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Abstract: Relationship extraction is a crucial step in the construction of a knowledge graph. In this
research, the grid field entity relationship extraction was performed via a labeling approach that used
span representation. The subject entity and object entity were used as training instances to bolster
the linkage between them. The embedding layer of the RoBERTa pre-training model included word
embedding, position embedding, and paragraph embedding information. In addition, semantic
dependency was introduced to establish an effective linkage between different entities. To facilitate
the effective linkage, an additional lexically labeled embedment was introduced to empower the
model to acquire more profound semantic insights. After obtaining the embedding layer, the RoBERTa
model was used for multi-task learning of entities and relations. The multi-task information was then
fused using the parameter hard sharing mechanism. Finally, after the layer was fully connected, the
predicted entity relations were obtained. The approach was tested on a grid field dataset created for
this study. The obtained results demonstrated that the proposed model has high performance.

Keywords: grid field; relational extraction; RoBERTa; semantic dependency; lexical embedding

1. Introduction

Relational extraction tasks involve the extraction of relational facts from unstructured
or semi-structured data to identify interactions and attributes between entities [1]. The
construction of a knowledge graph typically involves the extraction of information from
unstructured information, which is also known as entity-relationship extraction. In rela-
tionship extraction, the effective characterization of domain knowledge is challenging [2,3].
Due to the intricate and complex nature of the expertise involved in recording relevant data
within the power system [4,5], the effective identification of relationships in this specialized
domain is challenging.

A fundamental knowledge graph can be established by first conducting named entity
recognition on unstructured data within a specialized domain and subsequently extract-
ing relationships from the identified entities. In the deep learning field, named entity
recognition and relation extraction are important tasks in natural language processing [6].
The relationships between different entities were extracted using a rule-based approach.
Hou [7] proposed a bootstrap labeling rule discovery approach for robust relation extrac-
tion. However, this rule-based approach had low accuracy and was unable to characterize
the semantics of lexical elements through vectors via deep learning approaches. Ke [8]
proposed a RoFormerV-BiLSTM-CRF based fusion model for medical entity recognition,
which used a knowledge graph to analyze the relationships between the medical entities
identified in single and multiple patient medical records. Guo [9] proposed a framework
for the automatic construction of a process knowledge base in the processing domain
based on a knowledge graph. He also developed a knowledge extraction framework that
employed BERT-BiLSTM-CREF for the automatic retrieval of knowledge from the process
text. Wan [10] proposed a span-based multimodal attention network (SMAN) for joint
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entity and relation extraction, and introduced a completion mechanism to simultaneously
extract the context and span position information. Liu [11] proposed a new pipelined
relationship extraction framework that utilized an attentional mechanism to fuse contextual
semantic representations, which was able to capture entity location information and type
information that are challenging to incorporate into joint models.

The extraction of entity relationships through deep learning is mainly categorized into
two methods. The first method is the joint extraction model, where entity recognition and
relationship extraction are treated as a whole [12,13]. The second method is the pipeline
model, in which entity recognition and relationship extraction are considered as distinct
tasks that are handled independently [14-16]. The pipeline approach does not require
manual feature construction, which makes it more widely used. The entity recognition
task focuses on the identification of real words in the text, while the relationship extraction
task tends to the modeling of the links between entities; the separate recognition of entities
and relationships enables targeted improvement of the two tasks. The joint extraction
can consider the two entities and relations, which avoids the negative impact of errors
generated through the entity recognition of the pipelined model on the subsequent task of
relation extraction. However, recent studies on the pipelined model led to the improvement
of the error propagation problem, which resulted in enhanced recognition through the
joint extraction model. Zhong [17] sliced the English vocabulary into its roots and utilized
span annotation. The enumerated candidate entities were spliced with the sentences as
a training example. This approach effectively enhanced the accuracy of the downstream
task of relationship extraction. Ye [18] proposed a neighborhood-oriented packing strategy
to pack spans with the same starting lexical elements into a training example in order to
better distinguish the entity boundaries and extract the relationships through strategic
packing. Through leveraging the pipelined model of span representation, state-of-the-art
performance can be attained through fine-tuning BERT.

The relationship extraction task associates different entities and recognizes the type
of relationship between them, which can be abstractly represented as edges and nodes in
the graph theory for the relationships and entities. Semantic dependency directly links
dependent arcs of linguistic units through immediate semantic connections and annotates
them with relevant semantic relationships. Semantic dependency focuses on the semantic-
factual or logical relations between real words and is able to express deeper semantic
information [19]. Yin [20] proposed an approach which consisted of incorporating the
glyph information of Chinese characters to enhance the model’s ability to deeply char-
acterize the text in named entity recognition for power equipment maintenance records.
Sun [21] proposed the semantic enhancement of words with multiple meanings and similar
glyphs through incorporating pinyin and glyph information. Jeena [22] proposed a typed
Tree-LSTM model that embedded sentence meanings into dense vectors using sentence
dependency parsing structures and dependency types. Relationship extraction and named
entity recognition are similar tasks that belong to the same natural language processing
field. Based on the idea of feature fusion and the characteristics of relationship extraction,
this paper combined the semantic dependency information and the lexical embedding infor-
mation with BERT. It aimed to improve the entity association and semantic characterization
capacities of the BERT model.

Compared with the English language, the most obvious feature of the Chinese lan-
guage is the ambiguity of word boundaries and the absence of separators to represent word
boundaries [23,24]. In English, there are separators between the words that identify the
boundaries with each word having a distinct meaning, which is not the case in Chinese.
Therefore, the relational extraction in Chinese text requires its segmentation. However,
there is no established lexicon accessible for the segmenter to employ in the power dis-
patching domain. Employing a general-domain segmenter within the power grid field
leads to considerable inaccuracies. Therefore, word-based encoding is used.

The cross-entropy loss function is a common loss function used to measure the gap
between the model output and the actual label in classification problems. It is widely used
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in various models, such as classification models in machine learning and neural network
models in deep learning. In the classification tasks, the cross-entropy loss function is
employed to assess the dissimilarity between the probability distribution generated via
the model’s output and the actual distribution of labels. During the training process, the
model will continuously adjust the parameters using the gradient descent algorithm to
make the overall loss function as small as possible. Through minimizing the cross-entropy
loss function, the model can more accurately predict the class labels of each sample in the
classification problem, which improves its performance.
The main contributions of this paper are summarized as follows:

(1) Lexical and semantic dependency dictionaries were constructed, and the RoBERTa
word embedding layer was embedded by effectively fusing lexical and semantic
dependency information. This made the model learn more dependencies allowing for
the extraction of the relationships between the different entities, measuring the model
loss through the cross-entropy loss function, and optimizing its parameters through
back-propagation;

(2) The cascading effect of downstream tasks, which was caused by the word segmenta-
tion error of the Chinese words in the specialized field of electric power, was mitigated
via word embedding;

(38) Due to the fact that the existing relational extraction dataset in the field of electric
power was relatively small, the self-constructed relational extraction dataset in the
field of electric power dispatching was used to support the data requirements of
deep learning.

The experimental results demonstrated that the proposed model had higher recogni-
tion performance compared with conventional models such as the BERT-Cross Entropy,
BERT-CRF, and BERT-BILSTM-CRE.

The remainder of this paper is organized as follows. Section 2 presents the dataset
construction. Section 3 describes the relationship extraction method for the grid field,
combining the semantic dependency and the lexical embedding constructed for this study.
Section 4 details the evaluation of the effectiveness of the proposed model through compar-
ative experiments. Finally, Section 5 presents the conclusion.

2. Materials and Methods

A significant volume of unstructured behavioral data are recorded in the Guangxi
regional smart grid system. From this data, textual information such as accident investiga-
tion details, audit risk statistics, on-site inspection information, and device operation data
were selected to build a power corpus. At present, the system’s utilization of this data is
low, only supporting simple text queries without in-depth analysis. Thus, the embedded
behavioral knowledge cannot be fully utilized. In addition, the existing manual mining
method is inefficient and expensive. In this study, a deep learning approach was intro-
duced for analytical modeling. An electric power corpus was then leveraged to construct
an entity-relationship dataset within the grid domain, which will be used to train deep
learning models.

The corpus employed in this paper consisted of a substantial volume of unstructured
data. Screening was performed to eliminate sentences that had unclear meanings, structural
flaws, and redundant semantics. Finally, 2316 high-quality data points were extracted and
considered as the corpus for the training and testing. Taking into consideration the at-
tributes of the corpus, the entity types were organized into nine categories including: plant
and station, voltage level, transmission equipment, equipment and appliances, address,
time, person’s name, other, and organization. The relationship types were divided into
five categories: time, located, subordinate, equivalent, and cause (The relational extrac-
tion dataset is shown in Table 1). It aimed to extract information from the unstructured
data, which facilitated the subsequent construction of a knowledge graph network for
applications in specific areas such as fault analysis, maintenance, and equipment life cycle
management. The dataset contained 2316 training data, 17,433 entities, 9354 relationships,
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and more than 140,000 Chinese and English characters. The training set, validation set, and
test set were divided into the ratio of 7:2:1.

Table 1. Relational dataset.

Type Name Number of Relations
time 493
reason 414
local 3317
subordinate 2461
same 2669

This study employed a span-based annotation method to mark entities within sen-
tences, using a visual interface provided by the Label-Studio annotation platform. The
span annotation involved defining the start position, end position, and entity type of an
entity within a sentence.

3. A Relational Extraction Approach for Grid Field Combining Semantic Dependency
and Lexical Embedding RoBERTa Models

This paper proposed a relationship extraction method based on spanning representa-
tion, by fusing semantic dependency information and lexical information. This method
used the RoBERTa pre-training model to obtain more in-depth semantic representation
information allowing it to separately learn entity and relation information. In addition, a
multi-task parameter hard-sharing mechanism was used to allow the model to take into
account the influence of different tasks by simultaneously training multiple tasks. The ef-
fects were reflected in the shared parameters until all the tasks converged. Taking the entity
and relationship information into account, the deep semantic representation information of
RoBERTa was fully utilized, and the relationship was finally predicted through the fully
connected layer. The specific process is shown in Figure 1.

Table 2. Example of a labeled diagram. Numbers in Entities and Relations indicate the corresponding
index position in Text.

Text On 30 June, 110 kv Kunlun station Guangkun line
Entities [0, 2, time], [4, 4, level], [4, 6, station], [7, 8, line]
Relations [0,2, 4,6, time]

The relationships were labeled as quintupled spanning pairs and relations (i.e., s1, e1,
sy, €y and relation-type). The variables of the set were, in order, the start index position
of entity 1 in the sentence, the end index position of entity 1, the start index position
of entity 2, the end index position of entity 2, and the type of relationship (the specific
labeling is shown in Table 2. This example eliminated the modifier part of the sentence for
a better demonstration, keeping only the part that contained entities and relationships).
A main entity was selected from the dataset. The rest of the entities were considered
as guest entities and formed a training instance with the original sentence to generate
span-based training instances, which were transformed into model input vectors through
the embedding layer. Each entity in the text was selected once as the main entity and the
rest as guest entities so that multiple training instances were generated. This generation
process was performed through automatic enumeration in the program. The link between
entities was strengthened through categorizing different subjects into different groups for
parallel training.
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Figure 1. Flow chart. Examples of data from the database are shown in Table 2. In the figure,
Transformer Encorder x 12 means 12 layers of Transformer Encorder are stacked.

3.1. Pre-Training Language Models

The RoBERTa-wwme-ext pre-training model was used, which was based on the trans-
former architecture [25]. It was pre-trained unsupervised on large-scale Chinese textual
data to learn rich a priori knowledge and has achieved excellent performance in many
natural language processing tasks. RoBERTa is a variant of BERT [26], and based on BERT,
it made the following changes:

The dynamic masking strategy can result in distinct mask positions for each training
sample during various training iterations. The lexical elements were randomly selected
for masking, for the training sample “110 kV Kunlun station,” the first round of training
replaced the training sample with the special lexical element “110 kV Kunlun <mask>,”
and the second round of training replaced the training sample with “<mask>10 kV Kunlun
Station,” and the mask position may change again in the third and fourth rounds. This
dynamic strategy enhanced the randomness of the model’s input data, consequently
boosting the model’s learning capacity.

RoBERTa employed entire sentences as input across documents and eliminated the
need for next-sentence prediction.

It leveraged larger training batches and a more extensive pre-training dataset to
enhance the generalization capacity of the model.
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3.2. Semantic Dependencies and Lexical Embedding

The encoding layer transformed the input text sequence into a sequence of high-
dimensional vector representations. These vectors incorporated information regarding the
word encoding, paragraph context, and positional characteristics of the input text. They
were designed to capture dependencies within the input sequence over extended distances
and provided a more comprehensive representation of the profound semantic information
of the text.

The generated training examples were fed into the RoBERTa embedding layer. Word,
position, and paragraph embedding were fused to introduce semantic dependency and
lexical embedding so that the embedding layer obtained semantic dependency representa-
tions through semantic embedding. The lexical embedding also allowed its layer to obtain
lexical representations. This allowed the model to learn the connection between different
entity representations, which improved its performance. The process of the encoding layer
is summarized as follows:

1.  Encoding Layer:

A semantic dependency lexicon was constructed using the language technology plat-
form (LTP) [27] to perform semantic dependency disambiguation of utterances, mapping it
to its index.

The generated training examples were fed into the RoBERTa embedding layer. Word,
positional, and paragraph embedding were fused to introduce semantic dependency and
lexical embedding so that the embedding layer obtained semantic dependency representa-
tions through semantic embedding and lexical representations through lexical embedding.
This allowed the model to learn the connection between different entity representations,
which improved its performance. The process is summarized as follows:

A semantic dependency lexicon was first constructed using the language technology
platform (LTP) to perform semantic dependency disambiguation of utterances, mapping it
to its index.

The semantic dependency information was mapped onto a graph. For example, the
sentence “On June 30, 110 kV Kunlun station Guangkun line,” was decomposed into
semantic dependency information via LTP: “TIME’, “TIME’, “TIME’, ‘'TIME’, ‘'TIME’, ‘TIME’,
‘TIME’, ‘mPUNC’, ‘FEAT’. This allowed the model to learn more information about semantic
dependency related information to more effectively model the relationship between entities,
as shown in Figure 2.

A lexically labeled word list was then constructed, and the utterances were lexically
labeled using jieba disambiguation, which mapped to the index value of the lexically
labeled word list.

The semantic dependency analysis operated independently of the syntactic structure.
It established direct connections between dependency arcs of linguistic units based on
immediate semantic associations, and annotated them with the relevant semantic rela-
tions. It focused on the semantic factual or logical relationships between real words. The
structure of the syntax tended to vary with literal words, while the semantics were able
to transcend changes in the surface of a sentence to reach its essence. Compared with
the syntactic dependency analysis, the semantic dependency analysis expressed deeper
semantic information, which was especially suitable for the Chinese language.

After the text was labeled with semantic dependency annotation and lexical annotation,
it was converted to the index values presented in Tables 3 and 4, and the two vectors were
embedded in the RoBERTa coding layer.
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Figure 2. Example of a semantic dependency graph showing the semantic dependency analysis of
“30 June, 110 kV Kunlun station Guangkun line,” and the construction of a semantic dependency
analysis diagram.

Table 3. Construction of a semantic dependency mapping index lexicon (only partially shown).

Type of Relationship Tag Example Index
Agent Agt I sent her a bouquet of flowers. 1
Description Feat He is fat (grow --> fat) 2

. . There was a Li Bai in the Tang Dynasty
Time Time (Tang Dynasty <-- there was) 3
Possessor Poss He has a good book (He <-- has) 4
Punctuation Marker mPunc ,. ! 5
Content Cont He heard .ﬁrecrackers (hear --> 6
firecrackers)

Root Root Core nodes of the sentence 7

Table 4. Construction of a lexical mapping index word list (only partially shown).

Tag Part of Speech Index
NN noun 1

JJ adjective 2
DT determiner 3
IN preposition 4
MD modal 5
RP particle 6
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As the RoBERTa model was pre-trained by a large number of corpora and saved a
large amount of corpus information, a direct addition to the original embedding layer can
perturb the original corpus information and generate noise. Parameters a and b were set via
the neural network to respectively learn the weights of semantic dependency information
and lexical embedding information, and to learn the appropriate fusion weights with the
optimization of the model.

The training data input was passed through the RoBERTa coding layer to obtain
the word embedding containing positional information, paragraph information, word
encoding information, semantic dependency information, and lexical embedding (as shown

in Figure 3), Xempedding :

Xembedding = Xword + Xsegment + Xpositional + a-Xsemantics + b'Xphrase 1

El]I)ZZZ?ngs Ecls) Er |En Eisi| Ex|| Ex||E% | |Ex || Ez E [“P]

+ + + + + + + + +

— -........-
+ + 4+ + + + + + +

s LB | B )| B2 (s ) B4 ) Es)[Es ||E7 J|Es] |_Eo

Semantic + + + + + + + + +

depeney -D-U--U.U-
+ + + + + + + + +

e e Lo | Es){ o | Es ]| B E7){Es J|Es J|Es| [ Eo

Figure 3. Embedding layer fusion. The subscripts of semantic dependent embeddings and lexical
embeddings were the index values of the processed mapping to the word list.

3.3. Semantic Dependencies and Lexical Embedding

The training data were encoded with RoBERTa word embedding to learn certain
contextual features.

The weights were first learned for the word embedding X.pedding after the attention
mechanism:

Attention(Q, K, V) = softmax Q—KT \%
o Vi

where Q, K,V = Xembedding

@

In the RoBERTa architecture, multi-head attentional learning of word embeddings was
required for learning multi-channel information:

MultiHead (Xembedding/ Xembedding,Xembeddmg> = Concat(heady, ..., head, )W® .

where head; = Attention (Xembeddingr Xembeddingr Xembedding)
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To mitigate the problems of gradient explosion and gradient vanishing within deep
models, the Xeypedding vectors were residually concatenated with the multi-head attention:

Sy/ = Xembedding + MultiHead (Xembedding/ Xembeddingr Xembedding) (4)

A layer normalization of sy’ was performed to compute the mean and variance on
each sample to normalize the hidden layers in the neural network to a standard normal
distribution and accelerate the convergence:

/7
LN(sy/):axu+B

\/ 02 +e€

1
where = P Z:il sy’ ©)

1 2
where o? = Y7 (sy' )

where the scaling parameters « and 3 were learnable parameters. € prevents the equation
from dividing by the zero value and m was the number of neurons.
Next, the output of layer normalization was passed through a feed-forward neural network:

FFN(x) = max(0,xW; +b;)W, + b, (6)

The above formula consists of two linear transformations, with a ReLU activation in
the middle, and x denoting the output LN(sy’) of the layer normalization.
Finally, the residuals were connected and the layer normalized:

H = FEN(x) + x (7)

The output value H after 12 layers of encoder was obtained via the above formula.

The span-based data annotation format were different to the traditional sequence
annotation. This allowed for the strengthening of the boundary characteristics of the
candidate span and to connect more closely with the textual information. In addition,
the representations of the span start position and the end position were spliced. The
corresponding formulas are given here:

h_ostart = HlZ[:/ Ostart} 8)
h_0eng = le[:, Oend] )
obj = Concat(h_ostart, h_Oend ) (10)

where Hjy denotes the output of the last layer of RoOBERTa, O-start denotes the start index
of the entity and O-end denotes the end index. Equations (8) and (9) yielded the trained
features for the span start position and end position, respectively. Equation (10), concat,
spliced these three features so that the model contained the relevant information of the
guest entity along with the relationship extraction.

A similar approach was used for the master entity:

h_sstart = H12[:r Sstart} (11)

h_seng = HlZ[:/ Send] (12)

sub = Concat(h_sstart, h_Send ) (13)
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The contextual information of the main and guest entities was passed through the
fully connected layer to obtain the predicted scores. The two were then added together
to obtain the predicted probabilities of the various relationships that were then passed
through the softmax layer to obtain the final predicted relationship types:

Ep = sigmoid (W * obj +by) (14)
1p = sigmoid (W, * sub +by) (15)
Rp = Ep +1p (16)

Reype = softmax(Rp) (17)

The guest entities were passed through a fully connected layer and then a softmax
layer to obtain the predicted entity type:

Etype = softmax(Ep) (18)

The predicted entity types and predicted relationships performed cross-entropy loss
with the true values and the two loss values were added together (i.e., the parameters were
hard-shared) to jointly participate in the optimization of the model. This made the model
take into account both entities and relationships to reduce its error propagation:

Eloss = Z(Ereal * 1Og(Etype) + (1 - Ereal) * 10g(1 - Etype)) (19)
Eioss = — 3 (Rreal * 10g(Riype) + (1 — Ryear) * 10g(1 — Riype)) (20)
loss = Ejoss + Rioss (21)

4. Experiments and Results Analysis

The experimental setup included the PyTorch framework, CUDA version 11.1, Ubuntu
operating system, and an NVIDIA RTX 3090 (24 G) graphics card. A learning rate linear
warm-up strategy was implemented to ensure a high model stability during the initial
stages of training and to accelerate the convergence. A model evaluation was conducted
every 2500 training steps to save the models that had high accuracy at this stage. The
remaining parameters of the model are shown in Table 5.

Table 5. Parameter setting.

Parameter Value
Learning rate 2x 107
Batch size 3
Epoch 20
Istm_embedding_size 1024
Hidden size 768
Bert model RoBERTa-wwm-ext
Embedding size 512
Optimizer AdamW

4.1. Criteria for Evaluation

In this experiment, the precision, recall and F; value were used to evaluate the perfor-
mance of the model:
precision = correct nym/ predict, . (22)
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recall = correct num/ golden, (23)

F = Z*pre.ci.sion * recall (24)
precision + recall

Here, precision denoted the precision rate, recall signified the recall rate, and correct ;;;,,
indicated the count of accurate predictions whereas predict,,,, represented the total number
of predictions, golden,,,,, represented the number of labeled entities, and the F1 value was
the average of the precision rate and recall rate. This was capable of balancing the influence
of the precision rate and the recall rate, and reflecting the performance of the model in a
more comprehensive way.

4.2. Results and Analysis

The performance of the model was evaluated using the F; value, F;-overlap, accuracy,
and recall on the entity relationship dataset in the grid field constructed in Chapter 1 for
training and evaluation.

A comparison experiment was conducted to verify the effectiveness of the proposed
model for the grid data relationship extraction. The grid field data entity relationship
extraction model was compared to the BILSTM-CRF, BERT-CE, BERT-CRF, and BERT-
BiLSM-CRF models. The obtained results are shown in Table 6. It can be seen that the
proposed model had the optimal recognition effect in grid business data relationship
extraction, compared with the other models. On the gird dataset, it had precision, recall,
and F; values of 89.55, 85.91, and 87.92%, respectively.

Table 6. Comparison between the performance of different relational extraction models. The * symbol
denotes the RoBERTa with incorporated semantic dependency and lexical embedding strategies.

Index Model Precision/% Recall/% F1-Score/%
1 BiLSTM-CRF 62.08% 64.58% 63.30%
2 BERT-CE 87.07% 83.33% 85.16%
3 BERT-CRF 87.15% 83.51% 85.29%
BERT-BiLSM- . . .
4 CRF 87.95% 84.51% 86.19%
5 RoBERTa-CE * 89.55% 85.91% 87.92%

(1) The BiLSTM-CRF model used word2vec as the embedding layer. However, its word
vectors were static and cannot be adjusted according to the input context words.
Therefore, it had a low performance on the power grid dataset, with an F; value of
only 63.30%.

(2) The BERT-CE model used the BERT pre-trained language model as the embedding
layer to adequately capture the contextual representation of the characters and thus
had better access to the deep semantic information. On the grid dataset, the F; value
of the model was 85.16%.

(3) The BERT-CRF model added conditional random field (CRF) to the BERT pre-trained
language model, which improved its F; value by 0.13% compared with the cross
entropy loss module via sequentially annotating the output of BERT.

(4) The BERT-BILSTM-CRF model also used the BERT pre-trained language model to
capture the contextual semantics of the grid business data, while utilizing recurrent
neural networks to capture richer meanings. It also used the CRF for classification. It
had an F; value of 86.19%, which presented an improvement of 1.03% compared with
Model 2.

(5) For the RoBERTa-CE model with embedded semantic dependencies and lexicality, the
RoBERTa pre-trained language model with dynamic MASK was used to capture the
contextual semantics of the grid business data, embed semantic dependencies and
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lexicality, and efficiently combine the information of the subject and object in order to
improve their associativity and strengthen the linkage of the relational entities. There-
fore, compared with the above model, the recognition performance was significantly
improved, and the F; value was 87.92% on the grid dataset. Compared with Model 2,
the F; value improved by 2.76%, which presented optimal recognition results.

Table 7 presents the ablation experimental results of the model. The removal of the
lexical embedding and semantic dependency embedding under the benchmark of the
RoBERTa model reduced the performance of the model by 1.08%, which demonstrated that
the correlation between related entities can be enhanced through effective embedding of
lexical and semantic dependencies. Model 4, using the original RoBERTa, only differed by
0.78% compared to model 5 using the embedded lexical and semantic dependency BERT,
while model 8, without any embedding enhancement, reduced the performance by 1.68%
compared to model 4. Since RoBERTa used larger training data and was more powerful
than BERT for deep characterization of sentences, the addition of lexical and semantic
dependency embedding effectively narrowed the gap between the two and enhanced the
deep characterization ability of the model.

Table 7. Ablation experiments, where Pos_id denotes the addition of a lexical embedding vector
SemDep_id denotes the addition of a semantic dependency embedding vector, and CE denotes the
cross-entropy loss function. A check mark indicates that the module is used.

Index RoBERTa BERT Pos_id SemDep_id CE F1-Score/%
1 v v v v 87.92%
2 4 v v 87.16%
3 v v v 87.41%
4 v v 86.84%
5 v v v v 85.96%
6 v v v 85.47%
7 v v v 85.66%
8 v v 85.16%

In summary, the proposed model had superior F; performance on the entity-relationship
dataset within the grid domain, compared with the benchmark models.

5. Conclusions

In this paper, a relationship extraction model for the grid field was designed through
combining semantic dependency and lexical embedding using the RoBERTa model. The text
context depth characterization information was obtained through the RoBERTa pre-training
model. The lexical and semantic dependency information were embedded in the RoBERTa
embedding layer, weights were set for the two types of information, and the fused weights
were automatically learned based on the model optimization for effective embedding. The
cross-entropy function was used for training. The model effectively enhanced the deep
semantic characterization ability, which improved the accuracy of relationship recognition
between the different entities. The efficiency and superiority of the proposed approach
were then verified on a relational extraction dataset which was curated within the grid
domain. The obtained results can be summarized as follows:

(1) The combination of the semantic dependency and lexical embedding in the RoBERTa
model improved the F; value by 2.76% compared with the original BERT model. This
indicated that the semantic dependency and lexical embedding effectively enhanced
the relationship extraction accuracy.

(2) Model 4, which used the original RoBERTa, exhibited only a 0.78% discrepancy com-
pared with Model 5, which incorporated embedded lexical and semantic dependency.
On the other hand, Model 8, which did not use any embedding enhancement, had a
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1.68% decrease in performance compared with Model 4. The inclusion of lexical and
semantic dependent embeddings effectively narrowed the gap between RoBERTa and
BERT, and enhanced the deep characterization ability of the model.

(3) To label the relationship as quintuple spanning pairs and relationships, one entity
should be selected as the main entity in the labeled data. The remaining entities
should be enumerated as guest entities. The main entity and guest entities should
contain entity type information. The generated main entity and guest entity set, along
with the text information, can be used as a training set. Different subjects should be
classified into different groups for parallel training, which strengthens the connection
between the entities.

In future work, we aim to use the trained model to extract information from the data
provided by the power grid. A domain knowledge graph will be constructed to manage
the data in an appropriate manner. Through leveraging the graph, the ability to extract
valuable insights within the grid domain can be enhanced, and well-informed decisions for
grid-related enterprises can be made. Furthermore, the evaluation of the capacity of the
model for generalization through extending its application to other domains is of interest.
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