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Abstract: In steel production, defect detection is crucial for preventing safety risks, and improving
the accuracy of steel defect detection in industrial environments remains challenging due to the
variable types of defects, cluttered backgrounds, low contrast, and noise interference. Therefore, this
paper introduces a steel surface defect detection model, DBCW-YOLO, based on YOLOv5. Firstly,
a new feature fusion strategy is proposed to optimize the feature map fusion pair model using the
BiFPN method to fuse information at multiple scales, and CARAFE up-sampling is introduced to
expand the sensory field of the network and make more effective use of the surrounding information.
Secondly, the WIoU uses a dynamic non-monotonic focusing mechanism introduced in the loss
function part to optimize the loss function and solve the problem of accuracy degradation due to
sample inhomogeneity. This approach improves the learning ability of small target steel defects
and accelerates network convergence. Finally, we use the dynamic heads in the network prediction
phase. This improves the scale-aware, spatial-aware, and task-aware performance of the algorithm.
Experimental results on the NEU-DET dataset show that the average detection accuracy is 81.1, which
is about (YOLOv5) 6% higher than the original model and satisfies real-time detection. Therefore,
DBCW-YOLO has good overall performance in the steel surface defect detection task.

Keywords: defect detection; steel surface; CARAFE; BiFPN; WIoU; DyHead; YOLOv5

1. Introduction

Steel is an important raw material that plays an important role in industrial manufac-
turing. Therefore, ensuring steel quality is a crucial and demanding task. During the steel
manufacturing process, the production environment and processing equipment limitations
can result in various surface defects on the product, such as cracks, scratches, plaques,
punches, indentations, and other imperfections. These defects can affect both the aesthetics
and quality of steel [1]. The detection of defects on the surface of steel is, therefore, an
essential part of industrial production.

The earliest method of defect detection was manual visual inspection. However, the
traditional manual visual inspection method suffers from high subjectivity and empirical
variation. This may limit the reliability of the test results. In addition to this, manual
inspection is inefficient and costly, which limits the further development of traditional
manual visual inspection methods. As machine learning continues to advance, defect
detection methods on the basis of machine learning gradually replace manual detection
methods. An adaptive method for detecting steel surface defects by exploiting the Haar
wavelet transform was proposed by Xu et al. [2] and was fruitful. Ai et al. [3] used the
features statistically derived from the magnitude spectrum obtained by Fourier transform
for crack detection on the steel plate surface. In another approach, Medina et al. [4] used
Gabor filters for spatial and frequency domain defect detection in steel coils. These methods
have made great strides compared to manual testing. However, machine learning methods
require different analytical processing for specific images, resulting in poor robustness and
suboptimal detection accuracy using machine learning defect detection.
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Over the past few years, deep learning has achieved considerable advances in flaw
detection thanks to its powerful learning capabilities [5,6]. Deep learning-based object
detection methods are mainly classified into one- and two-stage methods. A two-stage
model, such as the R-CNN series [7–9], follows a two-step model, first generating candidate
regions and then classifying them after refining their positions. The two-stage detection
method performs well on the detection error rate and missed detection rate. However,
the speed of detection is relatively slow, and it is not able to achieve the requirements of
real-time detection. Therefore, one-stage detection methods have emerged. The widely
used one-stage object detection models at this stage include SSD [10], YOLO series [11–14],
and Retina Net [15]. One-stage target detection algorithms have gained popularity in target
detection applications that require efficient and real-time performance due to their fast
detection speed, end-to-end training, fewer hyperparameters, applicability to multiple
tasks, excellent small target detection capability, and better real-time performance. YOLO
series algorithms are more representative algorithms inside one-stage object detection, but
the accuracy of one-stage target detection algorithms is insufficient.

While target detection algorithms have shown high accuracy in detecting defects
with small-scale variations, they still perform poorly in detecting targets with large-scale
variations. Most current target detection algorithms rely heavily on the prediction of
feature mappings that provide limited information about multi-scale targets. Therefore,
detailed image information needs to be utilized wisely. For example, deep networks can
capture more comprehensive semantic information. However, they may be less suitable for
detecting defects in ground resolution. Therefore, the performance of feature extraction
networks in capturing multi-scale features is of particular interest. Moreover, for the
problem of target feature loss, we can conclude that the improvement of the detection head
is essential.

YOLO still fails to detect complex defects with sufficient accuracy. YOLO still needs
to be optimized for improved detection accuracy. Thus, this research aims to design a
steel defect detection model that can ensure high detection accuracy and a reasonable
detection speed.

Based on these characteristics, to enhance the accuracy of defect detection, this paper
introduces a new one-stage inspection model, DBCW-YOLO, on the basis of YOLOv5.
The algorithm uses YOLOv5 as the baseline model, and for the up-sampling part, an
up-sampling module (CARAFE) [16] is proposed to enhance the receptive field and obtain
much semantic information. For the YOLOv5 head, add the dynamic detection head
(DyHead) [17] to enhance the detection ability of the original. For the YOLOv5 model’s
loss function, the WIoU [18] is used to improve the baseline model’s training stability,
improving the model’s training efficiency.

Therefore, the main contributions are listed as follows:

1. Enhanced feature fusion capability using cross-scale connectivity and embedding
lightweight up-sampling (CARAFE) into the YOLOv5 network to cope with the steel
defect fusion capability with a large scale of variation and to ensure the lightness of
the network by improving the receptive field.

2. We use the dynamic non-monotonic focusing mechanism to replace the CIoU bound-
ary loss function in the original model with the WioU, which enhances the competi-
tiveness of middle-quality anchor frames and simultaneously reduces the harmful
gradient generated by low-quality examples.

3. Embed the self-attention mechanism detection head (DyHead) into the YOLOv5
detection stage to enhance the detection ability of the model.

Our model is targeted to improve the characteristics of steel defects. First, BiFPN and
the up-sampling module, CARAFE, are used to enhance the algorithm’s focus on multi-
scale information for steel surface defects with large-scale variations. Second, to address
the inadequacy of the CIoU aspect ratio of the original model loss function, we introduce a
WIoU to enhance the capability of the boundary loss function. For the weak detection ability
of the model, we embed a dynamic detection head (DyHead) to improve the detection
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ability of the model. In addition, appropriate ablation experiments are designed to validate
the effectiveness of the models and the individual modules. The experimental results
indicate that DBCW-YOLO can maintain high detection accuracy while also having real-
time detection capability. Experiment results denote that DBCW-YOLO has an mAP of
81.1% and 33.8 FPS (frames per second) an mAP improvement of approximately 6% over
the YOLOv5 model. It can provide a solution to the problem of low defect detection on
steel surfaces due to large changes in defect size and strong background interference in
industrial scenarios.

2. Related Work
2.1. Traditional Method

There are two main steps in machine learning-based methods. Firstly, the feature
extraction rules are designed according to different types of defects for feature extraction,
and then the features are inputted into the classifier to realize defect classification. A
framework for extracting features of steel surface defects hidden in non-uniform patterns
was proposed by Luo et al. [19]. By introducing the generalized complete local binary
pattern (GCLBP), an improvement of the complete noise invariant local structure pattern
(ICNLP) was made. The defect identification classification was achieved using the nearest
neighbor classifier. Liu et al. [20] improved the contour transform and kernel spectral
regression for metal surface defect detection by enhancing feature extraction in a multi-
scale subspace. Wang et al. [21] used a guiding template to detect strip surface defects.
They sorted the image by grayscale and subtracted the sorted test image from the guide
template to segment strip surface defects. Inspired by the bootstrap template, the accuracy
of defect detection can be improved by elevating the focus on the defective region. Cardel-
licchio et al. [22] proposed an adopted high-throughput data acquisition using the laser
profilometry processing method and proposed a lightweight machine learning algorithm
for defect detection, which is capable of high-precision real-time monitoring. Since tradi-
tional machine learning methods rely on artificially designed feature extraction principles,
this causes poor generalization capability of the machine learning methods, which is easily
affected by interference and noise, thus reducing the detection accuracy.

In fact, due to the many connections between traditional methods, it may be possible
to use several traditional methods at the same time to jointly achieve the detection of
defects. In general, conventional methods have strong limitations and require reanalyzing
and designing feature extraction rules for different types of defects. For example, having
dimensions that do not vary much or having sharp defect contours with low noise and
high contrast under specified lighting environments. Machine learning possesses some
robustness. However, artificial features have the disadvantage of weak characterization and
poor adaptability. It is difficult to meet industrial needs using machine learning methods.

2.2. Deep Learning Method

With its accuracy and speed, deep learning target recognition algorithms are widely
used in the industry. Deep learning-based target detection can be categorized into two-
stage detection and one-stage detection. Two-stage detection methods generally have high
localization and target recognition accuracies but slower detection speeds. A combination
of ResNet50 and an improved Faster R-CNN algorithm was proposed by Wang et al. [23]
for detecting steel surface defects. Three improvements are proposed by them to the Faster
R-CNN, including enhanced feature pyramid networks (FPNs), spatial pyramid pooling
(SPP), and matrix NMS algorithms, to obtain better performance. Li et al. [24] proposed
a method for pre-processing tunnel surface images to improve their quality and avoid
repeated detection. They also offered a multilayer feature fusion network to detect defects
on the tunnel surface combined with the Faster R-CNN, achieving high detection precision.
However, the speed of detection for the two-stage algorithm is significantly lower compared
to the one-stage algorithm.
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Conversely, one-stage methods have faster detection speeds but may have lower
accuracy. Yu et al. [25] have introduced a lightweight and powerful PCB defect detection
network (led-net) and built a new backbone and neck network that can efficiently fuse
multi-scale features. The loss function with adaptive localization is used to calculate the
localization loss and increase detection accuracy. Cheng [26] proposed a new channel
attention module based on the optimized Retina Net model to enable the model to acquire
more essential channel characteristics. The Adaptive Spatial Feature Fusion (ASFF) [27]
module is embedded into the model, enabling the model to improve its use of spatial
features. Cardellicchio et al. [28] created a bridge defect dataset and used YOLOv5 to detect
bridge defects, contributing to the monitoring of bridge condition and safety. To improve
the model’s feature extraction ability, Li et al. [29] utilized a convolutional encoder–decoder
module with residual blocks in YOLOv4 to enhance the model’s feature detection ability
and improve learning representation. Additionally, they designed a feature alignment
module using the attention mechanism. Finally, they employed three decoupled heads
for separate outputs. Lu et al. [30] used a simplified BiFPN combined with YOLO to
detect citrus defects with 98.7% accuracy. Guo et al. [31] merged the TRANS module in
Transformer with the YOLOv5 backbone. These features, combined with global information,
improve the model’s capability to dynamically adjust to objects at different scales. YOLOv5
achieves a better detection effect.

3. Method
3.1. Basic Model

Considering the computational resources and algorithm detection effect in industrial
scenarios, after comparing the YOLO series of algorithms, we chose the lighter YOLOv5m
6.0 as the improved benchmark model. Its main network structure is illustrated in Figure 1.
The network contains four main parts. In the input part, several key data enhancement
and processing technologies are adopted. Among them, the mosaic data enhancement
increases the variety and complexity of the training samples by stitching together four
randomly selected images to create a single large image. Adaptive anchor frame calculation
dynamically adjusts anchor frame size and position according to target size and position.
For the input portion of the backbone, adaptive image sizing is used to dynamically
adjust the input to satisfy the backbone section requirements. Then, after pre-processing
and image enhancement operations are completed on the images, the images are input
to the backbone module, which extracts features from the processed images. The neck
module then fuses the acquired features, which generates three different kinds of feature
information: large, medium, and small. Finally, the extracted and fused feature information
is input into the head module, and the final result is output after detection.
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3.2. DBCW-YOLO

The large-scale variation of steel surface defects and the strong background disturbance
led to low discriminability of semantic information and poor detection of small targets.
To enhance semantic discriminability, it is essential to obtain the scene information of the
neighboring domains for information correlation and to acquire a profound comprehension
of the correlation among different categories of imperfections. The DBCW-YOLO algorithm
is an enhancement of the YOLOv5 algorithm, and the network structure is illustrated
in Figure 2. To achieve higher detection accuracy, the model feature extraction is firstly
enhanced by the strategy of BiFPN cross-scale connectivity, and the up-sampling algorithm
of the YOLOv5 neck is optimized using the CARAFE module structure, which enhances the
expression of features and improves the model’s ability to capture contextual information.
Secondly, for the large variation of sample quality and poor detection, the WIoU loss
function is introduced to reduce the impact of sample quality and improve the efficiency of
the model. Finally, to improve the representation of the model head, the DyHead module
is introduced in the head to improve the steel defect detection performance.
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3.2.1. Improved Feature Fusion

Feature fusion performs an essential role in target detection tasks. In YOLOv5, the
PANet architecture is utilized for feature fusion. This cascade of feature maps transformed
by the same size is not fully utilized for features between different sizes, making the
detection accuracy limited. Moreover, the nearest neighbor interpolation method is the
original up-sampling algorithm of the adopted neck network in YOLOv5. However, relying
on the nearest neighbor pixel values does not allow us to obtain the subtle information of
the image; the feature-aware domain is relatively small, and the edge information in the
image produces an obvious jagged effect. To improve the detection abilities of the model,
this paper proposes an enhanced feature fusion network, which introduces the idea of
BiFPN [32] multi-scale feature fusion in the YOLOv5 neck. Moreover, this paper introduces
a lightweight up-sampling module called CARAFE to improve the up-sampling algorithm
for feature fusion in YOLOv5 without incurring additional computational costs.

BiFPN uses bidirectional cross-scale connectivity and weighted feature map fusion
to optimize the model. Bidirectional fusion is used to construct top-down and bottom-up
bidirectional channels to fuse information from different scales of the backbone network.
The fusion scales are up-sampled and down-sampled for the same feature resolution
scale, and horizontal connections are added between the input and output nodes of the
same feature to fuse as many features as possible simply without increasing the cost. In
this study, the strategy of BiFPN is used, which establishes forward and backward cross-
layer feature transfer paths at different layers using bidirectional connectivity to enhance
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semantic representation and differentiation. The use of shallow features and fusion of
multi-scale information are improved to enhance the model’s ability to recognize targets at
different scales.

The structure of PANet is shown in Figure 3a. BiFPN’s structure is shown in Figure 3b.
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For the problem of lost up-sampling information, this paper adopts a lightweight
up-sampling module, CARAFE, to enhance the up-sampling algorithm of YOLOv5, which
fully captures the semantic information in steel defect images and enhances the feature
mapping capability, and it does not require more computational cost.

CARAFE is an up-sampling operator that utilizes feature adaptation and feature
reorganization. It is mainly composed of two parts: a content-aware reorganization module
and a kernel prediction module. Its function is mapped from the input features of shape
H ×W ×C, and the feature map with shape δH × δW ×C (δ denotes the up-sampling ratio)
is output by up-sampling kernel prediction and feature reorganization. Moreover, the newly
generated feature map includes more semantic information. The network comparison of
the original network and the improved network is illustrated in Figure 4.
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In Figure 4, Module 1 stands for the part of the kernel prediction module and Module
2 stands for the part of the content-aware reassembly, whose structures are illustrated in
Figure 5. The parameters are explained as follows: N: batch size, C: input channel of the
feature mapping, H: image height, W: image width, Cm: compression channel, k2

en: encoder
size, δ: up-sample ratio, and k2

up: recombination core size.
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The function of the kernel prediction module is to generate a reorganized convolutional
kernel. The input feature mapping is first compressed by a 1 × 1 convolution operation
to reduce the computational effort. Next, the compressed input feature mapping is up-
sampled for kernel prediction using an encoder, and the channel dimensions are expanded
in the spatial dimension to gain an up-sampled kernel of shape δH × δW × kup × kup. In
the end, the up-sampled kernel is normalized so that its convolution weights sum to 1.

The module for reorganizing content-aware maps each location in the output feature
map back to the input feature map. Then, the region centered at kup × kup is taken out, and
the up-sampled kernel at that point after prediction is made dot product to gain the output
value. The same up-sampling kernel is used for different channels in the same position.

All calculation parameters is 2(C + 1)Cm + 2
(
Cmk2

en + 1
)
δ2k2

up + 2δ2k2
upC.

3.2.2. DyHead

Thanks to the large differences in the scale of the steel flaws, the network head needs
to have the capability to detect steel flaws at different scales. However, the YOLOv5 model
contains only three detection heads, which may cause missing detection when dealing with
small target detection. At present, many researchers are increasing the detection layer to
four layers from the original model to ensure that the fusion of shallower feature maps has
more powerful semantic information and more accurate location information. The model
improves the improvement to the sensitivity of the small target in a more comprehensive
and accurate detection of steel defects and provides more reliable support for industrial
inspection, etc.

In YOLOv5, the backbone network outputs a three-dimensional tensor with dimen-
sions of horizontal × space × channel. Therefore, it improvs the integration of the variety
of feature scales due to the difference in target scales and the different types and spatial
positions of the object contained in the potential positional relationship features. This
paper introduces the dynamic head block (DyHead) in the neck section. The DyHead
enables dynamic detection of scale, space, and task awareness attention simultaneously.
That is, an attention method is applied to each specific dimension of the feature tensor. The
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three-dimensional feature tensor is given on the detection layer F ∈ RL×S×C. The attention
function is calculated in Equation (1) as follows:

W(F) = πC(πS(πL(F)·F)·F)·F (1)

where W represents the attention function, L stands for the level of the feature graph, S
stands for the result of multiplying the height and width of the feature graph, and C stands
for the channel numbers in the feature graph. πL(·), πS(·), and πC(·) are three attention
functions applied to dimensions L, S, and C. These three attention sequences are applied
to the detection head and can be used multiple times in superposition. In this paper, two
groups of πL(·), πS(·), and πC(·) modules are superimposed successively to enhance the
representation effect of the detection head and to improve the detection ability of the model
for small flaws. Only two groups are added to ensure the calculation amount of the model.
The single DyHead structure is shown in Figure 6.
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The computational procedure for each of the three attention modules is as follows:

πL(F)·F = δ

(
f

(
1

SC ∑
S,C

F

))
·F (2)

πS(F)·F =
1
L

L

∑
l=1

K

∑
j=1

Wl,j·F
(
l; pj + ∆pj; c

)
·∆mj (3)

πC(F)·F = max
(

α1(F)FC + β1(F), α2(F)·FC + β2(F)
)

(4)

In Equation (2), f is a linear function composed of approximately convolution opera-
tions to achieve feature dimensionality reduction and δ(x) is the activation function, which
is a hard sigmoid. In Equation (3), K stands for the sparse number of sampling locations.
pj + ∆pj is a movable position determined by a self-learning space displacement ∆pj used
to focus on some discriminative positions and ∆mj is a self-learning importance scalar at
position pj, both of which are learned from input features at the intermediate level of F. In
Equation (4), the feature slice of the channel C is FC, and θ(·) is a superfunction for activa-
tion threshold control learning. Its implementation is the same as dynamic Relu, where
α, β are learnable parameters through which different channels are activated differently to
achieve attention operations. These three attention mechanisms are applied sequentially in
the model and can be stacked together several times to form the desired DyHead block.

3.2.3. Wise-IoU

The loss function of the Bounding Box Regression (BBR) is a key part of target detection,
and the quality of detection is largely up to how the loss function is designed. As an essential
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part of the bounding box loss function, its accurate definition can significantly enhance the
quality of the detection part. Therefore, choosing a more appropriate loss function becomes
the primary task of target detection. The YOLOv5 used is the CIoU loss.

The CIoU loss function adds the calculation of aspect ratios and does not balance the
dataset itself. Calibrating steel data perfectly is difficult, and low-quality samples may exist
due to their specific features. Consequently, the CIoU did not have a dynamic measure of
data quality during the testing of this sample. To improve the detection accuracy, a dynamic
measure of the quality of the anchor box is needed. This will overcome the shortcomings of
the loss function. This article optimizes the bounding box loss function using the WIoU. The
WIoU BBR loss function distinguishes the quality of the anchor box using outliers, which
refer to the degree of abnormality. A smaller degree of anomaly is assigned for high-quality
anchor boxes and a larger degree of outlier is assigned for low-quality anchor boxes. As
a result, the data contain a greater number of anchor boxes of medium quality, which
enhance the main decisions and improve the overall detector’s capability. The parameter
diagram of Wise-IoU is shown in Figure 7.
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If the anchor box can achieve a high match with the target box, then a competent
loss function should mitigate the effects of geometric factors, and less intervention during
model training means that the model is likely to achieve a higher generalization capacity.
On this basis, the distance–attention mechanism was constructed, and a WIoUv1 with a
two-layer attention mechanism was obtained.

RWIOU ∈ [1, e ) will enhance the LIOU of the middle-quality candidate box.

LWIOUν1= R WIOU LIOU (5)

LIOU ∈ [0, 1] overwhelmingly decreases the RWIOU of the high-quality candidate box,
and it focuses on the distance between the prediction box and the centroid of the candidate
box when the intersection over the union (IoU) is large.

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(Wg 2 + Hg 2)∗
) (6)

where Wg and Hg are* the size of the smallest closed box (Figure 7). To prevent RWIOU from
creating gradients that impede convergence, Wg and Hg are separated from the computed
graph (the superscript * stands for this work). Therefore, there is no need to consider the
introduction of new metrics to remove barriers to convergence.

4. Experiment
4.1. Dataset

In this article, the real-world benchmark dataset, NEU-DET, is selected to complete
the experiment. These data include six categories, and the number of defects in each type
is 300. The six categories of defects are Crazing (CR), Inclusion (In), Patches (Pa), Rolled-in
Scale (RS), and Scratches (Sc). The detection image is displayed in Figure 8.
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4.2. Index of Evaluation

To comprehensively evaluate the improvements in the algorithm’s performance and
to compare it with other algorithms, in this paper, several assessment indicators are used,
including precision (P), recall (R), average precision (AP) for single-type precision, mean
average precision (mAP) for multi-type precision, and frames per second (FPS) for detection
speed. FPS is frames per second. Therefore, in this paper, experimental validation was
carried out using the same equipment. Calculations of P, R, AP, and mAP are displayed in
Equations (7)–(10) as follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∫ 1

0
PdR (9)

LmAP =
1
N

N

∑
i=1

AP(i) (10)

4.3. Experimental Environment

The environment and relevant parameters of the experiment are displayed in Table 1.

Table 1. Experimental environment and parameters.

Parameters Value

Operating System Windows 10

GPU NVIDIA RTX 2080Ti (manufactured by NVIDIA
Corporation, based in Santa Clara, CA, USA)

Framework PyTorch 1.10.0
Optimizer SGD

Momentum 0.937
Weight Decay 0.0005
Learning Rate 0.01

Epoch 150
Batch Size 8
Image Size 200 × 200
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4.4. Experimental Result
Contrast Experiment

To prove the advantage of DBCW-YOLO, this paper uses several mainstream algo-
rithms to compare NEU-DET datasets. In industrial applications, firstly, the detection
accuracy must be guaranteed. Secondly, considering the production speed, the algorithm
must have a decent detection speed. Therefore, an accuracy metric (mAP) and a FPS
detection speed metric are selected to be shown in Table 2. The experimental results are
displayed in Table 2.

Table 2. Detect result comparison.

Types YOLOv3 Faster
R-CNN Retina Net YOLOv5s YOLOv5l YOLOv7 YOLOv8 DBCW-

YOLO

Cr 40.9% 44.7% 45.9% 42.3% 43.2% 46.3% 42.7% 51.0%
In 81.8% 79.2% 84.2% 79.8% 81.6% 78.1% 84.2% 87.1%
Pa 91.8% 82.1% 91.1% 92.4% 92.5% 88.6% 90.8% 93.0%
PS 94.9% 89.4% 88.6% 92.5% 92.9% 90.5% 89.0% 92.8%
RS 64.2% 65.3% 58.6% 54.7% 61.8% 67.7% 65.4% 70.0%
Sc 91.3% 89.3% 81.6% 87.2% 96.5% 84.6% 87.2% 92.9%

mAP 0.5 77.5% 74.6% 75.0% 74.8% 78.1% 76.0% 76.5% 81.1%
FPS 55.2 17.4 41.2 97.1 48 125 57.6 33.8

In Table 2, the best result for each detect are in bold.

From the data in Table 2, we can conclude that the algorithm in this paper has the
highest accuracy in the table, reaching 81.1%. The DBCW-YOLO algorithm has the highest
detection effect of four kinds of defects. Among these algorithms, YOLOv7 has the fastest
detection speed, but the accuracy of each class is not very high, and the overall ability is
general. The detection accuracy for all types of defects is better than the newer YOLOv8.
Although YOLOv3 and YOLOv5l have good detection results in some defects, the overall
average accuracy still has a certain gap compared with our proposed methods. This is
because the DBCW-YOLO proposed by us can better extract features and take into account
the large variation of steel defect scales. In summary, our proposed DBCW-YOLO achieves
high detection accuracy and good FPS.

The result in Table 3 shows that our method surpassed the original method in most of
the P and F1 in all the test items, and AP was superior in all of them, which verified the
validity of our method.

Table 3. The comparison of detecting results on NEU-DET.

Methods Type P R F1-Score AP mAP

YOLOv5m
(baseline)

Cr 56.1% 26.7% 0.362 39.8%

75.3%

In 70.7% 89.3% 0.789 79.7%
Pa 81.0% 89.7% 0.851 91.6%
PS 85.9% 82.9% 0.844 90.5%
RS 51.9% 66.0% 0.581 58.6%
Sc 80.7% 85.5% 0.830 91.8%

DBCW-YOLO
(Improvement)

Cr 56.8% 46.3% 0.510 51.0%

81.1%

In 71.1% 87.4% 0.784 87.1%
Pa 79.4% 93.0% 0.857 93.0%
PS 93.2% 80.5% 0.864 92.8%
RS 65.2% 77.4% 0.708 70.0%
Sc 88.9% 80.0% 0.842 92.9%

A comparison of the DBCW-YOLO and YOLOv5 under each type is given in Figure 9.
The figure illustrates the improvement of the detection results of different types of defects
in the original model and the DBCW-YOLO model. The accuracy improvement of the
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two types of defects, Cr and RS, which are smaller targets that are more difficult to detect,
and DBCW-YOLO greatly improves the AP values of these two defects. DBCW-YOLO
greatly improves the AP values of these two defects. In Figure 9, the AP of CR in the
improved YOLOv5 has increased by more than 10% compared with other algorithms,
and the AP of RS has also increased by 5.8% compared with YOLOv5, and the effect is
powerful compared to other algorithms. This suggests that DBCW-YOLO acquires deeper
features and improves results significantly for small targets. The AP values of the other
four defects have good detection results compared with other algorithms. The overall mAP
was 81.1 percent. In Table 2, DBCW-YOLO outperforms the other methods for most of the
defects detected, and the effect is substantially improved. By comparing Figure 9, we can
conclude that the overall defect detection capability of the method proposed in this paper
is significantly improved, and it can meet the needs of real-time detection in the industry.
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4.5. Ablation Experiment

According to Table 4, we know that our improvement is useful. The mAP value of
YOLOv5m is 75.3%, and the mAP value of DBCW-YOLO is 81.1%, which has improved the
effect on all six types of defects. Cr increased by 11.2%, In increased by 7.3%, Pa increased
by 1.4%, PS raised by 2.3%, RS raised by 11.4%, and Sc raised by 1.1%. For the function
of each module, ablation experiments were conducted in this article, respectively, and the
mAP value was significantly improved by each module, while the increase in the mAP
value by module superposition was still 4% and 4.3%. Therefore, our experiments proved
the usefulness of every module. For the two types of defects in the detection effect of the
benchmark model, Cr and Sc both increased by more than 10%. Compared to YOLOv5m,
the overall mAP value of DBCW-YOLO increased by 5.8%, which verified the detection
capability of DBCW-YOLO.

Table 4. Ablation experiments on NEU-DET.

Methods mAP 0.5 Cr In Pa PS RS Sc

YOLOv5m 75.3% 39.8% 79.7% 91.6% 90.5% 58.6% 91.8%
W-YOLO 76.8% 39.3% 80.0% 91.0% 96.0% 61.1% 93.5%
BC-YOLO 77.3% 40.6% 80.7% 95.1% 96.8% 61.7% 88.9%
D-YOLO 78.5% 47.3% 80.6% 93.4% 94.4% 61.5% 94.1%

DW-YOLO 79.3% 46.9% 88.9% 90.2% 90.5% 65.5% 93.8%
BCW-YOLO 79.6% 50.4% 82.1% 93.9% 94.5% 65.8% 91.2%

DBCW-YOLO 81.1% 51.0% 87.1% 93.0% 92.8% 70.0% 92.9%

In Table 4, W is the WIoU, BC is CARAFE and BIFPN, D is DyHead, and DW, BCW, and DBCW are
their combination.
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Experiments indicate that compared with the base model and other models of the
network, our method improves the accuracy of defect detection in steel structures, which
further proves the superiority of the DBCW-YOLO algorithm.

5. Conclusions

In this paper, the DBCW-YOLO model is presented due to the challenges of difficult
image detection of small- and medium-sized defects in steel structures. In DBCW-YOLO,
we propose a lightweight up-sampling method, namely, CARAFE, to enhance the baseline
model. Aiming at the insufficient learning ability of the model for sample defects, a
feature fusion method combining the BiFPN strategy and the lightweight up-sampling
method, CARAFE, is presented. Furthermore, we introduce the WIoU to enhance the
model’s ability to learn weight information from feature maps. At the prediction phase,
we employ a dynamic head (DyHead) to further improve the detection performance.
Meanwhile, a dynamic head (DyHead) is used to improve the detection performance in
the network prediction phase. Experimental results illustrate that our model achieves
significant performance compared with other models.

It is worth noting that the type of steel structure selected for this experiment is rela-
tively homogeneous, and the applicability of DBCW-YOLO could be improved. Therefore,
future research will include extending the dataset to cover more different types of metal
defects to improve the overall capability and adaptability of the model.
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