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Abstract: Text classification is not only a prerequisite for natural language processing work, such
as sentiment analysis and natural language reasoning, but is also of great significance for screening
massive amounts of information in daily life. However, the performance of classification algorithms
is always affected due to the diversity of language expressions, inaccurate semantic information,
colloquial information, and many other problems. We identify three clues in this study, namely,
core relevance information, semantic location associations, and the mining characteristics of deep
and shallow networks for different information, to cope with these challenges. Two key insights
about the text are revealed based on these three clues: key information relationship and word
group inline relationship. We propose a novel attention feature fusion network, Attention Pyramid
Transformer (APTrans), which is capable of learning the core semantic and location information from
sentences using the above-mentioned two key insights. Specially, a hierarchical feature fusion module,
Feature Fusion Connection (FFCon), is proposed to merge the semantic features of higher layers with
positional features of lower layers. Thereafter, a Transformer-based XLNet network is used as the
backbone to initially extract the long dependencies from statements. Comprehensive experiments
show that APTrans can achieve leading results on the THUCNews Chinese dataset, AG News, and
TREC-QA English dataset, outperforming most excellent pre-trained models. Furthermore, extended
experiments are carried out on a self-built Chinese dataset theme analysis of teachers’ classroom
corpus. We also provide visualization work, further proving that APTrans has good potential in text
classification work.

Keywords: text classification; feature fusion; T-PTLM; semantic information; deep learning

1. Introduction

Text classification is one of the fundamental tasks in natural language processing
(NLP), which aims to understand the meaning of text expression and determine the cate-
gory of the text. This task has broad application prospects in sentiment analysis, document
topic classification, spam detection, etc., and it is also the basis for other tasks of NLP. In
recent years, the accuracy of this task has been greatly improved due to diverse convolu-
tion strategies [1–4], multitasking learning [5], tree loop information [6], extra-mapping
relation [7], and invariant knowledge information [8]. However, challenges per-sist for
real-world application when complex contexts, colloquial information, and diversified
expressions are prevalent.

1.1. Challenges

Nowadays, deep neural networks, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and graph neural networks, have become common
for NLP tasks and are widely utilized for text classification. The Transformer-based [9]
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pre-training language model [10–12] has achieved remarkable results due to the excellent
ability of multi-head attention mechanisms in mining semantics. However, semantic
and location information cannot be simultaneously captured. A possible reason is that a
complex and deep network may struggle to simultaneously comprehend both aspects of
information in a single learning session because information about location is often lost
when semantic mining is conducted. In some challenging environments (Figure 1), such
as colloquial information, word confusion, and chaotic word positions, the more explicit
words are not adequately expressed due to information confusion, which is devastating for
the existing Transformer-based approach because it requires words with accurate meanings.
Accordingly, utilizing the limited accurate information available in these existing sentences
is crucial for effectively mining semantic and location information, resulting in accurate
predictions. Recently, several studies have delved into pre-trained downstream task models
based on the Transformer architecture and achieved certain effects, mainly by using pre-
trained model parameters to enrich word sense relations in the subsequent networks,
thereby preserving long-dependency semantics that are nearly intact. However, in these
network architectures, most of them do not consider retaining low layers’ text feature
information, among which location information accounts for the majority, which greatly
affects the further improvement in the classification effect. Therefore, the utilization of the
relationship between the position and the meaning of a word is attractive for high-precision
and robust text classification research.
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Figure 1. Existing challenges in text classification, including (a) colloquial information and (b) chaotic
word positions. In these scenarios, the semantics are significantly difficult to understand, resulting in
difficulties for text classification. In (a), the words in bold and underline refer to colloquial expressions,
which can easily cause problems in understanding. The underlined and bold text in (b) indicates two
sentences with different word orders, which makes it difficult to understand the semantics. The bold
words at the bottom of the two figures indicate the main problem that appears in the text that this
figure focuses on, which is also the theme of itself.

1.2. Observations and Insights

We investigate three good clues through careful observation in this study for utilizing
the key location and semantic information of language to promote text classification. First,
key relationships will always exist in a text. Despite the presence of colloquial information
to a certain extent, we can make specific decisions by identifying core semantic information.
For example, even when a sentence contains a substantial amount of colloquial information
(Figure 1a), we can still capture the key meaning of the sentence, such as the words
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“team” and “scoring”. Grabbing special features in the image can achieve a major effect
breakthrough, such as in [13–16]. Specifically, accurate prediction can be achieved despite
the serious interference of colloquial information by utilizing the semantic relationships
of the remaining key words. This important cue is defined as core relevance information.
Second, positional associations are inherent in statements. When a sentence contains
multi-semantic expressions, additional information in the sentence is invariably required
to define the connotation of the term (Figure 2). This issue cannot be resolved solely
through simple pre-training; rather, its necessitates a greater emphasis on grasping the
correlation relationships in a sentence. Therefore, by paying attention to the locational
relationship between the core words and other words in the sentence, it is helpful for the
model to determine the semantic connotation of the sentence and avoid semantic confusion,
thus improving the accuracy of prediction. Third, in our methodological exploration,
we observed that deep-level models often excel at capturing the semantic connotation of
words. However, these models seemingly overlook the position information of sentences,
which could greatly affect the mining of the internal correlation relationships of statements.
Although each word in a sentence can be easily understood, the different order of the
words always affects the overall semantic understanding of the method (Figure 1b). The
three clues we found point to positional and semantic information in statements that are
necessary for efficient text classification in real-word applications.
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Figure 2. An illustration of the influence of multiple semantic expressions. The different colors in the
figure represent the relationship between word groups in the text and should also be the focus of
the attention mechanism. The highlighted word ‘bank’ in bold and italic forms different semantic
associations with different highlighted words in two sentences. The different lexical relationships
make the word ‘bank’ express different meanings.

We reveal two insights about text classification, namely, key information relationship
and word group inline relationship, based on the three clues found. We believe that these
two new insights about location and semantic information are enlightening for further
efficient text classification applications. The two key insights are outlined below:

Key insight I: key information relationship. Several key relationships exist within a
particular piece of text (a statement). The few key words in a statement and the relationships
between them are defined as key information relationships, which are crucial for prediction
and are more powerful and reliable than patterns that solely focus on overall semantics.
Figure 1a shows that the relationship between the core words in the text has rich information
that affects the semantic understanding. These core words constitute the decisive factor of
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prediction. The predictive harm caused by irregular expression can be greatly reduced on
the basis of critical minority relationship learning.

Key insight II: word group inline relationship. Given that a sentence consists of many
word groups, a relationship exists with a certain information between them. This property
is defined as a word group inline relationship, which helps the model to determine the
connotation of multi-semantic words and avoid the situation of word meaning confusion.
Figure 2 shows that attention is distributed in two regions before and after, allowing for
repeated mining of correlations between the two to gather more inline information for
prediction. This type of relationship is often easier to be mined by the Transformer-based
architecture due to its particularity. However, how to better use the characteristics of this
approach to further improve efficiency remains an urgent problem to be addressed.

Given the above-mentioned key insights on statements, the question is how to design
a model that can take advantage of such heuristic ideas. Traditional deep networks cannot
solve this problem. By contrast, the Transformer is more effective in addressing this issue.
Recently, the pre-training model of the Transformer has become a popular research topic
in NLP. The Transformer has shown strong and extraordinary capabilities through the
preliminary exploration of the pre-training parameters and further optimization to effi-
ciently complete tasks. Therefore, T-PTLM should be used in the mining of key information
relations, and the learned feature marks can better identify the word group inline relations.
Although pre-trained models can play a certain role, it is obviously not a suitable scheme
to rely solely on pre-trained models in the field of text classification, because they do not
fully reflect the category characteristics of word meanings in the text classification process.
Hence, it is urgent and necessary to use the two novel clues proposed by us to develop a
proprietary text classification model.

1.3. Contributions

Based on the two key insights and T-PTLM, this study aims to achieve better text
classification results by solving the problem that deep networks cannot fully extract location
information from text expression and the feature fusion trouble of text location information
and semantic information. Accordingly, this study proposes APTrans, a method designed
to discover and utilize the internal semantic relationships and key information relationships
in the text through the Transformer architecture. This method can discover the correlation
between tokens by using the sub-attention method, and the core semantic features will
be strengthened. Attention information learned about features can be visualized through
vector similarity. Specifically, we have constructed a hierarchical feature extraction archi-
tecture. The backbone network extracts the associated information in the text and passes
it to subsequent modules for processing. APTrans will fuse the semantic and positional
information in the text to obtain the comprehensive representation. In summary, we have
made the following contributions:

• Three clues are obtained in the survey statements, including core relevance infor-
mation, semantic location associations, and the mining characteristics of deep and
shallow networks for different information. The core correlation information and
semantic location associations confirm that the existence of key words in the text
and the relative location information have an important impact on the effect of the
final classifier. The other remaining clue ensures that we consider the lower layers’
information as important as the high layers’ information during the development
of the model. Based on this, we propose a discriminant method, APTrans, for text
classification to leverage our findings and address challenging environments.

• We reveal two key insights about sentences, namely, the key information relationship
and word group inline relationship. In the proposed hierarchical deeper attention
module, we improve the procedural computing mechanism of multi-head attention,
enhancing the ability to extract the relationship between words by parallelizing at-
tention computing processing. Moreover, the attention calculation of the text vector
output from the backbone network is carried out again to ensure that the model can
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fully mine the key lexical semantic and location information in the text. The FFCon
module transmits information through hierarchical iteration and shrinks text features
through MLP, aiming to complete the fusion of multi-level semantic and positional
information. Based on this, APTrans is able to solve the challenges caused by collo-
quial words or multi-semantic texts by mining and integrating the relative position
information of texts, so as to achieve better classification results.

• APTrans has been shown to be efficiently applied to text classification in real NLP
tasks through a large number of experiments and to perform comparisons on multiple
text classification benchmark datasets. In addition, we demonstrate through modular
ablation experiments that the two proposed modules, the hierarchical deeper attention
module and FFCon module, have an important impact on the overall effect of the
model. Furthermore, we conducted visualization experiments to prove that the model
effectively leverages locational information for prediction.

The rest of this article is structured as follows: Section 2 reviews some related work of
text classification. Section 3 describes the proposed method APTrans, which has a feature
mapping backbone, a hierarchical deeper attention module, a feature transfer fusion FFCon
module, and a compressed connection classification head module. Section 4 presents the
detailed experiments and results. Section 5 concludes our work.

2. Related Work
2.1. Problem Formulation

We summarize the text classification task as follows: Given a piece of text x and its
corresponding category label y, the goal is to discover a mapping function f that makes

the estimated label
^
y = f (x) as identical as possible to the actual label. Neural network

technology is used to design the mapping function f , which is mainly about the adjustment
of the network architecture. At present, numerous network architectures have emerged for
text classification, such as RNNs, GCNs, and Transformer. After the network is created, the
parameters in the mapping function f are typically obtained by adjusting the prediction

error between the label
^
y and the true label y.

2.2. Model Based on Traditional Methods

At present, in text classification tasks, deep learning technologies have predomi-
nantly yielded good results. Traditional deep learning technologies are mainly divided
into methods based on CNNs, RNNs, attention mechanisms, and other text classification
models. TextCNN [1] is the earliest text classification method with CNNs. The concept of
multi-channel convolution proposed by Yoon Kim uses pre-trained word vectors word2vec
and multi-channel embedding technology to achieve certain results in public datasets.
Johnson et al. [2] proposed DPCNN for text classification. They obtained longer semantic
information through equal-length convolution and pooling and deepened the number of
convolution layers to achieve significant results. To validate the effectiveness of convolu-
tional layers for text semantic understanding, Le et al. [3] input character-level text vectors
and word-level statement vectors into shallow CNNs and DenseNet. They found that the
effectiveness is improved when paired with deep convolutional networks. Meanwhile,
word-level statement vectors are more suitable for shallow convolutional networks. How-
ever, the biggest problem faced by CNNs is that they cannot fully extract the dependencies
between longer texts. The research on RNNs has addressed the problem of long-statement
dependence to a certain degree, and the development of LSTM [17] and GRU [18] has
gradually increased the number of RNNs used for text classification. Liu et al. [5] designed
a multi-task LSTM model for text classification with small amounts of data. Tai et al. [6]
studied tree networks and designed the Tree-LSTM architecture. They verified through
experiments on sentiment classification datasets that the tree structure is superior to the
sequential LSTM structure to a certain extent. In [19], Zhou et al. simultaneously extracted
Chinese character-level vectors and word-level vector representations, built the C-BLSTM



Appl. Sci. 2024, 14, 4863 6 of 24

model, and achieved good results in short-text classification. She and Zhang [20] com-
prehensively used a CNN and RNN and developed a CNN-BiLSTM architecture based
on skip-gram technology, which achieved certain results in text classification tasks. Khan
et al. [21] also combined the advantages of a CNN and LSTM to build a network archi-
tecture capable of extracting long-term dependencies and preserving local information.
Combined with machine learning classifiers, they achieved certain results in the task of
classifying special language emotions. In [22], the bidirectional GRU mechanism is used
for convolution layer association to adapt to corpus and feature vocabulary, thus achieving
better results in emotion prediction tasks. Text classification methods based on attention
mechanisms have become the focus of numerous scholars’ research to further explore the
dependencies between texts. A hierarchical attention architecture HAN was developed
by [23], which divided documents into the sentence level and word level to calculate
attention and construct different features, completing the document classification task.
Zhou et al. [24] constructed a hybrid attention network HANs, simultaneously utilizing
character-level and word-level attention to obtain feature vectors, and made achievements
in Chinese short-text classification. In [25], Jang et al. used Bi-LSTM and a convolutional
neural network to construct an additional attention mechanism, and this mixed attention
mechanism performed well in mining text semantic information and achieved good gener-
alization effects on datasets. Zheng et al. [26] built a semantic representation network with
multi-attention mechanisms, which showed good effects on emotion classification tasks
by mining semantic information at different levels. Similarly, the attention mechanism
enables [27] us to achieve significant performance improvements in feature perception,
thus achieving better discriminant ability. Apart from these methods, numerous other
algorithms have attracted much attention from researchers. In [28], Yao et al. first pro-
posed the graph convolutional network for text classification. The text classification work
was converted into a graph classification work without relying on external knowledge
by constructing a network graph between the word level and the document level. The
model achieved good classification results. Zhou et al. [29] proposed a new model with a
multi-fragment dynamic semantic technique based on a spatiotemporal graph convolution
network and achieved the optimization of the method. The experimental results exceeded
most of the baseline models and achieved good results. Yang et al. [30] proposed a new
method HGAT based on the heterogeneous graph of documents, topics, and entities and
set up a dual-attention structure to determine the significance of the different types of
nodes to achieve classification. Reference [31] constructed a capsule network to maximize
the utilization of the features in the invariant knowledge space for complete classification.
They designed a type of iterative and adaptive cross-text classification strategy, which fully
improved the computational efficiency. However, most of these methods rarely use the
Transformer [9], resulting in a lack of mining of text word-level relationship dependencies
in the network and poor semantic understanding.

2.3. T-PTLM Technology

The proposal of Transformer [9] has greatly promoted the development of NLP tech-
nology. The Transformer-based pre-trained language model (T-PTLM) combines the Trans-
former with self-supervised learning (SSL) [32] technology to extremely accelerate the de-
velopment of NLP. Transferring the features of text representation from large-scale corpora
to downstream tasks has achieved excellent results in understanding and generating tasks.

Peters et al. [33] first proposed EMLO for generating pre-trained word vectors. EMLO
used a bidirectional LSTM model combined with contextual context to generate the rep-
resentation of each word for downstream tasks, which triggered an exploration of the
pre-training methods in NLP. With the introduction of the Transformer in the field of NLG,
Radford et al. [34] developed a generative pre-training model named GPT based on the
decoder architecture. This model realized the pre-train–fine-tune framework and was
further optimized with the introduction of Prompt engineering technology [35], GPT-2 [36],
and GPT-3 [37]. In the realm of NLU, Devlin et al. [10] introduced the BERT method
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based on the encoder mechanism, which predicts contextual information using the mask
mechanism to complete semantic extraction and achieve multi-directional technology to
predict the current word, which is difficult to achieve in general semantic models. Based
on the Bert encoder, [38] constructs a classifier to recognize emotion information in chat
text and achieves good effect in terms of emotion prediction through the enhanced text
standardization layer to recognize the original semantics. In [12], Yang et al. proposed a
model XLNet that can extract bidirectional semantic features. They avoided the masking
mechanism in the BERT model by using auto-regressive (AR) instead of auto-encoding (AE)
technology. The dual-stream attention method is introduced to address the inconsistent
data between pre-training and fine-tuning, and the relative position encoding and segment
loop mechanism in Transformer-XL [39] are used for reference to achieve target perception
and attention calculation, breaking a number of records in NLP tasks. The performance
greatly exceeds that of BERT. In this study, we observe the key information relationship and
word group inline relationship that exist in the text, which are difficult to explore by using
traditional networks. Accordingly, we decide to use the Transformer that is more suitable
for exploring long dependencies between words. The pre-trained XLNet architecture in
the Transformer’s library [40] is utilized as the backbone of our model to further mine
fine-grained semantic association information in the text for text classification.

2.4. Summary of Previous Work

In general, in previous studies on text classification, the most widely used methods
are traditional deep learning networks, which often cannot achieve sufficient and ideal
classification effects. With the emergence and development of the Transformer [9], research
on optimizing downstream classification tasks based on pre-trained models has become
popular in recent years. However, these studies tend to focus on capturing the text se-
mantic vector of the last layer of the backbone, and ignore the feature information of low
layers’ feature computation, which is considered to have a significant impact on the model
classification effect in our previous analysis. These features contain more relative position
information and some semantic information, which is helpful to solve the semantic confu-
sion in the process of classification. In this study, we mainly propose a classification method
for the contraction and fusion of text hierarchical information, APTrans, which treats the
features at the lower layers equally with the features at the higher layers, ensuring that the
proposed method can integrate the text location information and effectively distinguish
semantic confusion problems so as to achieve better classification performance.

3. Proposed Method
3.1. Architecture Overview

APTrans is a hierarchical attention text semantic analysis method based on feature
fusion. The details of our model are shown in Figure 3. The architecture mainly con-
tains four parts: feature mapping backbone, hierarchical deeper attention module, FFCon
module, and compressed connection classification head. Specifically, the feature mapping
backbone is used to extract fine-grained and multi-dimensional information in sentences.
In this study, we mainly adopt XLNet [12] as the backbone network because it efficiently
performs in exploring the relationships between long texts in semantic understanding
problems using a masking mechanism and a permutation and combination semantic analy-
sis scheme. Moreover, we made modifications by introducing a masking mechanism in
the input mapping layer to enhance the effectiveness of semantic extraction. The second
part is the hierarchical deeper attention module, which is used for extracting the deep
and multi-scale correlation information of each layer of text mapping vectors. The further
processing and extraction of this module can effectively deepen the understanding of
semantic information in the low layers’ network, and avoid the semantic confusion leading
to the poor classification effect. The third part is the FFCon module, which transfers and
integrates the fine-grained features of the text from the higher layers to the lower layers,
and effectively completes the fusion of the semantic features and the location information.
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This ensures that the proposed method attaches equal importance to the two parts of the
information and facilitates the improvement in the classification performance. The fourth
part is the compression connection classification header. The feature information after
pooling is connected and used as text extraction features for the final classification.
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ding block before entering the T-PTLM backbone. Second, T-PTLM will hierarchically output text
vectors to the hierarchical deeper attention module for further mining of long-distance dependencies.
The matrices of different colors in this process in the figure represent the feature relationships mined
from the text at different levels. Thereafter, the vector is layered into the connection block, which is
mainly composed of the FFCon module to complete the fusion of high-level semantics and low-level
location information. The compression connection module is then inputted to complete the pooling
of semantic vectors. Finally, the classification header predicts the resulting text category.

3.2. Feature Mapping Module

The feature mapping module processes the statement and generates the feature vector.
This process can be divided into three stages: preliminary loading of statements into index
vectors, word vector mapping, and traversing the Transformer block. After processing, the
original text sentences are transformed into specific vectors for computation.

Phase I: initial load index vector. At this stage, the input text is segmented according
to the length of the sentence and projected into a 1D vector. First, the input text sentence
x ∈ RSeq will be segmented by the word segmenter according to unit words and will be
segmented according to the sentence length or supplementary sentences to generate new
sentences. The segmentation process is as follows:

x′= Cut(x), x′ ∈ RSeq′ , (1)

where x′ represents the new sentence after segmentation or supplementation, and Seq′

denotes the length of the new sentence. This value is artificially determined. Thereafter,
a vocabulary index 1D vector is generated based on each word. An attention mask index
1D vector is also generated, which will map each word wi, i ∈ 1,2,3, · · · , Seq′ into a specific
vector. The index vector of the text is expressed as v0 ∈ RSeq′ , which is mainly composed
of the index of the vocabulary. If one word does not appear in the vocabulary, then its
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index is replaced by the index of [UnK]. Each attention mask index vector of a sentence
is represented as m0 ∈ RSeq′ . This vector mainly consists of two numbers, 0 and 1, where
1 indicates that the word is a supplementary word and should not be considered for
attention calculation, while 0 means that the word is an original word and attention
calculation should be performed.

Phase II: vector mapping. Given that the Transformer layer requires a certain semantic
vector input, at this stage, the index vector obtained through processing is used to load the
2D feature vector of each word. Specifically, the text statement is mapped into an exact
semantic vector through a dictionary. The projection formula is as follows:

ci= E(vi), i ∈ 1,2,3, · · · , n, (2)

p0 = [c1, c2, c3, · · · , cn], (3)

where ci ∈ RE represents the vector of each word after projection; p0 ∈ RSeq′ × E represents
the matrix containing the word vector, that is, the semantic matrix of the statement; Seq′

represents the sentence length; and E represents the dimension of the vector after mapping
each word. This process can be accomplished by pre-training a dictionary of word vectors.

Phase III: traverse transformer block. The semantic feature vector will go through
M Transformer blocks. Each Transformer block will go through dual-stream attention
calculations by using the attention mask index vector of the sentence and finally generate
an implicit semantic vector. The formula is as follows:

ql
0 = BinaryAttention(p0, m0), l ∈ 0,1,2, · · · , M, (4)

where BinaryAttention() represents the attention calculation mechanism in the backbone
network architecture, p0 represents the semantic feature vector of the text statement, m0

represents the mask index vector generated in the first stage, and ql
0 ∈ RSeq′ × E represents

the implicit semantic vector generated after the text with sequence number 0 passes through
the l th Transformer layer. In summary, there will be a total of M Transformer modules,
generating M layers of implicit semantic vectors. Finally, the obtained multilayer implicit
semantic vectors are hierarchically inputted to the next module to continue the feature
extraction work.

3.3. Hierarchical Deeper Attention Module

The semantic association information extracted at this time is often insufficient to
represent the multi-scale meaning of the text at this stage due to the different number of
attention processing layers of these implicit semantic vectors mined by backbone attention
computing. The hierarchical deeper attention module is used to utilize lower-level semantic
representations and further mine the associated information in the semantics.

Assuming the presence of M stages in the backbone network architecture, and that
each stage will output an implicit semantic representation vector ql

i ,l ∈ 0,1,2,· · · ,M,
i ∈ 0,1,2, · · · , N, represents the implicit semantic representation vector obtained after the
ith paragraph of text passes through the lth stage. This semantic vector needs to be further
processed. The process is divided into n same stages to mine semantic information. The
detailed calculation steps of each stage are as follows:

First, the semantic vector processed by each layer should go through the attention
calculation again. The process is expressed as follows:

Q0
act = ql

i ,
Qt = Attention

(
Q0

act
)
, t ∈ 0, 1, 2, · · · , n,

Attention
(

ql
i

)
= f

(
Q = ql

i , K = ql
i , V = ql

i

)
,

f (Q, K, V) = So f tmax
(

QKT√
dk

)
V,

(5)
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where Qt ∈ RSeq′×E represents the semantic vector obtained by the attention calculation
processing of the tth stage, and Qt

act represents the final output after activating the t th
stage. Q0

act is initialized as the implicit semantic vector hierarchically outputted by the
backbone network. The Attention() function is the same as the attention mechanism
in the Transformer. The multi-head attention calculation implemented in this network
architecture is a parallel computing architecture and a non-serial computing mode, ensuring
the improvement in model calculation efficiency. The normalized exponential function
softmax() is an activation function:

Softmax(zi) =
ezi

∑C
c=1 ezc

, (6)

where zi is the result of the ith node’s calculation, while C denotes the number of output
nodes, namely, the quantity of categories for classification.

After the attention calculation is completed, activation processing is performed. This
process can be expressed as follows:

Qt
act = tanh

(
Qt), (7)

where tanh represents the hyperbolic tangent function:

tanh(z) =
ez − e−z

ez + e−z . (8)

The model will retain the initial mapped text vector p0 ∈ RSeq′ × E as an input into the
deep attention calculation. In the last stage, the model will no longer perform activation
processing and only perform attention calculations. After passing through the hierarchical
deeper attention module, the text representation vector Qn ∈ RSeq′ × E will be obtained.
We can obtain multi-scale and multi-dimensional fine-grained semantic information by
further mining the hierarchical implicit semantic information in the backbone network,
which facilitates subsequent models to understand text semantics.

3.4. FFCon Module

Using only the latent semantic vectors of the last layer of the backbone often ignores
part of the coarse-grained word-level semantic information, causing the model’s effect
on text understanding to be affected. However, relying solely on hierarchical attention
features may lead to certain problems. The lower-layer network only retains better-position
information, but the text’s semantic information has a coarser granularity. Therefore,
conveying semantic information from higher to lower layers or completing the fusion of
locational information and semantic information will become a crucial aspect.

The feature pyramid network [41] is a typical feature fusion network, which better
fuses the high- and low-resolution information of the image to achieve good recognition
results. We propose the FFCon module to effectively reduce the problem of coarse-grained
semantic analysis in the lower layers of the backbone network during the semantic analysis
process and to effectively integrate location information.

Assuming that we have obtained the text representation vector Qn ∈ RSeq′ × E cal-
culated by the hierarchical deeper attention module, the process of inputting the FFCon
module is shown in Figure 4.
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First, after the connection block receives two layers of text representation input, the
calculation process can be expressed as follows:

An = Qn, (9)

At−1 = LN
(

Qt−1 + MLP
(

At)), t ∈ 0,1,2, · · · , n, (10)

where Qt−1 represents the low-level semantic vector, At represents the high-level semantic
vector after passing through the connection block, and At−1 ∈ RSeq′×E denotes the result
of the t − 1th layer after passing through the connection block, which is also the semantic
vector passed down to the lower layer. An = Qn means that the highest-level semantic
vector will not be modified and will continue to be retained and transmit information to the
lower levels. LN indicates layer normalization. MLP refers to multiple fully connected feed-
forward networks, consisting of two linear transformations, including the Mish activation
function [42] in the middle, which can be expressed as follows:

MLP(x) = Mish(x·W1 + b1)W2 + b2, (11)

Mish (z) = x × tanh( ln(1 + ex)), (12)

where W1 and W2 are linear projections, and b1 and b2 represent the deviations in the
fully connected neural network. Different parameters are used between layers. The inner
layer dimension is larger than the input and output dimensions. The semantic information
is mapped to a high-dimensional space and then to a low-dimensional space, extracting
deeper layer features. This processing method, similar to the computing mechanism in
the Transformer [9], makes the core information of the statement in the high layers’ fusion
features more explicit after shrinking and Mish activation, and enlarges the important
influence factor, which is conducive to subsequent feature fusion and classification. In this
network, the input and output dimensions are as follows: dmodel = 768, and the dimension
of the inner layer is dff = 768 × 3. Therefore, our model can learn fine-grained and
comprehensive representations in the text by further shrinking and integrating high-level
semantic information into lower-level features.

3.5. Compression Connection Module

Compression connection integrates semantic information as features extracted from the
text for final classification. After receiving the semantic vector At ∈ RSeq′×E, t ∈ 0,1,2, · · · , n
from the FFCon module, mean pooling is first utilized on these semantic vectors for
dimensionality reduction. We can denote the process as follows:

At
pooling = φ

(
At), (13)
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where φ represents the mean pooling operation, and At
pooling ∈ RE represents the overall

semantic characteristics of the text after pooling. Thereafter, features from all stages are
concatenated into an aggregated semantic vector. The calculation formula is as follows:

A =
[

A1
pooling, A2

pooling, · · ·, An
pooling

]
, (14)

where A represents the aggregated feature. Thereafter, the feature is fed to the classification

head to produce the prediction result
^
y. The entire process can be summarized as follows:

^
y = A·W + b, (15)

where A represents the aggregated feature, W is the linear projection, and b represents the
bias in the linear neural network.

In this work, a certain amount of text sentences X = {x1, x2, x3, · · · , xr} and their
true category labels Y =

{
y1, y2, y3, · · · , yr

}
are determined for training. The objective is

to discover the best parameters θ through the maximum likelihood estimation to enable
the model to have outstanding classification performance. Meanwhile, the CrossEntropy
function is utilized to calculate similarity between the predicted distribution and the actual
label. The overall loss computing process is as follows:

Loss = −
r

∑
t=1

yi· log
(

^
y t

)
+ ε∥θ∥2, (16)

where ε refers to the parameter of L2 regularization, which has a great contribution to
mitigate overfitting. At last, the BERTAdam optimizer is employed to minimize the target
loss function.

4. Experimental Results

The platform environment for our experiments is the Windows 11 64-bit system,
equipped with a Nvidia RTX A40 GPU (Nvidia, Santa Clara, CA, USA), 64 GB running
memory, Cuda 11.3 parallel computing platform, and a PyTorch 1.13.1 framework for deep
learning. Model training is implemented in Python 3.11.

4.1. General Setting
4.1.1. Datasets

Three classic datasets (THUCNews, AG News, and TREC-QA) are introduced to test
the effects of APTrans. Both THUCNews and AG News datasets belong to news datasets.
THUCNews is a Chinese news dataset and AG News is an English news dataset. The
distribution of data in the two datasets is uniform and there is no imbalance problem.
The reason for choosing these two datasets is that there is a long textual relationship in
the news text, and there are some non-written expressions such as colloquial expressions.
Experiments on these two datasets can verify the learning ability of APTrans for long-
text information and determine whether our method can capture key lexical location
information in the text, so as to achieve a good classification effect. The TREC-QA dataset
belongs to a short-text dataset in Q&A research. The problem of uneven distribution of
category data exists in this dataset, but the typical feature of samples in this dataset is that
there are always core words in each sample to summarize the semantic information of the
sample. Therefore, we used this dataset for training and testing to judge whether APTrans
has the capacity for short-text classification and whether it can achieve high-performance
classification by grasping core words in short texts under the condition of uneven data.
More details about these three datasets are shown below:

THUCNews [43]: A tremendous Chinese text classification dataset contains approx-
imately 840,000 news files and is divided into 14 categories. This dataset was created
by screening the historical data of Sina News RSS subscriptions from 2005 to 2011. We
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used stratified random sampling to extract the dataset utilized in our work. The training
dataset comprises 40,000 texts, the validation dataset consists of 8000 texts, and the test
dataset exhibits 2000 texts, covering a total of 10 categories, including sports, entertainment,
property, and education. Chinese sentences of varying lengths can be found in the corpus,
and the semantic complexity of the Chinese corpus is high, bringing a certain degree of
difficulty to the processing of text classification.

AG News [44]: AG News (AG’s News Corpus) is a news dataset that contains four
categories for topic classification. Each category contains a total of 30,000 training samples
and 1900 test samples. This dataset was originally derived from a public corpus database
of AG’s articles. Moreover, this dataset contains titles and content of news, resulting in
several irregular colloquial expressions, making it difficult for the model to achieve accurate
semantic understanding and classification.

TREC-QA [45]: This dataset is a question dataset that contains approximately 6000 com-
mon English questions and is widely used in Q&A research. This dataset is mainly divided
into two versions: TREC-6 and TREC-50, both of which have a training dataset with
5452 questions and a test dataset with 500 questions. We used TREC-6 in this study, which
contains six categories of coarse labels, including people, locations, digital information,
and other issues. Most of these texts are short texts that may pose certain challenges to the
semantic analysis capabilities of the model.

4.1.2. Evaluation Metrics

The commonly used text classification evaluation metric is the accuracy of the test
dataset. The classification accuracy measure can be written as follows:

Accuracy =
1
q

q

∑
i=1

J
(

yi,
^
yi

)
, (17)

where J() refers to the discriminant function,
^
yi denotes the label of the ith statement

predicted by the model, and yi represents the actual label of the ith statement. The formula
of the discriminant function is as follows:

J(a, b) =
{

0, if a = b,
1, if a ̸= b.

(18)

4.1.3. Compared Methods

We introduced several classic Transformer-based methods for comparative experi-
ments to verify the effectiveness of our model APTrans. The following mainly introduces
some representative pre-training model methods. In specific experiments, we also refer-
enced models with better performance on corresponding datasets, so as to enrich experi-
mental data, ensure the fairness of comparison experiments, and prove the scientificity and
effectiveness of our method.

BART [46]: Lewis et al. proposed a special text generation model. Specifically, this
model combines the characteristics of BERT and GPT-2 [36], adds random noise to the
text to destroy the text, and allows the model to self-learn how to restore the original text,
building a powerful generative architecture that efficiently performs in NLU.

ALBERT [47]: A simple but effective network architecture, this model greatly reduces
the number of parameters required by proposing two mechanisms, factorized embedding
parameterization and crosslayer parameter sharing. Using a self-built self-supervised loss
function that focuses on the consistency between sentences allows the model to have better
downstream task performance.

RoBERTa [11]: This model achieves better downstream task performance by im-
proving the pre-training research of BERT, removing the next prediction loss, applying a
dynamic mask mechanism, and increasing the training time and sequences.
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ERNIE [48]: Sun et al. integrated AR and AE networks, used phrase-based and
entity-based masking mechanisms, adopted incremental training and continual learning
mechanisms, and expanded the training scale. Therefore, this model achieves better
semantic understanding and efficiently performs text classification on Chinese datasets.

ELECTRA [49]: Clark et al. proposed a replacement token detection study. Specifically,
the input is destroyed by replacing the text with the generator, and the discriminative model
is trained to determine whether a token has been replaced in the text, thereby achieving
better results than the masking language modeling (MLM) pre-training method.

MPNet [50]: They proposed a novel method for training, which combines the advan-
tages of BERT and XLNet, utilized the dependency between the predicted tags through
permutation language modeling, and introduced auxiliary location information as an input,
which reduces position difference during the model training process. The effect is better
than MLM and PLM.

4.2. Implementation Details

In this study, we completed the experiment according to the following details and steps.
In the model architecture, first of all, due to the limitations of the experimental conditions,
the backbone network we adopted contains 12 layers of attention parameters from shallow
to deep. Therefore, combined with the initial embedding semantic vector, a total of 13 layers
of semantic vector information will participate in the subsequent calculation. Secondly,
in the hierarchical deepening attention module, the parallel attention computing module
has three layers. It is worth mentioning that when the last layer completes the attention
computing, the module does not activate the semantic value again, so as to retain the
semantic information mined. Finally, the FFCon module transmits a total of 12 layers of
semantics and locational information from higher to lower layers, completes feature fusion
through effective semantic reduction MLPs, and then participates in classification through
pooling connections. The initial weights (in this study, the addresses of the pre-training
parameters loaded by the backbone network in all experiments are as follows: English
pre-training parameter address: https://huggingface.co/xlnet/xlnet-base-cased, accessed
on 30 May 2024; Chinese pre-training parameter address: https://huggingface.co/hfl/
chinese-xlnet-base, accessed on 30 May 2024) of the backbone are loaded with the officially
trained English parameters of XLNet [12] and the Chinese parameters trained by [51]
based on a Wikipedia dump [10]. The remaining neural network parameters are randomly
initialized for training.

In terms of training parameter setting, first, the statements entered into the model are
cropped to a specified and uniform size to fairly compare the effects. The clipped sentence
size hyperparameter is set comprehensively after the maximum sentence length statistics
and average sentence length calculation of the dataset to ensure that different sentence
length parameters are set for the long-text dataset and the short-text dataset to make the
experimental model understand the text semantics scientifically. We trained this model
for 100 epochs by using the BERTAdam optimizer with a weight decay of 0.001. For the
training process on long-text datasets, the batch size was set as 16, the learning rate α was
0.00005, and the sentence length was arranged as 512. In terms of short-text training, the
batch size was 64, α was 5 × 10−5, and the sentence length was 128. In particular, when
the effect does not improve, the learning rate will drop tenfold, to as low as 5 × 10−6 on
short-text datasets and as low as 5 × 10−7 on long-text datasets. This is known as the
learning rate multiplier decay strategy. Furthermore, we used an early stopping strategy
for all models to avoid model overfitting. The early stop strategy means that when the
learning rate reaches the minimum and the model effect on the test set is not improved after
a long time of training (in our experiments, we set the time to 500 steps, and 1 step is equal
to 10 batches), the program will automatically stop the training process and retain the best
model training parameters. In the experiment, in order to ensure the comparability of the
baseline model and our proposed method, we used the same hyperparameter settings and
training methods for all models on the same dataset. In terms of the selection of specific

https://huggingface.co/xlnet/xlnet-base-cased
https://huggingface.co/hfl/chinese-xlnet-base
https://huggingface.co/hfl/chinese-xlnet-base
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hyperparameters in the experiment, we set the fixed statement length hyperparameters
after several attempts based on the ability of the GPU we have. Regarding the choice of
learning rate and weight decay, we determined different hyperparameters during short-
and long-text training through many experiments. During the experiments, we tried
different learning rates, such as 5 × 10−3, 5 × 10−4, and 5 × 10−5, and we also tried
different weight decay rates, such as 0.001, 0.01, and 0.1. However, we found that these two
hyperparameters had little impact on the final model effect due to the existence of the early
stop strategy and the learning rate multiplier decay strategy; so, we chose the value with a
higher efficiency for the learning rate and the value suggested in the official document for
weight decay. Therefore, the set hyperparameters are reasonable. All experiments were
performed using the PyTorch toolbox and an Nvidia RTX A40 GPU.

4.3. Experiment Results and Analysis

In our work, in order to ensure the fairness of the comparison experiment, all of the
comparison methods we used were guaranteed to have the same model architecture and
we set the same architectural parameters as those in the original literature. In addition, we
fine-tuned our selected dataset locally based on a baseline model loaded with complete
pre-trained parameters from https://huggingface.co/, accessed on 30 May 2024, to ensure
the best results on the dataset. At the same time, the method compared by the model has
advanced significance in the current development process of text classification. For example,
on the Chinese dataset, the effect of ERNIE is basically equivalent to that of the best model;
on the English datasets, XLNet and BART can approximate the best generalization results
in classification tasks. Finally, for all of the methods, we adopted the scheme of five equal
weights averaged and took the average accuracy obtained through five experiments as
the final classification effect of the model, thus avoiding the influence of randomization
parameters. Therefore, this ensures that the experimental data are real and effective and
shows that the optimization effect of the proposed module is clear. In the following, we
compare our approach to these excellent models and analyze the performance of different
approaches. The top performing values are shown in bold, and those following the top
values by the underlining.

4.3.1. Results on the THUCNews Dataset

We used several advanced pre-training model methods in NLP to conduct experiments
on the THUCNews dataset. The detailed comparison results are shown in Table 1. All of
the pre-training models on display are based on the Transformer, and all of them load the
relevant Chinese pre-training parameters. The training process maintains the same strategy
(e.g., learning rate decay) to ensure the fairness of comparison. All methods are based on the
Transformer architecture, but the models show diverse effects on the task due to the different
architectures of the models themselves. Although T-PTLM [32] has iterated numerous
methods, BERT [10] still achieves good results on the training set, which may be due to the
reinforcement of the pre-training parameters. ERNIE [48], as a Chinese pre-training method,
also achieves good results on the task because it combines different training strategies,
enabling the model to continuously expand and adjust parameters. XLNet [12] achieves
impressive performance on the task, indicating that two-stream attention is effective enough.
In comparison with these methods, APTrans has achieved the best results on this task, with
the best accuracy on the validation and test datasets (Dev: 98.55%, Test: 97.89%). This
result indicates that our method successfully uses the key information relationship and the
inline relationship of word groups in the text, realizes the fusion of location information
and semantics, and achieves good results.

https://huggingface.co/
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Table 1. A performance comparison among the APTrans approach and Transformer-based methods
on the THUCNews dataset.

Methods Pad Size Dev Acc (%) Test Acc (%)

BigBird [52]

512

96.85 95.73
ALBERT [47] 96.95 96.64
DeBERTa [53] 97.15 96.33
ELECTRA [49] 97.45 97.32

GPT-2 [36] 97.80 97.51
BART [46] 97.85 97.10

RoBERTa [11] 98.00 97.11
BERT [10] 98.30 97.67

ERNIE [48] 98.30 97.15
XLNet [12] 98.45 97.67

APTrans (ours) 98.55 97.89
The top performing values are shown in bold, and those following the top values by the underlining.

4.3.2. Results on the AG News Dataset

We introduced MPNet [50] and other methods on the English dataset to continue
the experiments. APTrans was also compared with these advanced methods on the AG
News dataset following the same principle of training rules to maintain fairness. Table 2
shows the results of the comparison. On this long-text dataset, our method still achieves
advanced results, reaching an accuracy of 94.68%. SHGCN [54] connects the relationships
among the text, entities, and words to complete the information transfer among each
other by building a heterogeneous graph convolutional network, which also achieved
results on this dataset. However, since no pre-training model was introduced, the model
could still be further improved and developed. MPNet achieves good results on this news
dataset by integrating training strategies and adding auxiliary location information. Our
approach goes a step further in harnessing the diversity of information in the text, with
location information proven to improve accuracy. The ability of the T-PTLM approach
to achieve expressive performance compared with traditional models is primarily due to
the Transformer’s ability to leverage long-term dependent semantic relationships hidden
between all patches. Overall, APTrans performs most efficiently among the methods listed
in Table 2. Our approach improved the accuracy by 0.11% compared with the pre-trained
baseline architecture. This result shows that our model effectively extracts and fuses a small
number of core association relationships and semantic locational association representations
in the text.

Table 2. A comparison on the AG News dataset between APTrans and other typical methods.

Methods Pad Size Acc (%)

SHGCN [54] None 88.38

ERNIE [48]

512

90.79
DeBERTa [53] 91.38
ALBERT [47] 93.13
MPNet [50] 93.22
GPT-2 [36] 94.20

ELECTRA [49] 94.28
RoBERTa [11] 94.42

XLNet [12] 94.51
BERT [10] 94.57

APTrans (ours) 94.68
The top performing values are shown in bold, and those following the top values by the underlining.
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4.3.3. Results on the TREC-6 Dataset

We conducted a comparative experiment on the TREC-6 dataset to verify whether
our proposed method is equally valid on short-text datasets. Under consistent training
rules, the obtained results of the experiments are shown in Table 3. The quantitative
consequence shows that APTrans still achieves the best results in short-text classification.
The implementation data show that in several methods, such as BERT [10], short text
has a great influence on the prediction effect of the model. After the introduction of the
replacement token detection training strategy, ELECTRA [49] achieves a higher prediction
level. BART [46] creates a new generative architecture by adding random noise, which also
has excellent performance. This notion indicates that the random noise fluctuation of the
text is also conducive to the improvement in the results. In addition, our APTrans can fully
mine the text location information when the text is short and understand the dependency of
these statements. Our model achieved a 0.6% improvement compared with the traditional
baseline methods. It shows that our model can fully extract semantic information from a
corpus and integrate location information, understand semantics, and be competent for
short-text classification.

Table 3. Comparative results with some classical methods on TREC-6 dataset.

Methods Pad Size Acc (%)

ERNIE [48]

128

86.20
ALBERT [47] 95.80

GPT-2 [36] 96.40
DeBERTa [53] 96.80

BERT [10] 97.00
RoBERTa [11] 97.20

ELECTRA [49] 97.40
BART [46] 97.40

APTrans (ours) 98.00
The top performing values are shown in bold, and those following the top values by the underlining.

4.3.4. Ablation Study

We performed ablation studies on our APTrans model. Considering the factor of
time efficiency, we only conducted experiments on the AG News and TREC-6 datasets,
and the parameter settings, such as sentence length, are the same as those in the previous
experiments. Ablation experiments were performed on hierarchical deeper attention and
FFCon to verify the validity of these two modules. The effects of the approaches were
ascertained by experimenting with different collocations of these two modules. Figure 5
shows our experimental results. The two modules significantly improve the performance
of APTrans. On the AG News dataset, the hierarchical deeper attention module improves
the accuracy by 1.54% compared with the APTrans without any modules. Under the
same comparison conditions, the FFCon module shows a great improvement in accuracy
(94.22%), and the cooperation of the two modules results in the increase in the value by
1.80%, reaching 94.68%. Moreover, the addition of the two modules also greatly improves
the prediction accuracy on the TREC-6 dataset, reaching 98.00%. The data from the modular
ablation experiment fully demonstrate the obvious advancement of our two proposed
modules, which shows that learning the key information relationship and word group
inline relationship can indeed help improve the accuracy of the method. This also fully
shows that the ideas and innovations we put forward are meaningful.
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Figure 5. Ablation studies on the hierarchical deeper attention module and the FFCon module. We
conducted experiments on two datasets: (i) the TREC-6 dataset and (ii) the AG News dataset. The
experimental results on four different types of collocation combinations demonstrate the importance
of the two modules. APTrans(i): our model with the two modules; APTrans(ii): APTrans without
hierarchical deeper attention; APTrans(iii): APTrans without FFCon; and APTrans(iv): APTrans without the
two modules.

4.3.5. Confusion Matrix and Analysis

We can summarize and visualize the performance of the classification algorithm
through the confusion matrix. The number on the diagonal represents the correct prediction,
and the others are the wrong prediction. The higher the percentage value shown diagonally,
the more accurate the algorithm. This metric can reflect the tolerance degree of the algorithm
to easily distinguish confused data.

In this experiment, two datasets, TREC-6 and THUCNews, were selected for visual
analysis, and five or six methods were used for comparison on each dataset (Figures 6 and 7).
Figure 6 shows the accuracy of different methods on various categories of data, which are
extracted from the confusion matrix calculation process. In Figure 7, if the diagonal color is
darker, then the prediction accuracy of the corresponding category is higher. The actual
label is on the X-axis, and the prediction label is on the Y-axis. Among all of the methods,
our model (Figures 6 and 7f) shows strong classification ability because it mines the key
information relations in sentences and the word group inline relations to learn the special
distinguishing information in the text.
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4.3.6. Expansion Experiments

In text classification applications in real life, taking into account colloquial expressions,
the corpus of teachers’ teaching in the classroom meets our research needs. In the classroom,
the colloquial expressions of teachers and students will intersect in the classroom corpus
because their interaction will have an important influence on the teaching effect. On this
basis, we established the teacher classroom corpus theme analysis dataset TATC. This
dataset comes from actual engineering classroom corpus data and has typical classroom
teaching characteristics, such as teachers asking questions and waiting for answers. The
dataset covers four categories, such as scientific and technological literacy, and contains
about 4000 manually annotated corpora certified by experts. This dataset is divided
into training and test datasets, with a division ratio of 0.8. Figure 8 shows the relevant
information of TATC.
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We utilized APTrans to conduct extended experiments on the TATC dataset. Table 4
shows the quantitative results. The results show that our method still has strong compet-
itiveness compared with the preliminary training model based on the Transformer. The
accuracy on the self-built dataset can reach 83.33%, exceeding the XLNet baseline model
by 1.30%. Although our method is built for written text, the comparison results show that
APTrans can indeed fully capture the semantic information in the text and fuse the position
information to achieve strong results. This notion further means that our method can be
applied in practice, proving the universality of our model.
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Table 4. A comparison with some T-PTLM methods. The results of our experiments are presented
as follows.

Methods Pad Size Acc (%)

BigBird [52]

128

77.34
DeBERTa [53] 73.69
ALBERT [47] 73.70

ELECTRA [49] 80.47
GPT-2 [36] 82.02
XLNet [12] 82.03

RoBERTa [11] 83.06
BART [46] 83.07
ERNIE [48] 83.07

APTrans (ours) 83.33
The top performing values are shown in bold, and those following the top values by the underlining.

5. Conclusions

In this study, we propose a text classification method APTrans based on a hierarchical
attention pyramid architecture to cope with the problem of being unable to fully extract
text position information and word association information at the same time. We reveal
the key information relationship and word group inline relationship in statements. To take
advantage of these features in the text, the XLNet model is first selected as our backbone to
extract long-dependency semantic information and coarse-grained location information
in sentences. The mapping semantics of embedding and the implicit semantic variables
of each layer in the backbone are extracted as inputs, and attention computing is further
used to mine associated semantic information. Thereafter, the feature fusion module
FFCon is established to input semantic information of higher layers to the lower layer for
fusion calculation with coarse-grained position information to obtain multilayer implicit
semantic features from the text. Finally, the compression connection module of APTrans
compresses and cuts the hierarchical features and completes the feature stitching input
classification header to calculate the label corresponding to the text. We test APTrans on
multiple text classification benchmark datasets. The experimental consequence clearly
shows that our model, APTrans, can efficiently integrate word position information and
semantic information in the text and achieve good results in text classification. Meanwhile,
the success of APTrans illustrates the importance of lexeme relationships in texts, which
have probably been overlooked in previous studies. We hope that our preliminary study
can stimulate further research on the positional and semantic relationship of words in NLP
and further promote the development of this field.
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