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Abstract: Pavement distress detection is a crucial task when assessing pavement performance
conditions. Here, a novel deep-learning method based on a transformer network, referred to as ISTD-
DisNet, is proposed for multi-type pavement distress semantic segmentation. In this methodology, a
mix transformer (MiT) based on a hierarchical transformer structure is chosen as the backbone to
obtain multi-scale feature information on pavement distress, and a mixed attention module (MAM) is
introduced at the decoding stage to capture the pavement distress features across different channels
and spatial locations. A learnable transposed convolution upsampling module (TCUM) enhances the
model’s ability to restore multi-scale distress details. Subsequently, a novel parameter—the distress
pixel density ratio (PDR)—is introduced based on the segmentation results. Analyzing the intrinsic
correlation between the PDR and the pavement condition index (PCI), a new pavement damage
index prediction model is proposed. Finally, the experimental results reveal that the F1 and mIOU
of the proposed method are 95.51% and 91.67%, respectively, and the segmentation performance is
better than that of the other seven mainstream segmentation models. Further PCI prediction model
validation experimental results also indicate that utilizing the PDR enables the quantitative evalua-
tion of the pavement damage conditions for each assessment unit, holding promising engineering
application potential.

Keywords: pavement distress segmentation; deep learning; transformer; ISTD-DisNet; pavement
condition prediction

1. Introduction

Pavement distress detection and damage condition evaluation have been hot issues
in road maintenance decision-making [1,2]. Generally, road maintenance departments
use mobile acquisition equipment to obtain pavement images, conduct manual visual
inspection, and finally, obtain the pavement condition index (PCI) of the line evaluation
unit [3]. This process has a long detection period, high cost, and strong subjectivity, which
makes it difficult to meet the demand for the rapid and large-scale automatic detection
and evaluation of pavement technical conditions [4]. The primary goal of this study is to
design a pavement distress segmentation model for multiple types of pavement distress in
complex scenarios based on the latest deep-learning techniques and quantify the pavement
distress characteristics for the automated evaluation of pavement conditions.

As pavement cracks, potholes, and repairs in images are usually shown as linear
and planar structures with shape variations, pavement damage detection can be regarded
as a linear and planar detection task in computer vision [5–9]. Most of the early stud-
ies focused on crack detection algorithms based on digital image-processing techniques
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and machine learning. The former are mainly represented by methods such as thresh-
old segmentation [10], edge detection [11], morphological operation [12], minimal path
selection [13], and region growth [14]. The latter, which can be predicted by learning the
intrinsic knowledge of pavement crack data, are mainly represented by support vector
machine (SVM) [15–17] and shallow artificial neural network (ANN) [18] models. Ideally
(Figure 1a), if a single scene is captured and the distress has good continuity and high
contrast, then the early methods based on low-level features can achieve a high accuracy in
pavement distress detection [5]. However, during the acquisition of images of pavements,
which is affected by factors such as the pavement type, lighting conditions, interferences,
and stains, the above detection methods, despite being able to quickly obtain part of the
information on the pavement lesions, cannot easily take into account the influence of
multi-source noise with textural similarity, and the completeness, accuracy, and efficiency
of the identification are not good. It is worth noting that most of the application scenarios
are complex ones. Therefore, before carrying out the research described in this article, the
“complex scene” (Figure 1b) in the scope of the subsequent experiments and discussions
was defined as follows: (1) the scene contains different pavement types, multiple types of
pavement distress, and a complex topology; (2) the scene has a pavement background with
strong speckle noise that is complex and changeable, with a low target signal-to-noise ratio
and poor spatial continuity of the target pixels; and (3) there may be shadows, occlusions,
varied light intensity, and other factors that influence the recognition of pavement. These
factors change, and there can be noise with textural similarity to pavement lesions [19].
Therefore, automatic pavement distress detection from CCD images of pavements acquired
in real projects is still a challenging task.
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Recent theoretical research advances have shown that deep learning can autonomously
acquire different levels of features and then construct high-level features from the low-level
primitives to effectively solve complex fitting problems [21]. Influenced by this, deep-
learning-based methods now play a dominant role in pavement damage detection [19,22].
Research on pavement damage detection based on deep convolutional neural networks
(DCNNs) can be categorized into three types: image classification methods, target detection
methods, and semantic segmentation methods. It is important to note that, compared to
classification [23–25] and detection [26–28], pixel-level segmentation [5,6,29] can provide
more accurate geometric target descriptions for a wide range of applications, such as geo-
metric feature quantification of distress, severity classification, and quantitative assessment
of pavement condition, which is the focus of this article. For example, Jenkins et al. [30]
proposed a semantic segmentation algorithm for road cracks based on U-Net [31], but
the model generalization was insufficient due to the lack of data (80 training images and
20 validation images). Subsequently, researchers have made a series of improvements
based on U-Net [32,33] and achieved improved segmentation performances in crack seg-
mentation test sets such as CRACK500 [34], CFD [35], and AigleRN [36]. In addition, to
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address the problem of the small size of the existing crack segmentation datasets, a crack
segmentation network known as ConnCrack, which integrates a generative adversarial
network (GAN) and connectivity graphs, was proposed by Mei and Mustafa [37]. However,
pavements do not have only one type of distress, and each type of distress has its own
exclusive characteristics and apparent forms. For this reason, Lõuk et al. [38] applied a
U-Net-like network architecture with different levels of contextual resolution to integrate
more contextual information. The authors considered different types of pavement distress,
but they only extracted the planar regions of the different types of distress. In addition,
Zhang et al. [8] collected pavement images of urban roads in Montreal in Canada and
produced a semantic segmentation dataset for potholes, patches, lanes, linear cracks, and
mesh cracks. They also proposed and evaluated a method to automatically detect and
classify the types of pavement distress using a convolutional neural network (CNN) and
low-cost video data, where the model’s detection and classification accuracies both reached
83.8%. It is important to note that, affected by the difficulty of dataset collection and the cost
of labeling, until recently, there have been very few studies on the semantic segmentation
of multiple types of pavement lesions in complex scenarios.

Although the above DCNN-based algorithms have achieved good distress segmen-
tation performances, CNNs still do not perform well in extracting long-range contextual
information, which is crucial for the model to understand distress with complex topo-
logical features in pavement images [39]. In addition, since the convolutional kernel size
of the CNN (3 × 3) determines that the model can only understand input imagery with
localized information, the small receptive field leads to discontinuous and false-positive
predictions [40]. Fortunately, since the first successful application of the vision transformer
(ViT) [41] in computer vision tasks, there has been an explosion of dense prediction research
based on ViT models, which tokenize the input image and then utilize a self-attention
mechanism to enable the model to comprehend the image with a global perspective [42,43].
However, these ViT-based improvements tend to significantly increase the computational
cost. In addition, since the resolution of the positional encoding in the ViT model is fixed, it
causes a degradation in the performance of dense prediction when the resolution of the test
image is different from the resolution of the training image. For this reason, Xie et al. [44]
proposed a hierarchical transformer encoder, replacing the positional encoding with a 3 × 3
convolution operation, which greatly improves the robustness of the model segmentation.
However, the use of only a few simple multilayer perceptrons (MLPs) for decoding is likely
to have reduced the model’s ability to restore detailed information.

Quantitative assessment of pavement technical conditions is a prerequisite for the
rational development of maintenance programs. After completing the pavement distress
detection, the calculation results eventually need to be transformed into the detailed distress
types and the geometric parameters of the distress [45], and then the PCI can be calcu-
lated [46]. It should be noted that, compared with research on the semantic segmentation of
pavement distress, there have been relatively few quantitative studies on the segmentation
results. Although a few crack quantization methods have realized the calculation of the
width, length, and other eigenvalues of the cracks, the computation is time-consuming,
and the results of the computation are affected by the impact of the complex scenario. For
example, Hu et al. [4] performed crack classification and width calculation based on the
segmentation results but failed to realize quantitative evaluation of the pavement condition.
In addition, no research on pavement damage conditions based on quantitative features
has been seen to date [47]. The main indices currently used to characterize the pavement
condition include the pavement damage condition index (PCI), the existing pavement
functional index (the present serviceability index, PSI), the present serviceability rating
(PSR), and the pavement rating (pavement surface evaluation and rating (PASER)) [48].
Among these indices, the PCI is a quantitative pavement condition-based index, and all
the other indicators can be categorized as qualitative pavement indices. Moreover, the PCI
was developed by the U.S. Army Corps of Engineers, based on a large amount of measured
inspection data and visual observations, and it is currently the most commonly used pave-
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ment condition assessment index in the systems of highway pavement rehabilitation and
maintenance management [49]. Although some research teams have proposed the use of
neural network algorithms [50], decision tree algorithms [51], and integrated ANN and
genetic programming (GP) algorithms [52] to predict pavement conditions, the limitation
of these evaluation models is that they all rely on manual inspection of the damage. The
inspector needs to calculate the area, length, and severity of the damage, and the outputs
can then be used as inputs to these models to calculate the PCI. Therefore, there is a need
for a fully automated pavement condition evaluation model, based on the output results of
the pavement distress inspection models.

To address the abovementioned issues of multi-type pavement distress segmentation
and automated prediction of pavement conditions in complex scenarios, based on the
ISTD-PDS7 [20] proposed in our previous research, we first proposed a network based on a
hierarchical transformer structure (named ISTD-DisNet) to extract the pavement distresses
in an end-to-end manner. ISTD-DisNet adopts a hierarchical transformer encoder structure
without positional coding in SegFormer to take into account the long-range contextual
information on pavement distress at different scales. A mixed attention module (MAM)
was introduced at the decoding stage to attenuate or even eliminate the interference of irrel-
evant information and enhance the representation of distress features in complex contexts;
meanwhile, a transposed convolution upsampling module (TCUM) was constructed using
transposed convolution with a learning capability, aiming to enhance the model’s ability to
restore details. The main contributions of this study are summarized below:

1. To enhance the model’s multi-scale distress feature representation and detail recovery
while modeling long-range dependencies and providing a global feature representa-
tion, we designed a multi-scale distress segmentation network—ISTD-DisNet—with
an encoder–decoder transformer architecture.

2. Based on the ISTD-DisNet output, we analyzed the correlation between the PDR and
PCI indices and developed a new pavement damage condition prediction model.

3. Extensive experiments were conducted on the ISTD-PDS7 benchmark dataset and
evaluation units with different pavement conditions to verify the superiority of the
ISTD-DisNet method proposed in this article in the task of multi-scale pavement
distress segmentation in complex scenarios. In addition, a comprehensive comparative
analysis was conducted to compare the results of the proposed automatic evaluation
model for the pavement damage condition with those of manual visual discrimination.

The rest of this article is organized as follows. Section 2 outlines the network ar-
chitecture of ISTD-DisNet, including the MAM and TCUM modules, and explains how
they contribute to the feature enhancement and detail recovery. Section 3 describes the
dataset and experimental setup and provides the comprehensive experimental results.
Section 4 provides an insight into the methodology for constructing the pavement damage
condition prediction model and validates the prediction model with an example. Section 5
summarizes the work.

2. Methods
2.1. Network Overview

As shown in Figure 2, the ISTD-DisNet architecture proposed in this article consists of
an encoder/mix transformer (MiT) with a hierarchical transformer structure that does not
require positional encoding, and a decoder that incorporates a hybrid attention mechanism
and a TCUM module. ISTD-DisNet retains the coding structure of SegFormer. The size
of the input image is first resized to 512 × 512 × 3, and the input image then enters into
the overlapping patch embedding (OPE) structure for feature extraction and downsam-
pling. The obtained features are then input into the hierarchical transformer block module,
where four hierarchical decoding operations decode the input features. After the four
hierarchical decoding operations, feature maps of F1 = 128 × 128 × 64, F2 = 64 × 64 × 128,
F3 = 32 × 32 × 320, and F4 = 16 × 16 × 512 are generated sequentially. In the decoding
stage, the four feature maps are first upsampled to 1/4 of the input image size using the
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MLP layer and then fed into the MAM module to capture the most significant semantic
information on pavement lesions in different channels and different spatial locations. After
performing the Concat operation, the merged feature maps then go through the TCUM
module with learning capability to enhance the detail restoration ability of the feature
information. Finally, a feature map with the resolution of H × W × Ncls is obtained,
with Ncls = 2, where Ncls represents the number of semantic segmentation categories that
contain the background. It is worth noting that the new model replaces the cross-entropy
loss function in SegFormer with a mixed loss function to alleviate the adverse effects caused
by the imbalance of the pixel share of the lesions in the dataset.
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2.2. Encoder

ISTD-DisNet retains the coding structure of SegFormer. As shown in Figure 2, the
transformer module inside the encoder of SegFormer [44] uses OPE to extract features and
downsample from the input image. Because the OPE module allows the slices to overlap
with each other, the elements inside the slices are also connected to each other as a way
to ensure the continuity and integrity of the elements. The OPE is then computed using
a standard convolutional layer to spatially reshape the 2D features into 1D features. The
features are then input into the efficient self-attention (ESA) layer and Mix-FFN layer for
global linkage construction. To replace the positional encoding in the normal transformer,
a 3 × 3 Conv is added between the two linear layers of the feed-forward network (FFN) to
spatially fuse the positional information. The linear layers in the encoder are followed by
layer normalization (LN), and the activation function is a Gaussian error linear unit (GELU).
The transformer block uses multiple ESA and Mix-FFN layers to deepen the network, so
as to extract rich details and semantic features. Slices of different sizes allow the input
image to compute self-attention in the ESA layers at each scale, an operation that allows
SegFormer to obtain global information more quickly and with more pure self-attention at
each scale than previous networks based on CNNs that perform self-attention computation
after integrating information from all the scales. ISTD-DisNet uses SegFormer MiT-B2 as
the backbone, and the main hyperparameters of MiT-B2 are shown in Table 1.
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Table 1. Main hyperparameters of MiT-B2.

Name Number

Embed dims [64, 128, 320, 512]
Num layers [3, 4, 6, 3]
Num heads [1, 2, 5, 8]
Patch size [7, 3, 3, 3]

Strides [4, 2, 2, 2]
Sr ratios [8, 4, 2, 1]

MLP ratio 4

Although the transformer block in the encoding part of SegFormer allows each element
to obtain the connection with the other elements, its overly simple decoding layer cannot
accurately restore the encoded information, and simple bilinear interpolation upsampling
and splicing would also lead to a large amount of lost detail information, which is crucial
for the segmentation of small cracks. For this reason, in this study, we optimized the design
of the decoder, which consists of: (1) using the MAM module to sequentially infer the
attention weight map along two independent dimensions (channel and space), and then
adding the attention map to the input feature map for adaptive feature optimization; and
(2) in the last MLP layer, the upsampled portion is replaced with a transposed convolution
with learning capability to enhance the model’s ability to restore details.

2.3. Mixed Attention Module (MAM)

Images are fed into the network and, after encoding, a series of features with different
information are generated. The features at the highest level have the strongest semantic
characterization ability, while the features at the lowest level have the strongest edge
information [5]. Decoding and fusing this semantic information directly results in the
loss of many salient details due to the fact that the different channels and different spatial
locations of the high-level features contribute differently to the computation. Inspired by
Fu et al. [53], we designed the MAM module, which is divided into two parts—a channel
attention mechanism and a spatial attention mechanism—to capture the pavement distress
features in different channels and different spatial locations. The structure of the MAM
module is shown in Figure 3.
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2.3.1. Spatial Attention Mechanism

For the four feature maps Fi, i ∈ [1, 2, 3, 4] extracted from MiT-B2, firstly, their width
and height dimensions are expanded into one-dimensional vectors and transposed to obtain
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a two-dimensional matrix X ∈ RWH×C. C is the number of channels of the feature map; H
and W are the height and width, respectively; and HW is the number of multiplications
of the height and width. Then, after three parallel fully connected layers Wq, Wk, and Wv,
the channels are dimensionalized to obtain the Q = XWq, K = XWk, and V = XWv matrices,
respectively. Next, the correlation matrix is obtained using A = QKT , where Aij represents
the inner product of row i in Q and row j in K, i.e., the correlation of the vectors at two
different spatial locations. Each row of the correlation matrix A is normalized using the
Softmax function and constrained to be within (0,1). Finally, the correlation matrix A is
multiplied by V and passes through a fully connected layer Ws. The channel dimensions
are recovered to obtain the spatial significance-enhanced feature map XS = AVWs. The
final feature expression is:

XS = σ(XWq(XWk)
T)XWvWs (1)

where Wq, Wk and Wv ∈ RC×C×4, Ws ∈ R(C/4)×C, and σ(.) is the Softmax function.

2.3.2. Channel Attention Mechanism

The operation of the channel dimension is similar to the above, and the four feature
maps Fi, i ∈ [1, 2, 3, 4] are first expanded into one-dimensional vectors along the width and
height dimensions and transposed to obtain X ∈ RWH×C through three fully connected
layers, and the outputs are Q = XWq, K = XWk, and V = XWv. As dimensionality reduction
would bring about too much information loss, the algorithm proposed in this article does
not reduce the dimensionality of the channel. The correlation matrix is then obtained by
B = KTQ, where Bij represents the inner product of column i in K and column i in Q, i.e., the
correlation of the two different channel vectors. Similarly, each column of the correlation
matrix B needs to be normalized using the Softmax function, constrained to be within (0,1).
Finally, after multiplying V with B and passing through a fully connected layer Ws, the
channel significance-enhanced feature map XC = VBWs is obtained, and the final feature
expression is:

XC = XWvσ((XWk)
TXWq)Ws (2)

where Wq, Wk, WvWs ∈ RC×C. Finally, the outputs of these two branches are merged.
Considering the effect of the residual structure, the merged features are summed with the
input X to generate the final feature map Y ∈ RWH×C:

Y = XC ⊕ XS ⊕ X (3)

where “⊕” denotes the summation of the feature maps at the element level. After transpo-
sition and recovery of the dimension expansion, Y is fed into the subsequent module.

2.4. Transposed Convolution Upsampling Module (TCUM)

A transposed convolution [54] is a kind of learnable convolution, which is different
from an ordinary convolution in that it makes the size larger, i.e., it is a kind of upsampling.
Inspired by this, to improve the model’s ability to restore multi-scale distress details, we de-
signed the learnable upsampling TCUM module based on the transposed convolution and
replaced the MLP layer at the end of SegFormer. As shown in Figure 2, the TCUM module
has one more 3 × 3 convolution, two batch normalization (BN) layers, and two rectified
linear unit (RELU) activation functions compared to the original SegFormer MLP. That is,
firstly, the fused feature maps are changed from 128 × 128 × 768 to 128 × 128 × (768 × 4)
by the 3 × 3 convolution with padding of 1. After this, the feature map is sequentially
subjected to two transposed convolution operations with BN, RELU, and a kernel size of
2. The size of the output feature map is 128 × 128 × (768 × 16). Finally, a 1 × 1-sized
convolution is used to predict the 128 × 128 × 2 resolution segmentation mask using the
fused features after two transposed convolutions.
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2.5. Mixed Loss Function

Unlike natural imagery tasks such as semantic segmentation on the Pascal VOC2012
dataset, the percentage of target pixels in the existing publicly available pavement distress
segmentation datasets is generally small (Figure 4). In the ISTD-PDS7 training set used
in this study, the percentage of pavement distress pixels is only 3.17%. It can also be seen
that the real pavement distress belongs to a few classes in the image, which leads to an
imbalance in their classification and segmentation, and this makes it difficult for the model
to effectively learn the features of the distressed regions.
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Zou et al. [5] found that, if the loss weight of cracks is directly increased, it leads to more
false-positive predictions. Xu et al. [2] solved the problem of the imbalance in the percentage
of crack pixels in the CRACK500 dataset by using a hybrid loss function combining focal
loss [55] and dice loss [56], but the coefficient ratios of the two were not provided. As the
training dataset used in this study includes multi-scale pavement lesions and the complexity
of the scenes is high, to solve the problems of the class imbalance and segmentation accuracy,
we combined the focal loss and dice loss and investigated the optimal coefficient ratios
of the two to make this mixed loss function take into account the imbalanced classes and
difficult sample challenges, while also improving the segmentation accuracy.

We adopted the focal loss function to alleviate the category imbalance between the
distress pixels and background pixels. Specifically, it can improve the prediction ability of
the model for a small number of samples by introducing an adjustable parameter to adjust
the weight of the loss value for negative samples, which is calculated as follows:

L f l = −α(1 − pt)
γ log pt (4)

α =

{
αt The current sample is a distress
1 − αt The current sample is the background

(5)

where pt represents the probability of a pixel being correctly classified, and pt also reflects
the difficulty of classification, where the larger the value of pt, the higher the confidence of
the classification, indicating that it is easier to classify the sample. The smaller the value
of pt, the lower the confidence of the classification, indicating that it is more difficult to
classify the sample. α is the positive–negative sample balancing factor, αt is the pre-set
hyperparameter, and αt = 0.5. γ is the control-focusing parameter to make the loss more
focused on difficult samples, which generally takes the value of 2 [56]. (1 − pt)

γ is the
dynamic-modulating factor. The smaller the pt value of the predicted distress pixel, the
more inaccurate the prediction is, and the more the focal loss tends to regard this distress
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as difficult to classify. At the same time, the larger the value of (1 − pt)
γ, the greater the

contribution of the difficulty of classifying the distress type to the loss.
The dice loss is derived from the dice similarity coefficient, which is a metric function

used to assess the similarity of samples, and it is a loss function based on segmentation
modeling, which evaluates how good a model is by measuring the similarity between the
model predictions and the true labels [56]. Specifically, the dice loss calculates the ratio of
the intersecting part of the predicted label and the true label to the sum of its two parts
as the accuracy of the model prediction. Therefore, the dice loss can solve the problem
of the class imbalance and improve the prediction accuracy of the model for data with
insignificant class boundaries, and it is calculated as follows:

LDice = 1 − 2|X ∩ Y|
|X|+ |Y| (6)

where X and Y denote the set of points contained in the real and predicted contour regions,
respectively.

Based on the calculation of the above loss function, we can express the mixed loss
function as follows.

LMixed = λ1Ldice + λ2L f l (7)

where λ1 and λ2 are the weight coefficients of the dice loss and focal loss. By adjusting λ1
and λ2, we can control the weights of each component of the hybrid loss, fully combining
the advantages of the focal loss and dice loss, to solve the problems of the positive and
negative class imbalance and segmentation accuracy. In this study, the mixed loss function
was used to replace the cross-entropy loss function in the benchmark model, where λ1 = 0.7
and λ2 = 0.3. The selection of the weight coefficients is discussed in Section 3.5.

3. Results and Discussion
3.1. Implementation Details

• Parameter settings: We implemented the evaluation networks using the publicly
available PyTorch1.7.0, which is well-known in this community. To improve the learn-
ing performance, we adopted the migration-learning method to train the proposed
model. The pre-trained model selected the optimal weights of the backbone network
trained on the Cityscapes dataset. The model training and testing were performed
on a Windows 10 system using Python 3.6. The model training was divided into a
freezing phase (50 EP) and a thawing phase (100 EP). The batch size of the freezing
training phase was set to 4 and the learning rate was set to 1 × 10−4. The batch size
of the unfreezing process was set to 2 and the learning rate was set to 1 × 10−5. The
momentum and weight decay were set to 0.9 and 0, respectively. The model-training
process was optimized using the AdamW optimizer with a learning rate of 1 × 10−4.
All the experiments described in this article were performed using a single GeForce
RTX 3090 GPU.

• Datasets: To reveal the superiority of ISTD-DisNet, we choose the ISTD-PDS7 [20]
benchmark dataset for the model training and testing. The original images in the
ISTD-PDS7 dataset were acquired using a mobile acquisition vehicle. This dataset
covers seven types of common pavement distress, with different scales for the different
distress types. In addition, this dataset has high scene complexity and labeling fineness
and contains a sufficient number of negative samples with textural similarity noise,
such as shadows, water or oil stains, dropped objects, pavement appendages, etc.
ISTD-PDS7 contains 6553 sample images of lesions and 11,974 negative sample images
with interference noise. The size of the dataset after data enhancement (vertical flip,
horizontal flip, flip, and transpose) was 30,475. The ratio of the ISTD-TR training set to
the ISTD-VD validation set was 9:1. ISTD-TE (1000) and ISTD-CRTE (550) were used
as the test sets to evaluate the performance in the multi-type distress task and crack
segmentation task, respectively, in complex scenarios. Figure 5 shows examples of
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seven types of distress and negative samples in different scenarios, with the first row
showing the original images and the second row showing the corresponding labeled
images. Finally, we evaluated the generalizability of the ISTD-DisNet model using the
CRACK500 [34], CFD [35], AigleRN [36], and GAPs384 [34] datasets.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 27 
 

function was used to replace the cross-entropy loss function in the benchmark model, 
where 1 0.7λ =  and 2 0.3λ = . The selection of the weight coefficients is discussed in Sec-
tion 3.5. 

3. Results and Discussion 
3.1. Implementation Details 
• Parameter settings: We implemented the evaluation networks using the publicly 

available PyTorch1.7.0, which is well-known in this community. To improve the 
learning performance, we adopted the migration-learning method to train the pro-
posed model. The pre-trained model selected the optimal weights of the backbone 
network trained on the Cityscapes dataset. The model training and testing were per-
formed on a Windows 10 system using Python 3.6. The model training was divided 
into a freezing phase (50 EP) and a thawing phase (100 EP). The batch size of the 
freezing training phase was set to 4 and the learning rate was set to 1 × 10-4. The batch 
size of the unfreezing process was set to 2 and the learning rate was set to 1 × 10 5. 
The momentum and weight decay were set to 0.9 and 0, respectively. The model-
training process was optimized using the AdamW optimizer with a learning rate of 
1 × 10−4. All the experiments described in this article were performed using a single 
GeForce RTX 3090 GPU. 

• Datasets: To reveal the superiority of ISTD-DisNet, we choose the ISTD-PDS7 [20] 
benchmark dataset for the model training and testing. The original images in the 
ISTD-PDS7 dataset were acquired using a mobile acquisition vehicle. This dataset 
covers seven types of common pavement distress, with different scales for the differ-
ent distress types. In addition, this dataset has high scene complexity and labeling 
fineness and contains a sufficient number of negative samples with textural similarity 
noise, such as shadows, water or oil stains, dropped objects, pavement appendages, 
etc. ISTD-PDS7 contains 6553 sample images of lesions and 11,974 negative sample 
images with interference noise. The size of the dataset after data enhancement (ver-
tical flip, horizontal flip, flip, and transpose) was 30,475. The ratio of the ISTD-TR 
training set to the ISTD-VD validation set was 9:1. ISTD-TE (1000) and ISTD-CRTE 
(550) were used as the test sets to evaluate the performance in the multi-type distress 
task and crack segmentation task, respectively, in complex scenarios. Figure 5 shows 
examples of seven types of distress and negative samples in different scenarios, with 
the first row showing the original images and the second row showing the corre-
sponding labeled images. Finally, we evaluated the generalizability of the ISTD-Dis-
Net model using the CRACK500 [34], CFD [35], AigleRN [36], and GAPs384 [34] da-
tasets. 

 
Figure 5. Example images of ISTD-PDS7, where “TC”, “LC”, “CCC”, “ANC”, “BS”, “PA”, “PO”, and 
“NS” are the abbreviations for “transverse crack”, “longitudinal crack”, “cement concrete crack”, 
“alligator network crack”, “broken slab”, “patch”, “pothole”, and “negative sample”. 

Figure 5. Example images of ISTD-PDS7, where “TC”, “LC”, “CCC”, “ANC”, “BS”, “PA”, “PO”,
and “NS” are the abbreviations for “transverse crack”, “longitudinal crack”, “cement concrete crack”,
“alligator network crack”, “broken slab”, “patch”, “pothole”, and “negative sample”.

• Comparison algorithms: In this study, we evaluated the performance of ISTD-DisNet
and seven mainstream semantic segmentation models on the ISTD-PDS7 dataset. The
comparison algorithms included five CNN-based segmentation networks (SegNet [57],
PSPNet [58], DeepLabv3+ [59], U-Net [31], HRNet [60]) and two transformer-based
segmentation networks (Swin-Unet [42], SegFormer [44]). In addition, ablation ex-
periments were performed to verify the effectiveness of the improved methods at
three locations.

• Evaluation metrics: To provide a comprehensive evaluation, the F1 score and the mean
intersection over union (mIoU) were used to quantitatively evaluate the performance of
the different segmentation models. Specifically, the F1 score is the weighted harmonic
average, which was used to measure the comprehensive performance of the model.
The IoU is the ratio between the intersection and concatenation between the predicted
results and the true labels, which measured the segmentation ability of the model
in terms of the degree of overlap between the predicted and actual distress. mIoU is
the average of the IoU. For each image, the Precision and Recall can be calculated by
comparing the detected distress with the human-annotated ground truth. The metrics
can be calculated by the following formulas:

Precision = TP
TP + FP

Recall = TP
TP + FN

F1 = 2 × Precision × Recall
Precision + Recall

(8)

mIoU =
1
N

N

∑
k=1

TPK
TPK + FPK + FNK

(9)

where TPK, FPK, and FNK represent the true positive, false positive, and false negative,
respectively; these are measured by the class throughout the test set, where N = 2.

3.2. Quantitative Evaluation

We used the ISTD-TE and ISTD-CRTE test sets to compare and analyze ISTD-DisNet
with the seven other current state-of-the-art semantic segmentation models. The com-
parison metrics used here are the segmentation accuracy, computational complexity, and
inference efficiency, with the segmentation accuracy denoted by the F1 score and mIoU, the
computational complexity denoted by the number of network parameters (Par), the com-
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putational complexity (CC) denoted by GFLOPs, and the inference efficiency denoted by
frames per second (FPS). Table 2 lists the quantitative comparison metrics for all the experi-
mental models, where V16 = VGG16 [61], MV2 = MobileNetV2 [62], R-50 = ResNet50 [63],
H-V2 = HRNetV2 [60], X = Xception [64], and ST = Swin transformer [42]. It is worth noting
that the test results of the comparison models in Table 2 are from our previous benchmark
assessment of the ISTD-PDS7 dataset [20].

Table 2. Quantitative evaluation on the ISTD-PDS7 validation and test sets. Bold indicates the best
performing item.

Dataset Metric
SegNet PSPNet DeepLabv3+ U-Net HRNet Swin-UNet SegFormer ISTD-

DisNet[57] [58] [59] [31] [60] [42] [44]

Attribute

Backbone V16 MV2 R-50 MV2 X V16 H-V2 ST MiT-B2 MiT-B2
Input size 416 × 416 473 × 473 473 × 473 512 × 512 512 × 512 512 × 512 480 × 480 224 × 224 512 × 512 512 × 512

Par/M 16.32 2.38 46.71 5.813 54.709 24.89 29.538 27.18 27.35 28.94
CC/GFLOPs 601.78 5.28 118.43 52.87 166.841 450.602 79.915 52.56 113.427 176.331
Speed/FPS 57.91 131.38 75.53 100.32 47.05 26.99 23.32 110.95 34.75 28.35

ISTD-TE
F1/% 71.55 89.64 83.04 88.68 89.44 92.03 92.72 89.11 94.23 95.51

mIoU/% 60.4 82.27 73.55 81.03 81.13 85.96 87.07 81.64 89.49 91.67

ISTD-
CRTE

F1/% 71.44 73.61 74.57 81.98 79.25 85.91 85.07 79.75 87.14 89.24
mIoU/% 57.05 63.5 65.00 72.66 67.5 77.5 76.43 70.12 79.12 81.91

From Table 2, it can be observed that, as far as the evaluation results for ISTD-TE and
ISTD-CRTE are concerned, the performance of the different models in the crack segmenta-
tion task (ISTD-CRTE) is lower than that in the multi-type distress class dichotomous image
segmentation task (ISTD-TE), which is because the structure of cracks is very complex and
delicate. This requires the model to retain as much spatial information as possible, which is
a challenge for most models. Compared to the other models, the proposed ISTD-DisNet
achieves the most competitive performance in two evaluation metrics, and the original Seg-
Former takes second place in the ranking, which proves the superiority of the hierarchical
transformer encoder in multi-scale distress feature extraction. In comparison, the mIoU
values of Swin-UNet for ISTD-TE and ISTD-CRTE are decreased by 10.03 and 11.79, respec-
tively. It is worth noting that, although Swin-UNet possesses a similar number of network
parameters to SegFormer, it has a lower computational complexity (GFLOPs = 52.56) and a
higher computational speed (FPS = 110.95). In addition, the convolution-based HRNet and
U-Net achieve moderate performances, with the former performing better in the two-class
semantic segmentation task and the latter performing better in the crack segmentation
task. The two models also achieve the lowest FPS values and have a slow inference speed.
SegNet, with the simple encoder–decoder architecture, performs the worst of all.

3.3. Visual Performance

To more intuitively present the distress segmentation performance of the different
models in complex scenes, we selected seven pavement distress and negative sample
images containing interferences in the test set, some of which contained interference noise
such as oil stains, shadows, and tree branches. Figure 5 shows the segmentation results of
the eight algorithms.

As shown in Figure 6, a visual inspection reveals that the proposed method outper-
forms the other methods in the task of the two-class semantic segmentation of multiple
types of pavement lesions in different natural scenarios. The proposed method performs
especially well in coping with different types and sizes of distress, varied illumination, and
disturbances, with the most fine-grained and complete lesion extraction, with fewer false-
positive predictions. From the prediction results of the different segmentation networks
based on CNN structures, as shown in column 3 of Figure 6, SegNet only achieves coarse
segmentation of the distress samples and is poor at handling the details and discontinuities.
It also has difficulty extracting the planar regions of pits. In addition, from the segmentation
results of PSPNet and DeepLabv3+ in columns 4–7 of Figure 6, it can be found that, as these
segmentation networks use multi-scale pooling and cavity convolution, this can increase



Appl. Sci. 2024, 14, 4709 12 of 26

the receptive field to a certain extent, but it leads to a large amount of spatial information
loss, which results in a significant decrease in the small crack detection performance. In
contrast, U-Net (column 8 of Figure 6) and HRNet (column 9 of Figure 6), which take into
account the fusion of multi-scale feature information, show an improved ability to restore
the details of the distress and are more suitable for the task of the intensive prediction
of pavement distress; however, the inference speed is reduced (Table 2). Columns 10, 11,
and 12 of Figure 6 demonstrate the potential of the transformer backbone-based feature
extraction network structure for the intensive prediction task. In terms of the operation
speed, Swin-UNet obtains the second best prediction speed, with an FPS of 110.95, due
to the lower computational complexity and fewer parameters, but the model suffers from
a loss of detail information due to the pure transformer operations, the insufficient edge
information for crack extraction, and poor immunity to interference. In contrast, SegFormer
uses a hierarchically structured transformer feature extraction network to output multi-
scale feature maps, and it uses a 3 × 3 sized depthwise convolution instead of positional
encoding for the position information. This avoids the problem of the degradation of the
dense prediction performance due to the interpolation of the positional encoding when
the test resolution is different from the training resolution. In addition, SegFormer uses
the simplest MLP decoder for the feature information at different scales, and although it
can effectively combine local attention and global attention, the model prediction is not
sufficiently fine-grained compared to the method proposed in this article.
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3.4. Ablation Study

To reveal the effectiveness of the different improvement methods in ISTD-DisNet, the
MAM and TCUM modules and the mixed loss function (λ1 = 0.7, λ2 = 0.3) were replaced
or removed, respectively. Table 3 shows that, as far as the effect of a single improvement
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measure on the distress segmentation performance is concerned, the mixed loss function,
which takes into account the positive and negative sample imbalance, contributes the
most to the improvement in the mIoU. Compared with the baseline network, the model
improves the F1 score and mIoU by 0.93% and 1.58%, respectively, without increasing
the number of parameters, which suggests that the improvement strategy that focuses on
the positive and negative sample imbalance is more effective for the pavement distress
segmentation task. This is followed by the MAM module, and the smallest contribution
is made by adding the learnable uploading module at the decoding stage (TCUM). The
combination of TCUM and Mixed_Loss resulted in the greatest improvement in the model’s
segmentation performance when the two improved strategies were used in combination; the
simultaneous use of the three improvement measures can improve the F1 score and mIoU
of SegFormer by 1.28% and 2.18%, respectively. The results of the ablation experiments
show that the three improvement measures in ISTD-DisNet can effectively improve the
performance of pavement distress detection. With regard to the accuracy, computational
complexity, number of parameters, and FPS, ISTD-DisNet has the highest accuracy and
fewer parameters.

Table 3. Effectiveness of each module in ISTD-DisNet.

Method F1/% mIoU/% CC/GFLOPs Par/M Speed/FPS

SegFormer 94.23 89.49 113.427 27.348 34.75
SegFormer + MAM 94.94 90.77 113.467 27.496 34.73
SegFormer + TCUM 94.83 90.49 176.316 28.767 28.35

SegFormer + Mixed_Loss 95.16 91.07 113.427 27.348 34.75
SegFormer + MAM + Mixed_Loss 94.84 90.51 113.467 27.496 34.73
SegFormer + TCUM + Mixed_Loss 95.20 91.12 176.316 28.767 28.35

SegFormer + MAM + TCUM 94.99 90.77 176.356 28.915 32.74
ISTD-DisNet 95.51 91.67 176.356 28.941 28.35

In addition, to more visually reveal the effects of the MAM and TCUM modules on
the model’s segmentation performance, we randomly selected different distress samples
from the ISTD-PDS7 test set and used GradCAM to visually represent the feature maps
of the TCUM module output locations in Figure 1, i.e., the output features of the MLP
layer in the tail of the original SegFormer. GradCAM is a popular visualization method
that takes gradient-weighted class-activation mappings in the form of heatmaps to be a
visual representation and provides interpretability without compromising the accuracy.
Darker areas in the visualization results indicate higher model responsiveness to the target
class. The results are shown in Figure 7, where the first column contains the original images
of the seven different distress categories; the second column contains the labels of the
corresponding distress types; the third column contains the heatmaps of the corresponding
locations of SegFormer; the fourth column contains the heatmaps of the corresponding
locations after adding only the MAM module; the fifth column contains the heatmaps of
the corresponding locations after adding only the TCUM module; and the sixth column
contains the heatmaps of the corresponding locations for ISTD-DisNet. Observation of
columns 3 and 4 reveals that the addition of the MAM module improves the model’s
response to the distressed areas and enhances the completeness of the predictions. In
particular, for the cement cracks with expansion joints in the background (four rows),
the MAM module is also effective in reducing the false-positive predictions of the model.
Observation of columns 3 and 5 reveals that the addition of the TCUM module proposed in
this article improves the model’s ability to restore the details of the damage and solves the
problem of the insufficient fine-grained segmentation of the baseline model. It should be
noted that, when only the TCUM module is used, it leads to the incomplete extraction of
some cracks and pits (two rows and five columns, two rows and seven columns). Observing
columns 3 and 6, it can be seen that the simultaneous use of the MAM and TCUM modules
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not only improves the model’s response to the distressed area and its ability to restore
details but also effectively increases the completeness of the crack extraction.
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3.5. Weight Coefficient Analysis for the Mixed Loss Function

In Section 2.5, we described how we combined the advantages of the dice loss and
focal loss and weighted the sum of the two loss functions as a mixed loss function to address
the challenges posed by the imbalanced classes and difficult samples. Given the different
principles of the two loss functions, this section discusses the impact of the mixed loss
function on the segmentation performance of models with different weighting coefficients.
To this end, we set the values of (λ1: λ2) in Equation (7) to (1:0), (0.9:0.1), (0.8:0.2), (0.7:0.3),
(0.6:0.4), (0.5:0.5), (0.4:0.6), (0.3:0.7), (0.2:0.8), (0.1:0.9), and (0:1), respectively. Figure 8
shows the loss curves of the validation set during ISTD-DisNet training with the different
weighting coefficients, where Figure 8a is the initial phase of training (0–15 epochs) and
Figure 8 is the unfrozen phase of training (50–150 epochs). It can be seen that, for the
pavement distress two-class segmentation task with a small percentage of target pixels, the
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loss curve fluctuates the most when only the dice loss function is used, i.e., the gradient
changes drastically and the training is unstable. When using only the focal loss function,
the oscillations are not obvious, but the convergence is slow. When (λ1:λ2) takes the value
of (0.7:0.3), the loss curve fluctuation is the smallest, the loss value decreases the fastest,
and the value of the convergence is the lowest, which indicates that the training process is
more stable at this time and that training time can be saved.
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Figure 9 demonstrates the variation in the F1 score and mIoU of ISTD-DisNet on the
test set when different weighting coefficients are assigned to the two types of loss functions.
It can be seen that, compared with the use of the focal loss alone, the use of the dice loss
alone can better improve the model’s distress segmentation performance. When the (λ1:λ2)
ratio of the mixed loss function is (0.7:0.3), the model’s segmentation performance is the
best, indicating that, at this time, the mixed loss function is able to take into account the
distribution of the number of samples, but at the same time, it is also able to better optimize
the classification accuracy. Taken together, the combination of the focal loss and dice loss is
a more effective way to solve the imbalance of positive and negative samples in pavement
distress segmentation. For similar tasks, the weight coefficients can be selected and adjusted
according to the characteristics of the dataset and the needs of the model, which can achieve
better classification results.

3.6. Generalizability Analysis on Different Publicly Available Datasets

In order to verify the generalizability of the ISTD-DisNet model for pavement distress
segmentation, we chose the original SegFormer as the baseline model for comparison and
calculated the distress segmentation metrics of the two algorithms for the CRACK500 [34],
CFD [35], AigleRN [36], and GAPs384 [34] datasets, which come from different filming
equipment and scenarios. As shown in Table 4, compared to the original SegFormer, the F1
scores of the model proposed in this article are improved by 2.05%, 1.38%, 2.92%, and 2.19%
on the four public test sets, and the mIoU scores are improved by 2.38%, 1.55%, 3.53%,
and 2.23%, respectively. This shows that the model proposed in this article has superior
robustness and generalizability. Although the mIoU of ISTD-DisNet on the public dataset
is not higher than its score on the ISTD-CRTE test set, this is mainly because the labeling
accuracy is not consistent.
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Table 4. Comparison of the crack segmentation results between ISTD-DisNet and SegFormer on four
public datasets.

Dataset Method F1/% mIoU/% Equipment Scenario

CFD
SegFormer 82.65 73.98 Smartphone Urban roads in Beijing

ISTD-DisNet 84.70 76.36

CRACK500
SegFormer 81.66 72.72 Smartphone Temple University campus road

ISTD-DisNet 83.05 74.27

AigleRN SegFormer 71.53 62.45 Area-array camera French humanoid path
ISTD-DisNet 74.45 65.98

GAPs384
SegFormer 70.46 61.91 Linear-array camera German AutobahnISTD-DisNet 72.65 64.14

Figure 10 visualizes the segmentation results of the baseline and the model proposed
in this article on the four datasets. Figure 10a shows the pavement crack images acquired
by the different shooting devices, which have different resolutions, distress topologies, and
texture noises. Figure 10b shows the corresponding labels of the original images. From
Figure 10c,d, it can be seen that, compared with the baseline model, the ISTD-DisNet
crack segmentation model proposed in this article has a better degree of completeness
and refinement, which also indicates that the use of the MAM attention mechanism and
transposed convolution in the encoding stage can effectively solve the problem of the
baseline model’s insufficient fine-grainedness for fine cracks and improve the model’s
detail restoration ability. In addition, for the GAPs384 dataset captured with a line-array
CCD camera, the method proposed in this article can also accurately segment the multiple
types of distress in the images. The results of the quantitative and qualitative comparative
analysis of the generalization show that the segmentation method proposed in this article
can accurately segment most of the pavement crack-type lesions and that the model has
strong robustness.
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4. PCI Prediction Model Based on the ISTD-DisNet Outputs
4.1. PCI and Distress Pixel Density Ratio

(1) PCI assessment
Currently, road maintenance departments often refer to the internationally recognized

PCI to develop maintenance programs. In the pavement condition evaluation task based on
manual visual discrimination, Equation (10) is usually used to calculate the comprehensive
pavement damage rate (DR) of each evaluation unit (100 m or 1000 m) of the route, and
Equation (11) is used to calculate the PCI [6,49].

DR = 100 ×
i0

∑
i=1

wi Ai
A

(10)

PCI = 100 − a0 × DRa1 (11)

where DR is the comprehensive damage rate of the pavement, which is the sum of the
area of the various distress types and the percentage (%) of the pavement survey area;
PCI ∈ [0, 100]; i is the type of distress; i0 is the total number of types of distress; Ai is
the area damaged by pavement distress in category i (m2); A is the area of the surveyed
pavement (the product of the surveyed length and width of the pavement, m2); and wi is
the weighting of the pavement damage of the pavement distress in category i.

(2) Calculation of the distress PDR
The manual visual discrimination process has the problems of a long detection period,

high cost, and subjectivity [4]. Therefore, in the following, we describe how we calculated
the distress PDR of each evaluation unit based on the output of the ISTD-DisNet model.
We then describe how we investigated the correlation between the PDR and PCI and finally
developed a new model for calculating the PCI. It should be noted that, due to the large
differences in the background and distress type appearance of asphalt and cement concrete
pavements, we analyzed and constructed the PCI calculation model for the two pavement
types separately. If we assume that the examined line contains n 100 m evaluation units,
then the optimal weighted model of ISTD-DisNet was used to extract all the distressed
pixels in the image for each evaluation unit, and the PDR of the distressed pixels in that
evaluation unit was calculated according to Equation (12):

PDRi =

50
∑

j=1
NPj

Aj × 50
(12)
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where i ∈ [1, n]; NPj is the total number of distressed pixels of image j in evaluation unit
i; and Aj is the total number of pixels of image j. The ortho-corrected image resolution is
Aj = 3517 × 2193, which corresponds to an actual size of 3.2 m × 2.0 m.

4.2. Experimental Data

To build a robust and comprehensive PCI computational model, we screened 66 100 m
evaluation units (42 asphalt, 26 cement concrete) by pavement type, distress type, and
scenario from the 2023 sets of measured highway data from Hubei Province (Figure 11a) in
China as the experimental data for the PCI computational modeling study. The statistics
concerning the number of pavement distress types in the experimental data are shown
in Figure 11b. Firstly, three experts in the field of distress inspection used manual visual
discrimination to accurately outline the pavement lesions in the image of each evaluation
unit and then calculated the PCI score of each evaluation unit, which was used as the true
value for the model construction. ISTD-DisNet was then deployed on the experimental
line, and the PDR of each evaluation unit was output. The results for the PDR and the PCI
of the manual visual discrimination are shown in Table 5.
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Figure 11. Data-related information. From left to right: (a) data collection area; (b) plot of the quantity
distribution of the various distress types in the experimental data, where “TC”, “LC”, “CCC”, “ANC”,
“BS”, “PA”, and “PO” are the abbreviations for “transverse crack”, “longitudinal crack”, “cement
concrete crack”, “alligator network crack”, “broken slab”, “patch”, and “pothole”.

Table 5. Independent variables of the PDR and PCI.

Evaluation Unit ID PDR PCI (Visual
Inspection Method) Type of Pavement

1 0.00050 95.67

Asphalt
pavement

2 0.00116 95.13
3 0.00034 96.39
4 0.00035 96.26
5 0.00194 94.36
6 0.00112 95.44
7 0.00226 94.68
8 0.00091 96.23
9 0.00117 95.43
10 0.00119 95.65
11 0.00151 95.40
12 0.00156 95.73
13 0.00124 96.12
14 0.00026 97.39
15 0.00078 95.20
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Table 5. Cont.

Evaluation Unit ID PDR PCI (Visual
Inspection Method) Type of Pavement

16 0.00242 94.60

Asphalt
pavement

17 0.00126 94.49
18 0.00174 95.00
19 0.00172 95.24
20 0.00277 94.20
21 0.00072 96.88
22 0.00058 96.18
23 0.00175 95.12
24 0.00197 95.26
25 0.00134 95.21
26 0.00046 96.70
27 0.00093 96.03
28 0.00098 95.61
29 0.00164 95.00
30 0.00087 95.01
31 0.00241 93.40
32 0.00200 94.64
33 0.00163 94.51
34 0.00182 94.72
35 0.00153 95.39
36 0.00030 96.68
37 0.00047 95.80
38 0.00057 95.63
39 0.00094 95.53
40 0.00263 94.18
41 0.00138 95.31
42 0.00088 95.10

43 0.00501 90.45

Cement concrete
pavement

44 0.00025 96.48
45 0.00170 92.95
46 0.00029 95.72
47 0.00116 94.26
48 0.01719 86.58
49 0.00269 92.64
50 0.01674 85.53
51 0.01694 86.00
52 0.00293 91.77
53 0.00206 93.35
54 0.00101 96.64
55 0.00744 89.40
56 0.00221 91.50
57 0.00032 91.65
58 0.00883 89.36
59 0.00323 91.11
60 0.00029 94.88
61 0.00858 89.94
62 0.02228 86.15
63 0.04044 83.30
64 0.03881 81.47
65 0.01107 87.37
66 0.01580 85.93

4.3. PCI Prediction Modeling

(1) Calculation of the distress PDR
To establish a PCI prediction model based on the output results of ISTD-DisNet, based

on the data in Table 5, we calculated the PDR and PCI correlation coefficients according to
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Equations (13) and (14) to determine the degree of correlation between the PDR and PCI
indicators and analyze the feasibility of the automated prediction model construction.

sPDR =

√√√√√ i=n
∑

i=1
(PDRi − PDRmean)

n − 1

sPCI =

√√√√√ i=n
∑

i=1
(PCIi − PCImean)

n − 1

SPDR,PCI =

i=n
∑

i=1
(PDRi − PDRmean)(PCIi − PCImean)

n − 1

(13)

where n = 66 is the number of evaluation units; PDRmean and PCImean are the arithmetic
mean of the two samples, respectively; sPDR and sPCI are the standard deviation of the
two samples, respectively; and SPDR,PCI is the covariance of PDR and PCI. The correlation
coefficient rPDR,PCI is calculated according to Equation (14):

rPDR,PCI =
SPDR,PCI

sPDR × sPCI
(14)

From Evans and Groot [65], it can be seen that, when 1 ≥ |rPDR,PCI | > 0.75, the two
have a strong correlation; when 0.7 ≥ |rPDR,PCI | ≥ 0.3, the two have a moderate correlation;
and when 0.25 ≥ |rPDR,PCI | ≥ 0, the two have a weak correlation. Based on the data in
Table 5, we calculated the PDR and PCI correlation coefficients of the 42 asphalt evaluation
units and the 24 cement evaluation units by Equation (14) The results of the calculations are
rAsphalt = −0.824 and rCement concrete = −0.965. This indicates that the two have a strong
correlation. That is, using the calculation results of ISTD-DisNet to calculate the distress
PDR of the evaluation units and taking it as the independent variable of the pavement
damage index calculation can respond to the degree of damage of the pavement and realize
the construction of the PCI prediction model.

(2) The PCI prediction model
In this study, based on the PDR index, linear and nonlinear fitting methods were used

to construct the PCI calculation model, and the performance of the model was evaluated
using the coefficient of determination, R2. R2 can reflect the proportion of all the variations
of the dependent variable that can be explained by the independent variable through the
regression relationship, where the closer R2 is to 1, the better the performance of the model.
Figure 12 demonstrates the PCI computational model based on the simple linear fitting
method, where it can be seen that, for the two types of pavement types, the coefficients of
determination of the linear function model constructed based on the PDR are 0.672 and
0.808, respectively.

Nonlinear equations have a wide range of applications in electricity, mechanics, eco-
nomic management, engineering technology, etc. [66]. It can be seen from Equation (11)
that there is a nonlinear relationship between the PCI and the breakage rate DR, which
belongs to a kind of exponential function containing two coefficients. Considering the large
difference in the size of the PDR and DR values, we chose Equation (15) as the nonlinear
fitting function of the PDR (independent variable) and PCI (dependent variable), where
A1 and A2 are the two coefficients to be solved, and ε represents the correction parameters.
The Levenberg–Marquardt (LM) algorithm [67] is used to solve the least-squares solution
of the nonlinear function coefficients.

PCI = 100 − A1 × PDRA2 + ε (15)
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Figure 12. PCI prediction model based on a linear fitting algorithm: (a) asphalt; and (b) cement
concrete.

Figure 12 shows the PDR-based PCI computational model after 29 iterations. It can
be seen that, compared to the simple linear fitting model, the R2 is improved by 0.036
and 0.144, respectively, using the PCI computational model. This indicates that the PCI
computational model constructed using the nonlinear regression approach performs better.

4.4. Model Verification

To further evaluate the generalization ability of the PCI prediction model proposed in
this article, the developed model was deployed for computation on 6 road sections with
different road conditions, with a total of 89 100 m evaluation units (46 asphalt, 43 cement).
Firstly, the PCI score of each evaluation unit was obtained by manual visual discrimination,
and the total time was recorded. Secondly, all the images were analyzed using ISTD-DisNet
to calculate the distress PDR for each evaluation unit. Finally, the extracted PDR features
were used as the input values, and a nonlinear regression model (Figure 13) was used
to calculate the PCI score of each evaluation unit and count the total computation time.
Figure 14 shows the PCI calculation results of the two different methods. As can be seen
from Figure 14, the PCI values calculated for each evaluation unit based on the distress PDR
are in good agreement with the results of the corresponding manual visual discrimination.
The maximum difference between the two methods is 7.33 and 8.93 for the asphalt and
concrete pavements, respectively, and the mean absolute values of the differences are 2.48
and 3.92, respectively. It can be observed that the PCI obtained from the manual visual
discrimination is lower than that calculated from the PDR-based PCI for nearly 80% of the
evaluation units, which is because the training dataset used in this study did not contain all
the distress types, such as the less common oiling, loosening, and exposed aggregate types.
In addition, the efficiency of the PCI prediction model proposed in this article is about
24 times higher than that of manual visual discrimination. In summary, the computational
model proposed in this article can realize the rapid calculation and ranking of pavement
damage conditions, which has potential value in engineering applications.
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5. Conclusions

In this article, we have systematically investigated the tasks of binary semantic seg-
mentation of multi-type pavement distress and the quantitative evaluation of pavement
damage conditions in complex scenarios in terms of both research and application. To this
end, we have proposed the ISTD-DisNet architecture for multi-type pavement damage
detection based on the ISTD-PDS7 dataset presented in our previous research. Firstly,
ISTD-DisNet realizes the extraction of different-scale damage feature information with
the help of the SegFormer feature extraction network. Secondly, we designed the MAM
module, which enables the model to pay more attention to the pavement distress features
in different channels and different spatial locations in the decoding stage and reduces the
false-positive prediction of the model. In addition, the TCUM module is used to cope with
the challenge of restoring different distress details in complex scenes. Finally, a weighted
and mixed loss function is constructed to alleviate the problem of the positive and negative
sample imbalance by setting the focal loss and dice loss weights to improve the segmenta-
tion performance for distress features. The experimental results obtained on the ISTD-PDS7
dataset show that the developed ISTD-DisNet performs well in segmenting different types



Appl. Sci. 2024, 14, 4709 23 of 26

of distress in complex scenarios. In addition, the ablation study and comparisons showed
the effectiveness of the three main improvements proposed in this article in enhancing
the accuracy of distress detection. The evaluation results obtained on four pavement
crack datasets confirmed that the proposed method is highly robust in coping with crack
detection in different scenarios. ISTD-DisNet may be applied to other surface damage
segmentation tasks, such as the intelligent detection of bridge cracks and spalling.

In contrast the previous studies of pavement distress segmentation modeling, we
proposed a fully automated pavement damage condition evaluation model based on the
segmentation results. Firstly, pavement images of 66 100 m evaluation units were obtained
from different road sections in Hubei Province, China, and the PCI of each evaluation unit
was obtained by manual visual discrimination. Secondly, the distress segmentation results
for the images of each evaluation unit were obtained using ISTD-DisNet, and the PDR
was calculated. Finally, the prediction model of the PCI with the PDR was established.
The model validation results showed that the prediction model proposed in this article
is more consistent with the results obtained from manual visual discrimination and can
realize the rapid calculation and ranking of pavement damage conditions, with potential
value in engineering applications. In the future, other less common pavement distress
samples will be collected in a targeted manner, and the use of pavement triple-point
cloud data to generate depth images will be considered to increase the number of rutting
distress samples related to depth [68], thus further optimizing the prediction accuracy of
the evaluation model.
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