main contributions of this study are outlined as follows:

1. We propose a method for mining reasonable program error repair examples from
students’ program execution logs in the online experimental system. This method
enables the extraction of a large number of program code pairs that encompass
multiple types of errors, which can be used for training program repair models.

2. To address the issue of insufficient program error repair sample data, we introduce the
Rookie Simulator (RS), which simulates the error-prone habits of novice programmers.
Using deep learning techniques, the RS is trained to predict and generate additional la-
beled program pairs. These program pairs closely resemble the types and distribution
of real errors. By training the repair model with these generated samples, improved
repair effectiveness can be achieved.

3. To address the issues of low-frequency errors and unclear error description infor-
mation in program repair, we introduce the attention-enhanced capsule network for
program repair (ACNPR) model. This model combines compiler error description
information and features such as program-feedback graphs to repair erroneous pro-
grams. Experimental results demonstrate that the ACNPR model achieves satisfactory
repair results for various types of novice errors.

2. Related Work

Gupta et al. [10] first proposed using the sequence-to-sequence neural network model
DeepFix to automatically fix syntax errors in programs, achieving an end-to-end automated
repair tool. This method focuses on four common types of simple syntax errors and
introduces mutations to programs, which are represented as sequences of line numbers
and corresponding statements. The model was trained to predict individual repairs and
employs an iterative approach to fix programs with multiple errors. Subsequently, Gupta
et al. [11] introduced a reinforcement learning–based repair framework for fixing student
programs. The framework utilizes long short-term memory networks to encode program
texts and incorporates cursor positions. An agent performed a series of cursor navigation
and editing operations to simulate the step-by-step program repair process executed by
students. Hajipour et al. [12] proposed SampleFix, which samples various repairs for a
given erroneous program. It learned the distribution of latent patches with the use of a
conditional variational autoencoder and generated repair patches by editing the latent lines
of the errors, effectively correcting common syntax errors. These methods rely solely on the
semantic guidance of the code for program repair without utilizing feedback information
from the compiler, thus limiting their repair capabilities.
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Yasunaga et al. [13] utilized diagnostic feedback information from compilers and
proposed the program-feedback graph to address long-distance dependencies of variables.
The authors also introduced a self-supervised learning paradigm for program repair, cre-
ating a large amount of additional training data by intentionally introducing five types
of random perturbation modules to unlabeled programs. Their final system, DrRepair,
achieved advanced complete repair rates. Mesbah et al. [14] proposed DeepDelta, which
employs deep neural networks to learn repair patterns for specific types of errors. The
authors transformed error repair patterns into a domain-specific language called Delta
and trained a neural machine translation network using compiler feedback information as
the source and incremental changes of code repairs as the target. This method effectively
generates repair patches for two commonly occurring and costly Java compilation errors.
Seo et al. [15] presented a sequence-to-sequence learning framework called MultiFix, which
allows for repairing multiple errors at once. It pairs the best-aligned erroneous program
with the corresponding correct program generated from the edit distance calculation to
label repair examples. By taking the error code with positional encodings as input, the
predicted repair patch can handle multiple errors across lines, eliminating the need for
iterative iterations and improving repair efficiency. The aforementioned methods utilize
specific patterns for mining or perturbing to generate error programs as the training dataset.
The effectiveness of repairing different types of errors is constrained by the quality and
diversity of the training dataset. Our approach involved utilizing a learning-based method
to produce error programs that better conformed to the distribution of actual error locations
and types. This allowed us to increase the training samples while preserving a greater
amount of semantic information within the actual erroneous code. Compared to the meth-
ods of random program mutation and design perturbation, our approach does not rely on
manual analysis of program error types in different categories of datasets. Instead, our
method was capable of automatically generating error examples corresponding to specific
types. For instance, Chinese students often negligently used Chinese characters that the
compiler couldn’t recognize instead of English characters while programming. By utilizing
the corresponding dataset, our method was able to simulate such errors and generate a
substantial number of examples without the need for manually designing templates or
mutating programs specific to this type of error.

Ahmed et al. [16] proposed TEGCER as an automated feedback tool for novice pro-
grammers. The authors employed supervised classification to match compilation errors
with related errors submitted by other students. In total, 212 error categories were identified,
and corresponding solution examples were provided. Subsequently, Chhatbar et al. [17]
introduced MACER—which separates the repair process into type identification and re-
pair application, resulting in faster repair speeds. These approaches rely on fine-grained
categorization of error types and require the extraction of templates from repair examples.
Since they were built based on a specific dataset to create repair categories, their effec-
tiveness was limited when applied to datasets submitted by programmers with varying
levels of programming expertise. Our approach directly completed the program repair
in an end-to-end manner based on the input features, without any pre-defined manual
categorization. This high level of automation allowed for simulating different categories of
errors made by different types of programmers. Additionally, our approach demonstrated
greater generality across different datasets.

To overcome the limitations of convolutional neural networks in capturing the relative
positional relationships between different features, Sabour et al. [18] introduced a new
neural network architecture called the capsule network. Instead of scalar neurons as
the basic computing units, this model utilizes vector neurons, where both the input and
output are vectors. Each entity is represented by the orientation of the vector, while the
length of the vector represents the confidence of belonging to a specific class, and each
dimension of the vector represents specific attributes of the entity. The architecture of the
capsule network primarily consists of convolutional, primary capsule, and digit capsule
layers, as well as a decoder. The information flow between the primary capsule and digit
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capsule layers is facilitated by a dynamic routing algorithm. While capsule networks are
mostly applicable in image processing, Zhao et al. [19] applied such a network to text
classification and achieved better performance than CNNs and RNNs in multilabel analysis
tasks. Jia et al. [20] proposed a capsule network enhanced with multi-head attention for
text classification. This approach enabled the model to encode long-distance dependency
relationships between words and to merge them with semantic information through the
capsule network. In our program repair model, we applied capsule networks to extract
high-order features from two different sources: the semantic information of program code
and the semantic information in compiler descriptions. By utilizing two types of capsule
networks and incorporating them into the contextual semantics through an attention
mechanism, our model was able to learn the deep-seated semantics of program errors. This
approach enhanced the effectiveness of repairing complex semantic errors.

The method employed in this research involved mining real errors made by students,
followed by simulating their error-prone habits to generate a large and diverse set of
program repair examples for training. Compiler feedback information was incorporated
into the process. By leveraging the graph neural network and capsule network, the model
was able to fuse with code semantic information, enabling it to capture complex and diverse
semantic information more effectively.

3. Mining on Students’ Execution Logs

In computer language education courses for university students, to assess and re-
inforce their learning outcomes and improve learning efficiency, instructors assign pro-
gramming tasks within an online experimental system. The system provides feedback and
assigns scores based on the programs submitted by the students—who complete program-
ming tasks online, including writing, compiling, and submitting their code. Therefore, the
online experimental system captures the real-time execution logs of the students’ programs.
These records contain detailed information, ranging from the initial stages of program writ-
ing and compiling to identifying compilation errors, troubleshooting, and ultimately fixing
the program errors successfully before submission. The required error-repair program pairs
for training program repair models can be mined from these program execution logs.

The C program source code written by students contains code comments and un-
necessary blank lines. These redundant codes have no impact on the program semantics
and increase the code length, reducing the program’s semantic coherence. In this study,
regular expressions were used to replace multiline and single-line comments with empty
characters and to match and delete lines in the program that only contain whitespace
characters (spaces, line breaks, and tabs).

The program execution logs contain sequentially compiled code for different program-
ming tasks, along with their testing results on the compiler and test case. Based on the
submitted correct code that passed the tests, it is possible to retrospectively search for rele-
vant erroneous code that was compiled earlier. Taking Figure 1 as an example, the program
execution sequence of the student goes from P1 to Pn. Initially, the student executed P1,
but it didn’t pass the compilation. They made a modification from “int sum” to “double
sum” and recompiled it, but it still didn’t pass. Then, they made another modification
from “sum=sum*i,” to “sum=sum*i;”, and it compiled successfully. The method for mining
program pairs starts by sequentially searching the execution logs to find a correct program
sample, denoted as P3. Then, employing various strategies, the search goes backward from
P3. Among the previously submitted programs, error examples corresponding to those
that failed compilation are sought. Once the error programs (P2 and P1) corresponding to
P3 are found, they are paired with P3. These program pairs are then recorded as program
repair examples.
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We propose three different strategies for mining program repair sample pairs, and the
specific descriptions of these strategies are as follows:

Strategy 1 involves searching through the execution logs based on the compilation
results of the compiler to find programs that compiled successfully. To ensure that the
programs have some semantic information, the first code that passes a portion of the test
cases is chosen as the correct sample. Then, starting from the correct sample, the execution
logs are examined to find the last instance of code that failed to compile before this program.
This code is considered as the error sample. Finally, the error sample is paired with the
correct sample.

Strategy 2 involves searching through the execution logs to find the first code that
passes all the test cases, indicating that it semantically aligns with the programming task.
This code is selected as the correct sample. Then, starting from the correct sample, the
execution logs are examined to find the last instance of code that failed to compile. A
text-diff tool is used to identify the differences between the two code segments. Only the
differing lines within a span of up to three lines are retained, while the remaining content
is replaced with the correct code sample. By replacing the erroneous code with the correct
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code while preserving the differing parts, the resulting code retains the differential aspects
of the error code and incorporates the correct code to cover the other parts. This approach
ensures that the differences between the sample pairs are concentrated.

Strategy 3, as shown in Algorithm 1, involves traversing the execution log L to find
the program p that passes all test cases. Then, we iterate backward through the execution
log, identifying all previously encountered code that failed to compile. For each such
code, we calculate the difference with the correct sample, considering only one differing
code block, with a span of no more than three lines. Any code meeting these conditions
is identified as an error sample. The temporary variables pl and pt are used to store the
programs encountered during the traversal process. The function GetPreProg(L, pl) retrieves
the previous code record for program pl from the execution log L and assigns it to pt.
Similarly, GetDiffBlock() and GetDiffLine() return the number of differing code blocks and
the span of differing lines between the two programs. The line s = Match(pt, p) represents
pairing the error program pt with the correct program p, creating a repair example program
pair s. Finally, these program pairs are collected as the set of all program pairs, denoted as
S.

The program pairs obtained through three different strategies are further screened
by restricting the Levenshtein distance [21] between program pairs. This filtering process
aims to remove examples with excessively large modifications, such as deleting an entire
line. Finally, the program pairs undergo manual review to exclude any unreasonable repair
examples.

Algorithm 1: Program pair mining algorithm

Input: program execution logs L = { P1,P2,. . .,Pn }
Output: program pair set S = {S1,S2,. . .,Sn }
1 for p in L do
2 if PassAllTests(p) then
3 pl = p
4 while pl is not P1 do
5 pt = GetPreProg(L,pl)
6 if not Compiled(pt) then
7 if GetDiffBlock(pt,p) = 1 and GetDiffLine(pt,p) ≤ 3 then
8 s = Match(pt,p)
9 add s to the set S
10 end if
11 pl = pt
12 continue
13 else
14 p = pt
15 break
16 end while
17 end if
18 end for
19 return S

Table 1 shows the result of program pairs unearthed by applying the three methods to
different execution logs submitted by students for various programming tasks. Strategy 1
has simple constraint conditions, resulting in the highest number of sample pairs mined
and encompassing the widest range of error types. However, on average, each sample
pair contains a larger number of errors and exhibits greater variability in modifications,
leading to a higher proportion of unreasonable repairs. Strategies 2 and 3 yield a smaller
number of sample pairs, but they demonstrate higher repair quality. Strategy 2’s mined
samples encompass fewer error types and have a lower diversity, resulting in lower repair
complexity. On the other hand, Strategy 3 consistently produces samples of stable quality
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across different programming tasks, with a higher number of errors and a certain level of
repair complexity.

Table 1. Result of program pairs mining.

Task Mining
Strategy

Amount of
Sample Pairs

Amount of Error
Types

Average Number of
Errors per

Sample Pair

Task1
Strategy 1 140 5 1.55
Strategy 2 24 4 1.21
Strategy 3 15 4 1.47

Task2
Strategy 1 407 7 1.81
Strategy 2 280 4 1.18
Strategy 3 303 6 1.48

Task3
Strategy 1 343 7 2.14
Strategy 2 207 3 1.08
Strategy 3 192 6 1.44

4. Error Program Generating
4.1. Code Tokenization

The type names, delimiters, library functions, keywords, and special symbols in the
C language are universal, so they were preserved as individual tokens. Specifically, the
identifiers within the code were retained, including variable names, function names, and
other symbols, as they played a significant role in shaping the semantics of the code. The
newline characters were abstracted and represented as the token <newline> to preserve
the line information of the program. The various constants in the code do not alter the
code syntax, and the exact values of constants are not important for the model’s learning
task. Therefore, the numerical constants in the code were abstracted as a token <number>,
the string constants were abstracted as a token <string>, and the character constants were
abstracted as a token <char>. We considered all the code in a program as a token sequence,
and we used a dictionary to map all the constants that appeared in the program code.
This allowed us to restore the abstracted code by replacing the mapped tokens with their
original constants.

4.2. Rookie Simulator

The main workflow of the RS for program pairs generation is illustrated in Figure 2.
Transformer models [22] have shown remarkable performance in natural language process-
ing tasks, such as machine translation and speech recognition. The research conducted by
Michele et al. [23] demonstrates that trained neural machine translation models can acquire
a significant number of distinct bug patterns and generate patches for bug fixes. Due to the
inherent similarity between syntax errors in programming and grammar errors in natural
language [10], we draw an analogy to grammatical error correction in natural language.
To this end, we utilize real erroneous program statements, along with their corresponding
correct fix examples, as a dataset for training the Transformer translation model.
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During the model training phase, the correct programs are used as the source data,
while the erroneous programs serve as the target data. The Transformer model is trained
to predict and generate erroneous program statements based on the correct code. The
generated program statements are then compiled to verify their correctness. The erroneous
programs that result in compilation errors are retained as the output. The retained code
statements are filtered based on an edit distance [21] threshold of less than or equal to 5.
These filtered statements are then paired with the corresponding source program code
statements used during the prediction phase of the model, thereby creating the generated
program pairs dataset.

In the prediction phase, taking Figure 3 as an example, the correct program is first
abstracted and input into the trained RS model. This generates multiple predicted erroneous
programs, denoted as Pred#n. Next, all generated program statements are fed into a
compiler for validation. Since “int main()” and “int main(void)” are equivalent and do
not result in compilation errors, Pred#1 is filtered out at this stage. Subsequently, during
the edit distance filtering step, Pred#2, which has deleted a line of content, exceeds the
edit distance threshold when compared to the input program. However, Pred#3 has an
edit distance of 2 compared to the input program and is ultimately paired with the correct
program, resulting in a generated program repair example.
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5. Repairing Compilation Errors

The feedback information provided by the compiler can assist in pinpointing the
precise location of errors, offering relevant prompts pertaining to the errors, and effec-
tively guiding program repair. To extract the underlying semantics embedded within
code statements and compiler feedback information more effectively, we propose the
ACNPR model—which aims to learn the intricate characteristics and syntactic-semantic
relationships of erroneous programs, ultimately generating repair patches.

5.1. Data Preprocessing

To obtain a richer set of program error feature information and facilitate the localization
and reasoning capabilities of the repair model, we performed data preprocessing on the
program repair dataset. This included line tokenization, compiler compilation, and the
construction of program-feedback graphs.

We divided the program into lines and assigned a unique number to each line. Based
on the repair examples in the dataset, we identified the lines containing errors and labeled
them accordingly. This process allowed us to obtain the line numbers corresponding to the
errors and their corresponding repair patches on a single line basis.

We compiled the erroneous programs in the dataset using the GNU compiler collection
and extracted the compiler feedback information. Each feedback from GCC contains
source file information, error location information, and error description. For example,
in the feedback message “e158_277497.c:10:18: expected identifier or ‘(‘ before ‘return,’”
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“e158_277497.c” represents the name of the compiled C program, “10” indicates the line
number where the error is identified by the compiler, and “18” represents the column
number of the error location. The phrase “expected identifier or ‘(‘ before ‘return’” is the
compiler’s description of the error. We extracted the line number indicating the location of
the error as guidance for the repair model to locate the errors. Additionally, we extracted
the error description information as a part of the model input.

The construction of program-feedback graphs is guided by Yasunaga et al. [13] and
involves identifying key information (e.g., “return”) from error descriptions and locating
the corresponding tokens in the source code. These tokens are then connected to form the
graph. For each program, a program-feedback graph is built, consisting of inter-connected
subgraphs that represent different key symbols. This graphical representation effectively
abstracts the relationships between the same key symbols at different locations.

5.2. Model Architecture

The given input—which includes the program code along with the corresponding com-
piler error information, such as line number and error description—can be trans-formed
into a sequential input model. Additionally, the program-feedback graph is constructed to
directly connect important symbols related to program repairs. The source code semantics,
error message features, and program-feedback graph features are then aggregated. An
attention-enhanced capsule network is employed to fuse higher-order features and recon-
struct semantic information, and ultimately, the decoding layer outputs the predicted error
line number and the corresponding repair sequence. The error line index in the model’s
output corresponds to the line where the predicted modification patch is located, which is
different from the input compiler error line.

The overall architecture of the ACNPR model is illustrated in Figure 4. The model
takes the program statement sequence xi = (xi1, xi2, . . . , xij), error line number ierr, and
error description sequence Merr = (M1, M2, . . . , Mn) as input and predicts the error line
number k and the corresponding repair code sequence yk = (Y1, Y2, . . . , Ym) as output. The
values of line number i and the length of each line sequence j are variable and depend on
the maximum values within the current batch. The loss function used in the model is the
standard negative log-likelihood. The model structure mainly consists of four parts: the
encoding, graph attention, capsule network, and decoding layers.

The encoding layer encodes the source code sequence and the compiler error infor-
mation, resulting in a hidden state h. The graph attention layer incorporates the symbol
association information of the source code and error information, based on the constructed
program-feedback graph, into the hidden state h through attention, yielding a correspond-
ing state g. The capsule network layer utilizes a capsule network to aggregate higher-order
features. It fuses the captured feature values into the semantics, incorporating the contex-
tual semantic information of the source code and that of the compiler error information
through attention, resulting in an output state o. The decoding layer decodes based on the
hidden state obtained from the upper layers, predicting the probability distribution of the
error line number and the corresponding repair patch.

5.2.1. Encoding Layer

Given the source code sequence xi = (xi1, xi2, . . .), we encoded it at the line level
using a bidirectional long short-term memory (BiLSTM) network denoted as BiLSTM(1)

code,
which outputs the hidden state h. Additionally, given the compiler error description
sequence Merr = (M1, M2, . . .), we encoded it using another BiLSTM network, denoted as
BiLSTM(1)

msg, which outputs the corresponding hidden state hMl . Based on the error line
number ierr indicated by the compiler, we calculated the position offset ∆i = ierr − i for
each code line relative to this error line. To incorporate this position offset information
into the source code sequence, we used position embedding. Each position offset ∆i was
concatenated with the corresponding hidden state h of the code sequence, resulting in the
final representation hxij for each line of code.
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Indeed, after encoding the code sequence with the position embedding and incor-
porating the position offset information, the resulting code context vectors contained the
relevant information associated with the error position. Additionally, the compilation error
description information had been encoded as well, enabling the subsequent integration of
corresponding semantic information. This encoding process facilitated capturing the con-
textual relationships between the code lines and the error position, as well as the semantic
representations of the error descriptions, ultimately aiding in the subsequent steps of the
model.

5.2.2. Graph Attention Layer

To enable the model to learn the correspondence between compiler error descriptions
and the source code, as well as to track key symbols within the source code sequence
and maintain relevant syntactic dependencies, a graph attention network [24] was used.
This network allows the associated information contained within the constructed program-
feedback graph to be propagated within the context, enabling the model to simulate the
process of symbol tracking for program repair. Based on the adjacency relationships among
symbols in the program-feedback graph, the weight calculation for the multi-head attention
of each adjacent symbol to a given symbol is conducted, and the state information is
updated accordingly. Each layer is computed using the following formula:

cn = AttentionG(h
n−1) (1)
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hn = MLP
([

hn−1; cn
])

(2)

where hn−1, hn denote the input/output representation of each token at the n-th layer, in-
cluding the code state information hxij and the error description information hMl .
AttentionG(ht) is used to calculate the attention weights of symbol t on the program-
feedback graph G with its neighboring nodes and then takes their weighted average. A
gating mechanism is incorporated in the graph attention layer to replace the activation
function, preserving the scale of each dimension and enhancing non-linear capabilities.
MLP refers to a feedforward network used to integrate the attention weights into the
context vector, resulting in the final output state information represented as gxi

and gm.

5.2.3. Capsule Network Layer

After updating through the graph attention layer, the hidden state includes the seman-
tic features of the input code sequence and the compiler feedback information from the up-
dated program-feedback graph. The dimensions of these vectors are batch size × sequence
length × hidden state dimension. The capsule network is used to detect the internal states
of the input code sequence features, encapsulating them in vector form and resulting in out-
put vectors representing the corresponding probabilities and characteristics of higher-level
features. The internal weights of the capsules are learned using dynamic routing, where
the weights determine how vectors from the lower layer will enter the higher-level vectors.
The calculation of dynamic routing can be described by the following formula:

cij = softmax(bij) (3)

ûj|i = Wijui (4)

sj = ∑
i

cijûj|i (5)

vj = f (sj) =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ (6)

hv = [v1, v2, . . . , vN ] (7)

where cij represents the coupling coefficients, indicating the routing probabilities from the
lower-order capsules to the higher-order capsules, and ûj|i represents the output vector of
the i-th capsule in the previous layer, which is obtained by multiplying the input vector
ui with the corresponding transformation matrix Wij. sj represents the weighted sum
of all the output vectors from the previous layer’s capsules to the current layer, and vj
represents the output vector of the capsule. The function f , also known as the squash
function, compresses the element values of the corresponding vectors into the range of
0 to 1. After the aforementioned calculations, the output vector hv is obtained. The
dimension of hv is N × capsules’ dimension, where N represents the number of capsules.
We ensure that the dimension of the capsule network matches the dimension of the input
hidden state to facilitate its merging with other semantic information. Due to the limited
correlation between different batch samples, we have added a regularization layer with
LayerNorm [25] after the capsule network layer. This layer only normalizes the dimensions
within each sentence, aiming to reduce overfitting and accelerate the convergence of the
model.

We employed an attention mechanism to enhance the propagation of higher-order
feature information within the context, resulting in the generation of the final hidden
states gxi

f inal and gm
f inal . The purpose of the attention calculation is to allocate importance

to different capsule output vectors based on their relevance within the input, thereby
enhancing the fusion of higher-order feature information and generating the final hidden
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state. The following steps illustrate the calculation process of attention using the hidden
state gxi

f inal as an example. Similarly, the attention calculation process for gm
f inal is derived

following the same procedure.

dk = f (Wkhv + bk) (8)

dq = f
(

Wqgxi
+ bq

)
(9)

dv = f
(

Wvgxi
+ bv

)
(10)

gxi
f inal = dT

v · softmax
(

1√
nv + ns

dqdT
k

)
(11)

After updates from the graph attention and capsule network layers, the information is
propagated in the respective local contexts using two types of BiLSTM models. One type of
model, referred to as BiLSTM(2)

code, is used for the code statement sequences, while the other,

BiLSTM(2)
msg, is applied to the error description sequences. As a result, the final hidden state

ri is obtained for each line i.

ri =

[
LSTM(2)

code

(
gxi

) f inal
; LSTM(2)

msg(gm)
f inal

]
(12)

The final hidden states are fused using the BiLSTM(3)
code to obtain a merged embedding

sequence o1:L that encompasses embeddings from different lines.

o1:L = LSTM(3)
code(r1:L) (13)

5.2.4. Decoding Layer

Given the hidden states o1:L obtained from the previous layer, we modeled the proba-
bilities of each line k ∈ {1, 2, . . . , L} being an erroneous line using a feedforward network.
Additionally, we employed a pointer-generator network [26] as a decoder to model the
probability distribution of the repair sequence yk for the erroneous lines, aiming to address
the issue of numerous out-of-vocabulary words caused by different variable names. The
formulas are as follows:

p(k|o1:L) = softmax(MLP(o1:L)) (14)

p(yk|o1:L) = PtrGen(ok) (15)

During the final model prediction, the model selects the erroneous line index k with
the highest probability as the error localization result. To generate potential repair patches,
beam search is used to output sequences yk with higher joint probability density. These
sequences serve as candidate patches for the repair prediction.

6. Experimental Evaluation

In this study, we intend to answer the following four research questions.

1. RQ1: How does our model perform compared to other repair models?
2. RQ2: Can the dataset generated by the RS help the model with program repair?
3. RQ3: Do the different modules of the model all have a positive impact on the repair

effectiveness?
4. RQ4: How do models with different architectures perform on different categories of

compiler errors?
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6.1. Experimental Datasets

During the program repair example generation phase, two types of datasets were
used: SUES-COJ and TEGCER (proposed by Ahmed et al. [16]). The SUES-COJ dataset
consists of programs submitted by undergraduate students from Shanghai University
of Engineering Science for a C programming course. We adopted the aforementioned
strategies to extract reasonable program pairs from execution logs. The dataset comprises a
total of 4447 program pairs after the process of mining and filtering. It should be noted that
some of the code samples in the dataset contain multiple line modifications. The length of
the code ranges from 10 to 30 lines.

The TEGCER dataset is composed of programs submitted online by over 400 under-
graduate students from the Indian Institute of Technology during the first semester of
the 2015–2016 academic year for an introductory C programming course. The dataset
consists of a total of 23,275 code pairs. Each code pair includes the original code statement
and the modified code statement, with only one change per code pair. The dataset has
undergone preprocessing and filtering operations, restricting the code length to 40 lines or
less. Additionally, incorrect repair data have been removed. Ultimately, 21,994 code pairs
were retained as the training dataset for the model.

In addition to the above dataset, we also utilized the program perturbation process
described in the reference [13] to generate a large number of repair examples as a training
set. This process involved random perturbations, including modules for delimiter, type
name, keyword, variable, and variable definition. We randomly applied these modules to
disrupt the correct code and paired it with the original correct code, forming perturbation-
generated code error-repair sample pairs. By comparing this perturbation dataset with the
dataset generated through our simulation, we were able to gather valuable insights and
evaluate the effectiveness of the RS approach.

During the program repair phase, we also utilized the DeepFix dataset [10]. This
dataset was sourced from student-submitted programming task codes and comprises a
total of 37,415 compiled programs and 6971 programs that could not be compiled. The
dataset contains a significant number of errors spanning multiple lines.

Since the DeepFix dataset does not provide paired repair examples, we used the
perturbation-generated programs as the training data and the original erroneous programs
as the test set. This approach allowed us to train the model on the perturbed programs and
evaluate its performance on the original erroneous programs.

6.2. Error Classification

By analyzing the data from the student error programs, we classified common errors
based on the error content and compiler feedback information. The specific categories can
be found in Table 2.

Table 2. Program error types and compiler feedback examples.

Error Type Error Description Compiler Feedback Example

E1 Variable undefined ‘d’ undeclared (first use in this function)
E2 Missing delimiter expected ‘;’ before ‘}’ token

E3 Missing variables or special symbols expected identifier before ‘&’ token
expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘b’

E4 Misuse of expressions l value required as left operand of assignment
expected expression before ‘=’ token

E5 Illegal character error stray ‘\346’ in program
E6 Misuse of data types invalid operands to binary & (have ‘int *’ and ‘int’)

E7 Other errors too few arguments to function ‘reverse’
‘else’ without a previous ‘if’
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6.3. Evaluation Metrics

We utilize three metrics to evaluate the effectiveness of the model.

1. LocalizeAcc: This represents the accuracy of the model in correctly predicting the
erroneous line for a given error in the generated dataset. This metric assesses the
model’s ability to localize the error accurately.

2. SingleAcc: This metric measures the accuracy of the model in predicting the correct
fix for a single line repair example in the generated dataset. It evaluates the model’s
capability to accurately generate the appropriate repair patch.

3. RepairAcc: This metric indicates the success rate of the model in producing fully
compilable program fixes, as verified by the compiler, on a real dataset. It assesses
the model’s overall capability in generating program repairs that pass compilation
integrity.

Given an erroneous program set D, with corresponding real error positions ierr and the
corresponding repair patches xierr , along with a validator C that can determine if program p
contains errors, we define d(p) as the model’s prediction of the erroneous line number for
the current program p, f (p) as the model’s prediction of the repair patch for the erroneous
line in the current program p, and g(p) as the final result after an iterative repair process
by the model. The calculation methods for the three evaluation metrics are as follows:

LocalizeAcc =
|{p|p ∈ D, d(p) = ierr}|

|D| (16)

SingleAcc =
|{p|p ∈ D, f (p) = xierr}|

|D| (17)

RepairAcc =
|{p|p ∈ D, C(g(p)) = 1}|

|D| (18)

6.4. Training Details
6.4.1. Rookie Simulator

The model architecture of the RS was based on the encoder-decoder Transformer. The
model consisted of four layers each for the encoder and decoder. The attention heads for
multi-head attention were set to 8, and the vector dimension for the hidden layer states
was 256. The feature dimension for the feedforward neural network was set to 1024.

During the training phase, the model parameters were optimized using the Adam
optimizer [27]. The batch size for model training was set to 13,500 tokens. The learning
rate was set to 0.001 and adjusted using a warm-up strategy, with an initial learning rate of
0.0001. To prevent overfitting, a dropout rate of 0.2 was used. Label smoothing was applied
with a smoothing factor of 0.1. Gradient clipping [28] was set to 1.0 to limit the magnitude
of gradients. The model was trained for 20 epochs.

During the predicting phase, we used beam search for generating predicted erroneous
code statements. The beam size was set to 10, meaning the model predicts and outputs the
top 10 sequences with the highest joint probabilities for the given input data.

6.4.2. ACNPR Model

The parameter configuration for the ACNPR model is as follows: the dimensions
of the input vector and the intermediate local context in the model were set to 200. The
number of layers in BiLSTM(1) was set to three, while the graph attention layer was set to
two. BiLSTM(2) was set to one layer, and BiLSTM(3) was set to two layers. The number of
capsules in the capsule network was set to three, with a dynamic routing count of three.

During the training phase, a dropout rate of 0.3 was set. The Adam optimization
method was used for parameter optimization, with a gradient clipping value of 1.0. The
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batch size was set to 30, and the learning rate was set to 0.00005. In the predicting phase, a
beam size of 20 was used for the beam search.

For programs containing multiple lines of errors, we employed an iterative repair
strategy where we took the first error message provided by the compiler as input. The GCC
compiler was utilized to assess the acceptability of patches. If the patched program resulted
in fewer compiler errors, the repair patch was accepted. The verification process continued
iteratively, with a threshold of five iterations. Once the maximum number of iterations was
reached or the patch passed the compiler verification, the repair process stopped.

The process of program iteration repair is illustrated in Figure 5. Here, “compiler err
msg” represents the description of the first error provided by the compiler, and “compiler
err line#” indicates the line number where the first error occurs according to the compiler’s
suggestion. “pred err line#” denotes the line number predicted by the model as the error
location and the position to be modified for patching. It is important to note that “pred err
line#” may differ from “compiler err line#”, as the suggested error location by the compiler
is often distinct from the actual correct modification position. “pred_code_candidate” refers
to the predicted candidate patch suggested by the model, while “pred code (edit)” signifies
the repair patch that has been verified and accepted through the compiler. As observed,
multiple errors were detected in code line #2. In each iteration, the first feedback provided
by the compiler is used as input to the model for prediction. The predicted patch is then
validated by the compiler, and the final decision to apply the repair patch is made before
proceeding to the next iteration.
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6.5. Results Analysis
6.5.1. RQ1: Repair Performance Comparison

The performance comparison results of different repair models on the three datasets
are shown in Table 3. Our method demonstrated significant improvements compared to
models such as DeepFix and SampleFix, which do not have compiler feedback informa-
tion. Additionally, on the raw dataset, our RepairAcc increased by 4.8%, 4.9%, and 2.3%,
respectively, compared to the previously best-performing DrRepair model. It is worth
noting that the DeepFix dataset consists of more complex programs with multiple lines
of errors, which is why the complete repair rate is relatively lower compared to the other
datasets. In the validation set of perturbation-generated data, our model outperformed the
DrRepair model in terms of both LocalizeAcc and SingleAcc. Furthermore, it exhibited
even greater improvement on the DeepFix dataset, indicating that our model was capable
of better capturing the intricacies of program semantics.

Table 3. Performances of different models.

Dataset Model LocalizeAcc SingleAcc RepairAcc

TEGCER
DeepFix - - 27.5%
DrRepair 97.7% 78.5% 70.2%
ACNPR 98.9% 83.2% 75.0%

SUES-COJ
DeepFix - - 29.1%
DrRepair 97.9% 79.6% 72.0%
ACNPR 99.5% 84.5% 76.9%

DeepFix

DeepFix - - 27.0%
SampleFix - - 45.3%
DrRepair 97.9% 74.8% 66.0%
ACNPR 99.2% 84.6% 68.3%

6.5.2. RQ2: Performance of the RS

We used the RS separately on the TEGCER and SUES-COJ datasets to generate repair
examples, resulting in the RS-generated dataset. We then conducted a statistical analysis
to determine the quantities and proportions of different error types in both the raw and
generated data. The results are presented in Tables 4 and 5.

For common high-frequency error types—E1, E2, and E3—the RS can generate a large
number of corresponding erroneous code samples while maintaining the high frequency
of occurrence of these errors. Errors E4 and E6 are commonly observed in certain pro-
gramming tasks but have a generally low overall frequency. Due to their complexity, it
is challenging to extract semantic features for these types of errors, making it difficult to
accurately simulate and reproduce them. However, the RS is still capable of generating a
small number of code samples for these errors. Error type E5 is more commonly observed
in some environments but occurs very rarely in others. The RS is able to accurately capture
the error patterns of programmers in different environments, allowing these errors to match
their corresponding occurrence frequencies across different environments.

Table 4. Chart of error types of SUES-COJ dataset.

Error Type
Raw Dataset RS-Generated Dataset

Quantity Proportion Quantity Proportion

E1 781 17.6% 12,515 17.5%
E2 901 20.3% 24,679 34.6%
E3 1039 23.4% 16,051 22.5%
E4 451 10.1% 3008 4.2%
E5 586 13.2% 10,218 14.3%
E6 160 3.6% 1608 2.3%
E7 529 11.9% 3284 4.6%
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Table 5. Chart of error types of TEGCER dataset.

Error Type
Raw Dataset RS-Generated Dataset

Quantity Proportion Quantity Proportion

E1 4670 16.8% 6827 11.5%
E2 6882 24.8% 21,395 36.0%
E3 9720 35.0% 15,186 25.6%
E4 519 1.9% 2915 5.0%
E5 74 0.3% 54 0.1%
E6 591 2.1% 2490 4.2%
E7 5346 19.2% 10,512 17.8%

Overall, the RS can effectively simulate various real error types by generating both
extremely common errors and rare errors. Unlike perturbation-generated error programs,
the programs generated by the RS are not limited by error patterns. It can generate
corresponding error types based on different datasets, and the simulated error frequencies
for different error types are moderately aligned with the actual frequencies in the given
dataset. The quality of the augmented dataset generated using this method is closer to that
of the raw dataset. When the raw dataset contains a wider range of error types, the RS-
generated error programs also encompass a broader range of information. Consequently,
the repair model trained on the augmented dataset will possess more semantic information
from error codes and will be capable of fixing a more diverse set of errors.

The comparative results of different models trained using perturbation-generated and
RS-generated datasets are presented in Table 6. The model trained on training data gener-
ated using RS simulation performs slightly worse in terms of LocalizeAcc and SingleAcc
compared to the model trained on randomly perturbed data. However, it shows better
repair rates on real-world data, with an improvement of 1% to 4% in RepairAcc under the
same model architecture. The reason behind this improvement is that RS-generated data
captures more complex error patterns and is closer to real-world error patterns compared
to randomly perturbed data. By using RS-generated data along with the ACNPR model,
the optimal repair rate can be achieved.

Table 6. Results of different generated datasets.

Dataset Model LocalizeAcc SingleAcc RepairAcc

TEGCER

DeepFix - - 27.5%
DeepFix + RS - - 31.4%

DrRepair 97.7% 78.5% 70.2%
DrRepair + RS 97.2% 76.3% 73.3%

ACNPR 98.9% 83.2% 75.0%
ACNPR + RS 98.6% 80.3% 77.9%

SUES-COJ

DeepFix - - 29.1%
DeepFix + RS - - 33.3%

DrRepair 97.9% 79.6% 72.0%
DrRepair + RS 97.6% 78.0% 75.4%

ACNPR 99.5% 84.5% 76.9%
ACNPR + RS 98.1% 80.2% 77.9%

6.5.3. RQ3: Ablation Experiments

We conducted ablation experiments on three datasets to evaluate the effectiveness of
each component. The results of the ablation experiments are shown in Table 7. The base
model represents a model that retains only the encoding and decoding layers. The graph
attention layer helps the model infer the positions of keywords and variables, thereby
improving the model’s performance. The capsule network layer consists of two parts:
CodeCaps, which extracts deep semantic features from the code, and MsgCaps, which
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further extracts similar error message features. Both parts contribute to improving the
repair effectiveness of the model to a certain extent.

Table 7. Results of ablation experiments.

Dataset Model RepairAcc

TEGCER

Base 63.5%
Base + GA 70.2%

Base + GA + CodeCaps 73.3%
Base + GA + CodeCaps + MsgCaps 77.9%

SUES-COJ

Base 62.8%
Base + GA 70.4%

Base + GA + CodeCaps 75.5%
Base + GA + CodeCaps + MsgCaps 77.9%

DeepFix

Base 58.5%
Base + GA 63.7%

Base + GA + CodeCaps 67.6%
Base + GA + CodeCaps + MsgCaps 68.3%

The experimental results demonstrate that the GA module contributes to an improve-
ment in RepairAcc of 6.7%, 7.6%, and 5.2% for the three datasets, respectively. The capsule
network layer contributes to an improvement in RepairAcc of 7.7%, 7.5%, and 4.6% for
the same three datasets. In particular, for the TEGCER dataset, the capsule network layer
exhibits a larger enhancement in repair accuracy, with the MsgCaps module contributing
more than the CodeCaps module. Conversely, for the other datasets, the contributions are
reversed. This discrepancy may arise from the higher diversity of errors in the TEGCER
dataset, as well as the more complex nature of feedback information provided by the
compiler. Hence, the MsgCaps module is better suited to extract deep features from the
compiler’s descriptive information in this particular case.

6.5.4. RQ4: Repair Preferences

To investigate the repair preferences of different modules, we conducted repair valida-
tion on the SUES-COJ dataset. The experimental results are shown in Table 8.

Table 8. Results of the repair preferences.

Error Type Model RepairAcc

E1

Base 58.5%
Base + GA 76.7%

Base + GA + CodeCaps 79.5%
Base + GA + CodeCaps + MsgCaps 82.2%

E2

Base 91.8%
Base + GA 94.5%

Base + GA + CodeCaps 94.9%
Base + GA + CodeCaps + MsgCaps 95.3%

E3

Base 58.5%
Base + GA 63.7%

Base + GA + CodeCaps 67.6%
Base + GA + CodeCaps + MsgCaps 68.3%

E4

Base 70.2%
Base + GA 75.3%

Base + GA + CodeCaps 80.5%
Base + GA + CodeCaps + MsgCaps 85.3%
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Table 8. Cont.

Error Type Model RepairAcc

E5

Base 43.5%
Base + GA 43.5%

Base + GA + CodeCaps 47.8%
Base + GA + CodeCaps + MsgCaps 52.2%

E6

Base 65.6%
Base + GA 67.4%

Base + GA + CodeCaps 75.4%
Base + GA + CodeCaps + MsgCaps 75.4%

E7

Base 35.0%
Base + GA 35.0%

Base + GA + CodeCaps 42.2%
Base + GA + CodeCaps + MsgCaps 55.6%

The graph attention layer is particularly effective in improving the repair effectiveness
for error types that require cross-referencing critical information across code and error
description. Error types E1, E2, E3, and E4 contain relevant keyword information in the
error description. The graph attention layer aids the model in connecting the key content
in the compiler description with the corresponding occurrences in the code, even when
they span multiple lines.

The capsule network layer significantly improves the repair effectiveness for error
types with complex error patterns and challenging repair mode determination based on the
compiler description information. Error types E3, E4, E5, E6, and E7 contain diverse repair
patterns. The capsule network layer is adept at extracting deep semantic information and
generating higher-order features, enabling the model to make more informed decisions
regarding deep-level repair patterns.

7. Discussions and Limitations

With the expansion of programming courses, many educational institutions have
begun adopting blended learning models that combine both online and offline methods [29].
The introduction of online intelligent learning systems allows for targeted improvement
of students’ learning outcomes by providing immediate feedback and assessment [30].
During programming, students can utilize our tool to receive timely and relevant error
feedback after submitting erroneous programs, including more precise error locations and
suggested repair patches. Additionally, the error examples submitted by students can
further contribute to the training of the repair model. Currently, the parallel processing
efficiency of our tool needs further enhancement to cope with a large volume of requests.

It is worth noting that the program sample mining method in this paper also relies
on manual review to exclude invalid repair examples, aiming for higher-quality program
sample pairs. Additionally, the multiline program repair in this study depends on the
compiler for verification. However, the reduction of compiler feedback information during
the iterative repair process sometimes cannot accurately represent the effectiveness of
partial repairs. Further improvement in optimizing the compiler’s feedback information
could potentially enhance the success rate of program repair.

Our approach has significant limitations in terms of its ability to repair certain types
of errors. Firstly, our method is only applicable to single-file programs and does not
examine included files. Regarding #include header file declarations, we consider them as a
whole input to the model, hence we are unable to repair errors in header file declarations.
Secondly, although the specific values of string and numeric constants typically do not
impact program syntax, during the abstraction process, some erroneous program contents
may be mistakenly identified as constants and anonymized. This, in turn, hampers the
effectiveness of repairing such errors.
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Due to the increased computational complexity caused by the dynamic routing al-
gorithm and iterative computing process in capsule networks, the training time is pro-
longed [31]. In order to address specific or novel error types, we need to augment the
training data with samples containing these new error types and retrain the model. As a
result, our repair model requires larger computational resources when facing larger-scale
datasets.

Recently, there has been significant research interest in leveraging large-scale models
for code generation tasks [32–34]. While large models have shown promising results, their
resource-intensive nature for training and deployment poses challenges. In light of these
challenges, future research directions could focus on using large models to assist smaller
models and enhance the accuracy of their fine-grained repair capabilities. This approach
could involve a multi-model framework where a large model is used to guide and augment
the training process of smaller models. By exploiting the strengths of large models, such
as their ability to capture complex code semantics, smaller models can benefit from their
knowledge and refine their repair functions. This approach may lead to more efficient and
effective code repairs with better accuracy.

8. Conclusions

This paper presents a method for mining reasonable error-repair program sample
pairs from students’ program execution logs in the online experimental system, providing a
way to acquire a labeled dataset of real program errors. To address the issue of limited error
patterns and unrealistic error contexts in the perturbed generated dataset, this study pro-
poses the RS to generate a large number of program pairs with more semantic information
that better align with real error contexts. To tackle low-frequency errors and complex error
patterns in program repair, the ACNPR model is introduced, which integrates compiler
feedback information. Through comparative experiments conducted on three different
datasets, the effectiveness of the repair model is validated.

Our approach utilizes a dataset obtained from students’ submissions in programming
tasks, which predominantly consists of errors commonly made by students and novice
programmers. This allows us to provide timely assistance to students during their program-
ming process by locating specific errors and suggesting appropriate modification strategies.
This approach aims to enhance students’ learning efficiency while reducing the workload
for teachers. However, it is important to note that at present, our method focuses primarily
on fixing compilation errors. Therefore, the predicted repair patches cannot guarantee
the successful completion of programming tasks. In the future, we plan to incorporate
semantic constraints targeting program functionality to generate repair patches that are
more likely to be semantically correct. This will effectively guide students in completing
programming tasks and foster a more proactive learning experience.
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