Transfer Learning Based on Clustering Difference for Dynamic Multi-Objective Optimization
Abstract
:1. Introduction
- (1)
- The Pareto solution set at the next moment is predicted by the clustering difference strategy, so as to narrow the difference between the source domain and the target domain of transfer learning, thereby reducing the possibility of negative transfer. Therefore, the preprocessing process of the target domain is very necessary and can make the subsequent transfer learning more efficient.
- (2)
- After the target domain is preprocessed, a sample classifier based on the TradaBoost algorithm is used to extract high-quality populations, which can effectively improve the running speed of the algorithm, avoiding more parameter settings and the excessive consumption of computing resources.
2. Background
2.1. Dynamic Multi-Objective Optimization Problems
Algorithm 1: The main frame of DMOEA. |
Input: The number of generations: g; the time window: t; Output: Optimal solution x* at every time step; Initialize population ; While stop criterion is not met do if change is detected, then Update the population using some strategies: reuse memory, tune parameters, or predict solutions; t = t + 1; end if Optimize population with an MOEA for one generation and get optimal solution x*; end while g = g + 1; return x* |
2.2. TradaBoost
3. Proposed TCD-DMOEA
3.1. Overall Framework
Algorithm 2: TCD-DMOEA. |
Input: The dynamic optimization problem , a static multi-objective optimization algorithm SMOEA; Output: The POS of the at the different moments; Initialization; SMOEA; Generate randomly dominated solutions ; while the environment has changed, do t = t + 1; ; Processing; iPop = Case-Transfer; POSt = SMOEA; Generate randomly dominated solutions ; return POSt end while |
Algorithm 3: Processing. |
Input: The current population PT; the number of individuals in population, N; Output: The predicted population PP Initialize the random population and evaluate the initial population PT; Change detection (PT); if change is detected, then while the maximum number of iterations is not reached, do for do Use K-means algorithm to cluster the population P into 5 clusters; Calculate the centroid of each cluster; Calculate using Formula (8); end for ; end while end if PP = PT+1; return PP |
Algorithm 4: Case transfer. |
Input: The two labeled sets DS and DT, and unlabeled data set D, a based learning algorithm Learner, and the maximum number of iterations N; Output: The initial population initPop; Initialize the initial weight vector ; for do set according to (13); Call Learner, providing it the combined training set D with the distribution over D. Then, get back a hypothesis ; Calculate according to (9); Set , Update the weight vector according to (10); end for Get according to (11); Sample solutions at the current environment; return |
3.2. Processing of Target Domain
3.3. Transfer Learning
3.4. Computational Complexity Analysis
4. Experiments
4.1. Test Problems and Performance Indicators
4.2. Performance Comparison with Other Algorithms
4.3. Running Speed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parashar, S.; Senthilnath, J.; Yang, X.-S. A novel bat algorithm fuzzy classifier approach for classification problems. Int. J. Artif. Intell. Soft Comput. 2017, 6, 108–128. [Google Scholar] [CrossRef]
- Rama, B.; Rosario, G.M. Inventory model with penalty cost and shortage cost using fuzzy numbers. Int. J. Artif. Intell. Soft Comput. 2019, 7, 59–85. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind. Eng. 2021, 159, 107489. [Google Scholar] [CrossRef]
- Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, K.; Jiang, M.; Yao, J.; Xiong, N.N.; Yen, G.G. Solving hybrid charging strategy electric vehicle based dynamic routing problem via evolutionary multi-objective optimization. Swarm Evol. Comput. 2022, 68, 100975. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Comput. Applications 2018, 29, 1261–1271. [Google Scholar] [CrossRef]
- Yang, C.; Ding, J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process. J. Intell. Manuf. 2019, 30, 2701–2713. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A.; Vicidomini, M. Sustainable energy design of cruise ships through dynamic simulations: Multi-objective optimization for waste heat recovery. Energy Convers. Manag. 2020, 221, 113166. [Google Scholar] [CrossRef]
- Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 2020, 8, 20–30. [Google Scholar] [CrossRef]
- Wang, G.-G.; Gao, D.; Pedrycz, W. Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Trans. Ind. Inform. 2022, 18, 8519–8528. [Google Scholar] [CrossRef]
- Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019, 49, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-H.; Xing, L.-N.; Wang, G.-G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover operators in NSGA-III for large-scale optimization problems. Inf. Sci. 2020, 509, 470–487. [Google Scholar] [CrossRef]
- Cruz, C.; González, J.R.; Pelta, D.A. Optimization in dynamic environments: A survey on problems, methods and measures. Soft Comput. 2011, 15, 1427–1448. [Google Scholar] [CrossRef]
- Zheng, R.-Z.; Zhang, Y.; Yang, K. A transfer learning-based particle swarm optimization algorithm for travelling salesman problem. J. Comput. Des. Eng. 2022, 9, 933–948. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Gong, D.; Guo, Y.; Rong, M. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization. IEEE ACM Trans. Comput. Biol. Bioinform. 2017, 15, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chen, M.; Xu, X.; Yen, G.G. Multi-objective evolution strategy for multimodal multi-objective optimization. Appl. Soft Comput. 2021, 101, 107004. [Google Scholar] [CrossRef]
- Liu, Q.; Zou, J.; Yang, S.; Zheng, J. A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization. Swarm Evol. Comput. 2022, 73, 101108. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, T.; Ma, X.; Zhu, Z.; Yang, S. A dynamic multiobjective evolutionary algorithm based on decision variable classification. IEEE Trans. Cybern. 2020, 52, 1602–1615. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, J.; Yang, S.; Chai, T. A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 2019, 24, 792–806. [Google Scholar] [CrossRef]
- Yu, Q.; Lin, Q.; Zhu, Z.; Wong, K.-C.; Coello, C.A.C. A dynamic multi-objective evolutionary algorithm based on polynomial regression and adaptive clustering. Swarm Evol. Comput. 2022, 71, 101075. [Google Scholar] [CrossRef]
- Zou, J.; Li, Q.; Yang, S.; Bai, H.; Zheng, J. A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization. Appl. Soft Comput. 2017, 61, 806–818. [Google Scholar] [CrossRef]
- Huan-Tong, G.; Shan-Sheng, Z.; Zhe, C.; Wei-Min, H. Decomposition-based predictive dynamic multi-objective particle swarm optimization algorithm. Control Decis. 2019, 34, 1307–1318. [Google Scholar]
- Wang, F.; Li, Y.; Liao, F.; Yan, H. An ensemble learning based prediction strategy for dynamic multi-objective optimization. Appl. Soft Comput. 2020, 96, 106592. [Google Scholar] [CrossRef]
- Rong, M.; Gong, D.; Pedrycz, W.; Wang, L. A multimodel prediction method for dynamic multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 2019, 24, 290–304. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Zou, J.; Yang, S.; Ou, J.; Hu, Y. A prediction strategy based on decision variable analysis for dynamic multi-objective optimization. Swarm Evol. Comput. 2021, 60, 100786. [Google Scholar] [CrossRef]
- Ma, X.; Yang, J.; Sun, H.; Hu, Z.; Wei, L. Feature information prediction algorithm for dynamic multi-objective optimization problems. Eur. J. Oper. Res. 2021, 295, 965–981. [Google Scholar] [CrossRef]
- Jiang, M.; Qiu, L.; Huang, Z.; Yen, G.G. Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation. Inf. Sci. 2018, 435, 203–223. [Google Scholar] [CrossRef]
- Jiang, M.; Huang, Z.; Qiu, L.; Huang, W.; Yen, G.G. Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 2017, 22, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Wang, Z.; Qiu, L.; Guo, S.; Gao, X.; Tan, K.C. A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning. IEEE Trans. Cybern. 2020, 51, 3417–3428. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H. Improved population prediction strategy for dynamic multi-objective optimization algorithms using transfer learning. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; pp. 103–110. [Google Scholar]
- Jiang, M.; Wang, Z.; Guo, S.; Gao, X.; Tan, K.C. Individual-based transfer learning for dynamic multiobjective optimization. IEEE Trans. Cybern. 2020, 51, 4968–4981. [Google Scholar] [CrossRef]
- Fan, X.; Li, K.; Tan, K.C. Surrogate assisted evolutionary algorithm based on transfer learning for dynamic expensive multi-objective optimisation problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Hu, Y.; Zheng, J.; Zou, J.; Jiang, S.; Yang, S. Dynamic multi-objective optimization algorithm based decomposition and preference. Inf. Sci. 2021, 571, 175–190. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dai, Z.; Póczos, B.; Carbonell, J. Characterizing and avoiding negative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11293–11302. [Google Scholar]
- Yao, Y.; Doretto, G. Boosting for transfer learning with multiple sources. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1855–1862. [Google Scholar]
- Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE Trans. Evol. Comput. 2004, 8, 425–442. [Google Scholar] [CrossRef]
- Emmerich, M.T.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput. 2018, 17, 585–609. [Google Scholar] [CrossRef] [Green Version]
- Rong, M.; Gong, D.; Zhang, Y.; Jin, Y.; Pedrycz, W. Multidirectional prediction approach for dynamic multiobjective optimization problems. IEEE Trans. Cybern. 2018, 49, 3362–3374. [Google Scholar] [CrossRef]
- Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, S.; Yao, X.; Tan, K.C.; Kaiser, M.; Krasnogor, N. Benchmark Functions for the CEC’2018 Competition on Dynamic Multiobjective Optimization; Newcastle University: Callaghan, Australia, 2018. [Google Scholar]
- Zhou, A.; Jin, Y.; Zhang, Q. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans. Cybern. 2013, 44, 40–53. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, A.; Jin, Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 2008, 12, 41–63. [Google Scholar] [CrossRef] [Green Version]
- Van Veldhuizen, D.A.; Lamont, G.B. On measuring multiobjective evolutionary algorithm performance. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; pp. 204–211. [Google Scholar]
- Ruan, G.; Yu, G.; Zheng, J.; Zou, J.; Yang, S. The effect of diversity maintenance on prediction in dynamic multi-objective optimization. Appl. Soft Comput. 2017, 58, 631–647. [Google Scholar] [CrossRef]
- Long, Q.; Li, G.; Jiang, L. A novel solver for multi-objective optimization: Dynamic non-dominated sorting genetic algorithm (DNSGA). Soft Comput. 2022, 26, 725–747. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y. A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 235–240. [Google Scholar]
- Goh, C.-K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 2008, 13, 103–127. [Google Scholar]
- Deb, K.; Rao, N.U.B.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In Proceedings of the Evolutionary Multi-Criterion Optimization: 4th International Conference, EMO 2007, Matsushima, Japan, 5–8 March 2007; pp. 803–817. [Google Scholar]
- Muruganantham, A.; Tan, K.C.; Vadakkepat, P. Evolutionary dynamic multiobjective optimization via Kalman filter prediction. IEEE Trans. Cybern. 2015, 46, 2862–2873. [Google Scholar] [CrossRef] [PubMed]
Settings | Change Severity | Change Frequency | Maximum Iteration |
---|---|---|---|
S1 | 10 | 5 | 100 |
S2 | 5 | 10 | 200 |
S3 | 10 | 10 | 200 |
Functions | Settings | DNSGA-II-A | DNSGA-II-B | TCD-DMOEA | PPS | Tr-DMOEA | KF-DMOEA | Winner |
---|---|---|---|---|---|---|---|---|
S1 | 0.12549 | 0.18466 | 0.01825 | 0.79948 | 0.16762 | 0.18591 | TCD-DMOEA | |
DF1 | S2 | 0.14103 | 0.14997 | 0.02630 | 1.00778 | 0.22634 | 0.20192 | TCD-DMOEA |
S3 | 0.06910 | 0.07078 | 0.01770 | 0.34875 | 0.17491 | 0.15986 | TCD-DMOEA | |
S1 | 0.07984 | 0.11042 | 0.00577 | 0.56862 | 0.1088 | 0.12259 | TCD-DMOEA | |
DF2 | S2 | 0.09846 | 0.09856 | 0.00521 | 0.55064 | 0.1808 | 0.14677 | TCD-DMOEA |
S3 | 0.04331 | 0.05206 | 0.00519 | 0.33104 | 0.1315 | 0.10525 | TCD-DMOEA | |
S1 | 0.36036 | 0.31444 | 0.06176 | 0.46092 | 0.315 | 0.38322 | TCD-DMOEA | |
DF3 | S2 | 0.31344 | 0.30096 | 0.22758 | 0.56408 | 0.4117 | 0.36154 | TCD-DMOEA |
S3 | 0.34277 | 0.35370 | 0.05804 | 0.28151 | 0.3406 | 0.37636 | TCD-DMOEA | |
S1 | 1.33552 | 1.29683 | 0.92736 | 4.09048 | 1.5689 | 1.20196 | TCD-DMOEA | |
DF4 | S2 | 0.85006 | 0.85114 | 1.45397 | 1.78053 | 1.8344 | 1.98927 | DNSGA-II-B |
S3 | 1.29904 | 1.28637 | 1.03469 | 2.13623 | 1.5869 | 1.98173 | TCD-DMOEA | |
S1 | 0.09852 | 0.18511 | 0.02306 | 0.36546 | 2.3146 | 1.35092 | TCD-DMOEA | |
DF5 | S2 | 1.67522 | 1.68125 | 0.02317 | 2.00282 | 2.6205 | 3.26962 | TCD-DMOEA |
S3 | 0.05721 | 0.07235 | 0.02274 | 0.25696 | 2.4713 | 3.30728 | TCD-DMOEA | |
S1 | 5.50747 | 7.96408 | 0.46630 | 11.8778 | 5.5982 | 6.26992 | TCD-DMOEA | |
DF6 | S2 | 7.32493 | 8.29557 | 0.16436 | 12.4986 | 7.2692 | 8.57652 | TCD-DMOEA |
S3 | 2.81471 | 3.45856 | 0.21433 | 5.66312 | 6.7379 | 6.55881 | TCD-DMOEA | |
S1 | 4.94594 | 8.21914 | 0.51930 | 10.0823 | 8.8403 | 7.45962 | TCD-DMOEA | |
DF7 | S2 | 7.43732 | 7.84210 | 0.35659 | 11.3676 | 4.2387 | 8.67889 | TCD-DMOEA |
S3 | 2.19079 | 3.20643 | 1.13082 | 5.96671 | 4.0323 | 8.9454 | TCD-DMOEA | |
S1 | 0.83967 | 0.88308 | 0.06331 | 0.87168 | 0.78817 | 1.10952 | TCD-DMOEA | |
DF8 | S2 | 0.86939 | 0.85910 | 0.29914 | 0.85785 | 0.7993 | 1.41749 | TCD-DMOEA |
S3 | 0.88772 | 0.89634 | 0.05962 | 0.86689 | 0.8026 | 1.64865 | TCD-DMOEA | |
S1 | 1.44013 | 1.48968 | 2.03433 | 1.94736 | 2.5958 | 2.81085 | DNSGA-II-A | |
DF9 | S2 | 1.26994 | 1.27597 | 1.67976 | 2.24801 | 2.7079 | 3.17112 | DNSGA-II-A |
S3 | 1.59835 | 1.60138 | 2.33938 | 1.66393 | 2.3714 | 3.28462 | DNSGA-II-A | |
S1 | 0.14762 | 0.14492 | 0.05083 | 0.16937 | 0.14870 | 0.23669 | TCD-DMOEA | |
DF10 | S2 | 0.15983 | 0.14948 | 0.05854 | 0.15284 | 0.1493 | 0.24198 | TCD-DMOEA |
S3 | 0.13147 | 0.12085 | 0.05061 | 0.12691 | 0.1194 | 0.21441 | TCD-DMOEA | |
S1 | 0.40398 | 0.40980 | 0.19190 | 0.12101 | 0.38975 | 0.26247 | PPS | |
DF11 | S2 | 0.47354 | 0.47851 | 0.32070 | 0.20203 | 0.4178 | 0.19754 | PPS |
S3 | 0.39052 | 0.39487 | 0.20528 | 0.11272 | 0.3331 | 0.1851 | PPS | |
S1 | 0.59895 | 0.64389 | 1.15032 | 1.18370 | 1.19331 | 0.91213 | DNSGA-II-A | |
DF12 | S2 | 0.64129 | 0.65550 | 1.14949 | 1.18769 | 1.1923 | 1.25910 | DNSGA-II-A |
S3 | 0.61309 | 0.68070 | 1.14954 | 1.18368 | 1.19 | 0.989 | DNSGA-II-A | |
S1 | 0.58572 | 0.66171 | 0.17489 | 0.24456 | 3.62620 | 3.37829 | TCD-DMOEA | |
DF13 | S2 | 2.07238 | 2.07951 | 0.11530 | 1.78561 | 2.8032 | 3.55246 | TCD-DMOEA |
S3 | 0.53317 | 0.55064 | 0.18022 | 0.25370 | 2.7312 | 1.4413 | TCD-DMOEA | |
S1 | 0.17673 | 0.61880 | 0.02471 | 0.18437 | 1.6727 | 2.29643 | TCD-DMOEA | |
DF14 | S2 | 2.42269 | 2.37278 | 0.03635 | 1.35517 | 1.8333 | 2.34678 | TCD-DMOEA |
S3 | 0.15027 | 0.59957 | 0.02626 | 0.08840 | 1.8257 | 1.90653 | TCD-DMOEA | |
S1 | 1.79444 | 2.36932 | 0.19901 | 5.95315 | 2.8026 | 4.90052 | TCD-DMOEA | |
F5 | S2 | 1.78814 | 1.58863 | 1.04138 | 14.2358 | 3.6919 | 5.24772 | TCD-DMOEA |
S3 | 0.85822 | 1.01156 | 0.11964 | 2.79008 | 2.6592 | 6.85162 | TCD-DMOEA | |
S1 | 1.16622 | 1.24886 | 0.33671 | 2.69581 | 1.2349 | 4.21603 | TCD-DMOEA | |
F6 | S2 | 0.82511 | 0.84377 | 0.03847 | 4.49749 | 2.4094 | 3.94881 | TCD-DMOEA |
S3 | 0.86284 | 0.83938 | 0.13659 | 2.26413 | 1.3095 | 1.32448 | TCD-DMOEA | |
S1 | 1.69802 | 1.87903 | 0.07907 | 4.18370 | 1.4295 | 3.26674 | TCD-DMOEA | |
F7 | S2 | 1.53415 | 1.57008 | 0.06860 | 10.9552 | 3.1593 | 1.94158 | TCD-DMOEA |
S3 | 0.90880 | 0.90245 | 0.05635 | 1.95524 | 1.327 | 1.6357 | TCD-DMOEA | |
S1 | 0.61626 | 0.58686 | 0.24926 | 0.89452 | 0.74194 | 0.23932 | KF-DMOEA | |
F8 | S2 | 0.57003 | 0.57302 | 0.31896 | 0.61123 | 1.0615 | 0.32661 | TCD-DMOEA |
S3 | 0.49723 | 0.51284 | 0.29669 | 0.30842 | 0.7875 | 0.21715 | KF-DMOEA | |
S1 | 2.16322 | 3.43708 | 0.89799 | 16.9765 | 1.85947 | 0.72251 | KF-DMOEA | |
F9 | S2 | 2.79212 | 2.79170 | 0.24658 | 26.6893 | 2.6079 | 1.70666 | TCD-DMOEA |
S3 | 0.90504 | 1.72920 | 1.36171 | 8.46293 | 1.4721 | 0.82095 | KF-DMOEA | |
S1 | 2.80464 | 3.23187 | 4.14096 | 10.3253 | 2.04876 | 0.69335 | KF-DMOEA | |
F10 | S2 | 1.89147 | 2.04139 | 0.17199 | 10.3688 | 2.7845 | 3.83634 | TCD-DMOEA |
S3 | 2.58958 | 2.52480 | 4.10541 | 6.39496 | 2.7327 | 8.66578 | DNSGA-II-B |
Functions | Settings | DNSGA-II-A | DNSGA-II-B | TCD-DMOEA | PPS | Tr-DMOEA | KF-DMOEA | Winner |
---|---|---|---|---|---|---|---|---|
S1 | 0.87298 | 0.83399 | 0.99596 | 0.65263 | 0.9203 | 0.7995 | TCD-DMOEA | |
DF1 | S2 | 0.87466 | 0.87180 | 0.99608 | 0.64542 | 0.84163 | 0.7807 | TCD-DMOEA |
S3 | 0.92019 | 0.92503 | 0.99328 | 0.85485 | 0.88981 | 0.8143 | TCD-DMOEA | |
S1 | 0.91976 | 0.90297 | 0.99738 | 0.52831 | 0.9473 | 0.8202 | TCD-DMOEA | |
DF2 | S2 | 0.91425 | 0.91246 | 0.99786 | 0.71981 | 0.91661 | 0.8029 | TCD-DMOEA |
S3 | 0.94907 | 0.94420 | 0.98863 | 0.74677 | 0.93941 | 0.833 | TCD-DMOEA | |
S1 | 0.34843 | 0.38187 | 0.75188 | 0.44420 | 0.4701 | 0.23 | TCD-DMOEA | |
DF3 | S2 | 0.54510 | 0.54590 | 0.54075 | 0.61212 | 0.44961 | 0.2828 | PPS |
S3 | 0.31963 | 0.30727 | 0.94657 | 0.42035 | 0.61989 | 0.2195 | TCD-DMOEA | |
S1 | 0.23576 | 0.24019 | 0.37760 | 0.29071 | 0.4383 | 0.2705 | Tr-DMOEA | |
DF4 | S2 | 0.33726 | 0.33918 | 0.28217 | 0.37772 | 0.24422 | 0.2985 | PPS |
S3 | 0.23191 | 0.23489 | 0.56408 | 0.28755 | 0.31761 | 0.308 | TCD-DMOEA | |
S1 | 0.99550 | 0.99626 | 0.99991 | 0.99233 | 1 | 0.9426 | Tr-DMOEA | |
DF5 | S2 | 0.99769 | 0.99685 | 0.99988 | 0.99959 | 0.99865 | 0.956 | TCD-DMOEA |
S3 | 0.99790 | 0.99836 | 0.99993 | 0.99998 | 0.99900 | 0.9303 | PPS | |
S1 | 0.89098 | 0.94927 | 0.99909 | 0.931395 | 1 | 0.7099 | Tr-DMOEA | |
DF6 | S2 | 0.99325 | 0.99724 | 0.99999 | 0.898478 | 0.632845 | 0.8682 | TCD-DMOEA |
S3 | 0.96554 | 0.98084 | 0.99962 | 0.966298 | 0.61565 | 0.75 | TCD-DMOEA | |
S1 | 0.9 | 0.93785 | 0.95660 | 0.920775 | 1 | 0.7155 | Tr-DMOEA | |
DF7 | S2 | 1 | 1 | 0.82791 | 0.9 | 0.691549 | 0.8441 | DNSGA-II-A |
S3 | 0.92498 | 0.94743 | 1 | 0.86527 | 0.66624 | 0.7515 | TCD-DMOEA | |
S1 | 0.36573 | 0.35096 | 0.86352 | 0.37147 | 0.4501 | 0.3004 | TCD-DMOEA | |
DF8 | S2 | 0.35244 | 0.34334 | 0.63800 | 0.37548 | 0.71035 | 0.6078 | Tr-DMOEA |
S3 | 0.32656 | 0.33039 | 0.92433 | 0.32542 | 0.65714 | 0.4329 | TCD-DMOEA | |
S1 | 0.85204 | 0.84753 | 0.35128 | 0.763924 | 0.8068 | 0.6775 | DNSGA-II-A | |
DF9 | S2 | 0.91461 | 0.92985 | 0.69664 | 0.92934 | 0.74104 | 0.7588 | PPS |
S3 | 0.76468 | 0.78770 | 0.83142 | 0.80924 | 0.64614 | 0.7012 | TCD-DMOEA | |
S1 | 0.98810 | 1 | 0.99999 | 0.99426 | 0.9998 | 0.9502 | DNSGA-II-B | |
DF10 | S2 | 0.99999 | 1 | 0.99999 | 0.99559 | 0.99938 | 0.9927 | DNSGA-II-B |
S3 | 0.99151 | 1 | 0.99999 | 0.99842 | 0.99962 | 0.9125 | DNSGA-II-B | |
S1 | 0.71851 | 0.71067 | 0.94698 | 0.94667 | 0.9709 | 0.9008 | TCD-DMOEA | |
DF11 | S2 | 0.69461 | 0.69353 | 0.86000 | 0.916407 | 0.9762 | 0.9891 | KF-DMOEA |
S3 | 0.72455 | 0.72170 | 0.9438 | 0.96196 | 0.99893 | 0.9826 | Tr-DMOEA | |
S1 | 0.49625 | 0.47694 | 0.00105 | 0.06489 | 0.0045 | 0.3006 | DNSGA-II-A | |
DF12 | S2 | 0.53252 | 0.52852 | 0.00212 | 0.00185 | 0.00089 | 0.106 | DNSGA-II-A |
S3 | 0.49016 | 0.44808 | 0.60066 | 0.00174 | 0.00568 | 0.1009 | TCD-DMOEA | |
S1 | 0.99324 | 0.99242 | 0.99794 | 0.995636 | 0.995 | 0.9087 | TCD-DMOEA | |
DF13 | S2 | 0.99485 | 0.99080 | 0.99706 | 0.99817 | 0.99721 | 0.9479 | PPS |
S3 | 0.99406 | 0.99434 | 0.99781 | 0.99708 | 0.99611 | 0.9361 | TCD-DMOEA | |
S1 | 0.92624 | 0.78856 | 0.94998 | 0.92584 | 0.927 | 0.7855 | TCD-DMOEA | |
DF14 | S2 | 0.76854 | 0.75249 | 0.94998 | 0.82129 | 0.90391 | 0.826 | TCD-DMOEA |
S3 | 0.92649 | 0.81270 | 0.94996 | 0.93450 | 0.91622 | 0.772 | TCD-DMOEA | |
S1 | 0.38698 | 0.47343 | 0.94583 | 0.34478 | 0.6768 | 0.6133 | TCD-DMOEA | |
F5 | S2 | 0.45555 | 0.48011 | 0.86738 | 0.45613 | 0.67023 | 0.7623 | TCD-DMOEA |
S3 | 0.57974 | 0.58742 | 0.94356 | 0.58405 | 0.59982 | 0.6696 | TCD-DMOEA | |
S1 | 0.52946 | 0.50249 | 0.96014 | 0.46420 | 0.6917 | 0.5548 | TCD-DMOEA | |
F6 | S2 | 0.61363 | 0.58633 | 0.96502 | 0.56726 | 0.67553 | 0.6745 | TCD-DMOEA |
S3 | 0.56928 | 0.59685 | 0.97848 | 0.66460 | 0.59692 | 0.4971 | TCD-DMOEA | |
S1 | 0.49083 | 0.50185 | 0.97899 | 0.558975 | 0.6482 | 0.5175 | TCD-DMOEA | |
F7 | S2 | 0.53120 | 0.57648 | 0.97198 | 0.46678 | 0.64896 | 0.7871 | TCD-DMOEA |
S3 | 0.54482 | 0.60665 | 0.98071 | 0.73543 | 0.59342 | 0.5414 | TCD-DMOEA | |
S1 | 0.99865 | 0.99941 | 0.99998 | 0.99926 | 1 | 0.9871 | Tr-DMOEA | |
F8 | S2 | 0.99977 | 0.99991 | 0.99998 | 0.99977 | 1 | 0.998 | Tr-DMOEA |
S3 | 0.99908 | 0.99993 | 0.99997 | 0.99997 | 1 | 0.9835 | Tr-DMOEA | |
S1 | 0.44287 | 0.33825 | 0.89925 | 0.29784 | 0.6831 | 0.5528 | TCD-DMOEA | |
F9 | S2 | 0.43699 | 0.333972041 | 0.96078 | 0.26047 | 0.58884 | 0.6172 | TCD-DMOEA |
S3 | 0.52120 | 0.42007 | 0.90454 | 0.40561 | 0.64952 | 0.5602 | TCD-DMOEA | |
S1 | 0.65458 | 0.68298 | 0.98527 | 0.48178 | 0.6699 | 0.5614 | TCD-DMOEA | |
F10 | S2 | 0.52382 | 0.46490 | 0.95732 | 0.50696 | 0.69461 | 0.7753 | TCD-DMOEA |
S3 | 0.70696 | 0.73979 | 0.99873 | 0.50912 | 0.77093 | 0.6982 | TCD-DMOEA |
Functions | DNSGA-II-A | DNSGA-II-B | TCD-DMOEA | PPS | Tr-DMOEA | KF-DMOEA |
---|---|---|---|---|---|---|
DF1 | 23.0258 | 27.0289 | 10.0028 | 30.1587 | 461.5591 | 30.4620 |
DF2 | 29.8561 | 28.4196 | 9.8974 | 29.7459 | 363.2698 | 29.4512 |
DF3 | 39.274 | 30.4785 | 10.0525 | 18.4148 | 459.2658 | 27.1253 |
DF4 | 48.1478 | 30.0753 | 9.7598 | 17.4654 | 165.5802 | 23.3695 |
DF5 | 29.4796 | 31.7592 | 8.8895 | 30.6544 | 399.0036 | 32.4890 |
DF6 | 31.1548 | 29.2971 | 8.9536 | 24.8569 | 524.2016 | 21.0256 |
DF7 | 43.4574 | 28.1490 | 9.2587 | 25.2584 | 378.0154 | 23.1016 |
DF8 | 30.4765 | 29.0253 | 8.1258 | 28.5298 | 425.0545 | 27.4694 |
DF9 | 30.4654 | 36.4695 | 8.5891 | 20.1489 | 484.0154 | 25.9726 |
DF10 | 24.8989 | 24.6497 | 8.1856 | 89.2103 | 866.5962 | 97.6546 |
DF11 | 21.4890 | 25.0245 | 9.9782 | 81.0365 | 890.4168 | 91.6469 |
DF12 | 26.5982 | 21.4694 | 10.0159 | 49.2016 | 970.1460 | 47.4102 |
DF13 | 19.0023 | 21.7592 | 7.9987 | 85.4160 | 1093.0001 | 98.7912 |
DF14 | 18.8898 | 19.1654 | 12.0238 | 85.0489 | 908.4590 | 96.4694 |
F5 | 132.0001 | 32.0795 | 13.0173 | 48.2203 | 513.4169 | 59.8591 |
F6 | 63.8994 | 31.5911 | 13.5924 | 50.1605 | 545.2416 | 60.4991 |
F7 | 54.6565 | 57.2259 | 12.3654 | 59.2056 | 571.1560 | 61.1697 |
F8 | 32.7879 | 56.7411 | 13.2485 | 76.8569 | 1269.2036 | 86.7952 |
F9 | 58.9891 | 39.2899 | 12.2498 | 52.5892 | 970.2596 | 63.7961 |
F10 | 57.4590 | 29.0595 | 11.1475 | 49.0412 | 597.5269 | 52.5610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Wang, G.-G. Transfer Learning Based on Clustering Difference for Dynamic Multi-Objective Optimization. Appl. Sci. 2023, 13, 4795. https://doi.org/10.3390/app13084795
Yao F, Wang G-G. Transfer Learning Based on Clustering Difference for Dynamic Multi-Objective Optimization. Applied Sciences. 2023; 13(8):4795. https://doi.org/10.3390/app13084795
Chicago/Turabian StyleYao, Fangpei, and Gai-Ge Wang. 2023. "Transfer Learning Based on Clustering Difference for Dynamic Multi-Objective Optimization" Applied Sciences 13, no. 8: 4795. https://doi.org/10.3390/app13084795