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Abstract: Laser-targeted weeding methods further enhance the sustainable development of green
agriculture, with one key technology being the improvement of weed localization accuracy. Here,
we propose an improved YOLOv8 instance segmentation based on bidirectional feature fusion
and deformable convolution (BFFDC-YOLOv8-seg) to address the challenges of insufficient weed
localization accuracy in complex environments with resource-limited laser weeding devices. Initially,
by training on extensive datasets of plant images, the most appropriate model scale and training
weights are determined, facilitating the development of a lightweight network. Subsequently, the
introduction of the Bidirectional Feature Pyramid Network (BiFPN) during feature fusion effectively
prevents the omission of weeds. Lastly, the use of Dynamic Snake Convolution (DSConv) to replace
some convolutional kernels enhances flexibility, benefiting the segmentation of weeds with elongated
stems and irregular edges. Experimental results indicate that the BFFDC-YOLOv8-seg model achieves
a 4.9% increase in precision, an 8.1% increase in recall rate, and a 2.8% increase in mAP50 value to
98.8% on a vegetable weed dataset compared to the original model. It also shows improved mAP50
over other typical segmentation models such as Mask R-CNN, YOLOv5-seg, and YOLOv7-seg by
10.8%, 13.4%, and 1.8%, respectively. Furthermore, the model achieves a detection speed of 24.8 FPS
on the Jetson Orin nano standalone device, with a model size of 6.8 MB that balances between size
and accuracy. The model meets the requirements for real-time precise weed segmentation, and is
suitable for complex vegetable field environments and resource-limited laser weeding devices.

Keywords: YOLOv8; weed segmentation; bi-directional feature pyramid network; dynamic snake
convolution; laser weeding

1. Introduction

The issue of weeds inevitably impacts crop yields of agricultural production. In China,
there are 1430 species (varieties) of agricultural weeds, leading to a reduction in grain
production of up to 60 million tons and economic losses of up to USD 30 billion. Current
main weeding control methods include biological weeding, chemical weeding, traditional
mechanical weeding, and targeted weeding [1–3]. Biological weeding involves introduc-
ing foreign organisms to suppress weed growth, but these organisms can threaten local
ecosystems [4]. Extensive application of herbicides plays a crucial role in controlling weeds
and boosting agricultural efficiency, yet, this extensive application can induce resistance
in weeds and significantly affect soil, biota, and human health [5]. Traditional mechanical
weeding is effective pre-emergence, but post-emergence inaccuracy can irreversibly dam-
age crops. Targeted weeding technology, which focuses on the specific locations of weeds,
has gradually become a focal point in the era of precision agriculture and Agriculture
4.0 [6].

Current targeted weeding technologies can be categorized into targeted herbicide
spraying and laser-targeted burning. With the rapid advancement of computer vision,
deep learning convolutional neural networks have been widely implemented in targeted
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herbicide spraying [7–10]. To enhance the accuracy of targeted weeding, researchers
have optimized DeepLabv3, YOLOv7, the Deep Residual Convolutional Neural Network
(DRCN), and the YOLOv4 backbone network, achieving detection accuracies of 91.53%,
94.96%, 97.3%, and 98.52%, respectively [11–14]. Through precise targeted spraying, these
enhancements have effectively reduced the amount of herbicides used. However, the use of
herbicides cannot be completely eliminated, which contradicts the principles of sustainable
green agriculture [15]. Laser-targeted weeding, as a branch of targeted weeding, has become
feasible with the maturation of compact laser devices and the enhanced transferability
of computer vision models. This technology allows for the precise control of lasers via
high-speed visual computing on devices with limited computational power [10,16–18].
Therefore, laser-targeted weeding methods are poised to become a more efficient and
environmentally beneficial solution for weed management [19]. In earlier research, a color
differentiation algorithm was used to extract plants from the soil background, followed by
size differentiation to distinguish between crops and weeds [20]. This method proved to
be inefficient and less effective in complex agricultural fields. Zhu et al. [21,22] designed
a neural-network-based blue laser weeding robot, incorporating a lightweight attention
module into the YOLOx-Darknet architecture. Experimental tests showed a weed detection
accuracy of 88.94% with a seedling damage rate of 4.53%. However, there is still significant
room for improvement in the model’s precision. Fatima et al. [23] compared the Yolov5 and
SSD-ResNet50 networks using datasets of three crops and four weeds, with localization via
bounding boxes. Tests demonstrated that the Yolov5-trained model achieved 88% detection
accuracy and 27 FPS when transferred to the Nvidia Xavier AGX standalone device. In
laser weeding operations, enhancing the model’s accuracy is a crucial strategy to minimize
seedling damage rates and improve production efficiency.

The application of laser weeding has been predominantly restricted to bounding box
localization (object detection) of weeds. Previous researchers have endeavored to enhance
object detection algorithms such as ResNet and YOLO series. Their goal was to calculate
the central position of weeds based on the rectangular coordinates obtained from object
detection, thereby guiding the laser to accurately target the weeds, meeting practical appli-
cation requirements. However, object detection methods have consistently fallen short in
precisely delineating the edges of weed stems and leaves. Rakhmatulin et al.’s [9] experi-
mental results from laser weeding indicate that the optimal time for weed removal is when
the weed stem diameter is less than 2 mm during the 3–4 leaf stage, necessitating precise
targeting of the weed stem and leaves with lasers for effective removal. This introduces new
requirements for control processing. Laser weeding equipment requires an understanding
of the complete plant shape to accurately locate the boundaries of weed stems and leaves,
addressing the issue of bounding box localization in target detection algorithms, which fails
to control the laser for precise cutting. Thus, this paper first applies image segmentation
technology to the field of laser weeding and proposes an improved YOLOv8 instance
segmentation algorithm based on bidirectional feature fusion and deformable convolution
(BFFDC-YOLOv8-seg). This improved instance segmentation algorithm supports precise
localization of weeds during the laser weeding process, effectively reducing crop damage
rates. In order to conduct this study, the research consists of the following tasks:

1. The dataset images are processed by adding Gaussian noise and adjusting the color
space to enhance the model’s generalization and robustness towards weed edge
features in agricultural environments.

2. By obtaining model scales compatible with laser weeding equipment and developing
pretrained weights more suited for agricultural settings, the accuracy and speed of
model training are enhanced.

3. It introduces the Bidirectional Feature Pyramid Network (BiFPN) [24], an efficient
weighted bidirectional framework for cross-scale connections and fast normalized
feature fusion method. This approach significantly enhances the network’s ability to
focus on small targets, effectively addressing the challenge of detecting inconspicuous
features in complex backgrounds.



Appl. Sci. 2024, 14, 5002 3 of 17

4. DSConv is integrated to enhance the network’s capability to segment irregular edges
of plant stems and leaves, enabling accurate weed segmentation.

2. Materials and Methods
2.1. Image Collection and Dataset Construction
2.1.1. Data Collection and Annotation

The dataset in this paper consists of images captured on site in Guiyang, Guizhou
Province, China. It includes eleven types of weeds: Amaranthus blitum, Cirsium arvense,
Senna tora, Portulaca oleracea, Digitaria sanguinalis, Ipomoea nil, Euphorbia heyneana, Cyperus
rotundus, Mollugo stricta, Platostoma palustre, and Eleusine indica, as shown in Figure 1. Each
weed type has 120 images, all in JPEG format with a resolution of 640 × 640 pixels. Images
were manually annotated using LabelMe to acquire data labels in JSON format, which were
then converted into TXT files containing multiple coordinate points.
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Figure 1. Images of eleven types of weeds.

2.1.2. Dataset Augmentation and Construction

In the original dataset, images of each weed type were divided into training, validation,
and test sets in a 7:2:1 ratio, with 84 images for training, 24 for validation, and 12 for testing.
Deep learning models depend heavily on the image features within a dataset. Rich image
data improve model accuracy and help prevent overfitting. However, noise in the images
and errors in annotations can decrease the accuracy of the model. To compensate for
insufficient data and prevent network overfitting, this paper enhances the dataset by
applying 90◦ clockwise and counterclockwise rotations, adding 0.1% Gaussian noise, and
varying ±25% saturation and ±15% brightness. These methods expanded the number of
training images from 924 to 2772, as shown in Table 1.

Table 1. Number of images before and after data augmentation.

Training Images Validation Images Test Images Total Images

Before Augmentation 924 264 132 1320
After Augmentation 2772 264 132 3168
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2.2. Network Model Construction
2.2.1. Structure of the YOLOv8-Seg Network

The YOLO (You Only Look Once) series of algorithmic frameworks stand out among
various detection methods due to their rapid detection capabilities and high precision [25].
With continuous updates and iterations of the model framework, the YOLO series has
become a popular real-time object detection model, extensively used in precision and
automated agriculture for the detection and segmentation of crops, pests, and weeds.

In 2023, the Ultralytics team introduced the latest YOLOv8 (https://github.com/
ultralytics/ultralytics) object detection algorithm, evolving from YOLOv5, as a single-
stage anchorless detection framework. The overall network structure is divided into
four main components: Input, Backbone, Neck, and Head. The Input section, as the
interface, is responsible for scaling input images to the dimensions required for training. It
features modules such as mosaic data augmentation, adaptive anchor calculations, adaptive
image scaling, and Mixup data enhancement. The Backbone is an enhancement over the
YOLOv5 model, adopting ELAN’s design principles by replacing the C3 structure with
a more gradient-rich C2f structure, enhancing feature extraction through additional skip
connections and split operations, and varying channel numbers across different model
scales to maintain lightness while capturing more gradient flow. The Neck intensifies
feature integration across dimensions, following the Feature Pyramid Network (FPN) [26]
and Path Aggregation Network (PAN) [27] architectures, with convolution operations in
the upsampling phases removed in layers 4–9 and 10–15 compared to YOLOv5. The Head
section employs the current mainstream decoupled structure (Decoupled-Head), separating
the classification and detection heads. It replaces the traditional anchor-based approach
with an anchor-free method, as shown in Figure 2. The original Objectness branch is
removed, leaving only the decoupled classification and regression branches. Moreover, the
regression branch utilizes the integral form representation proposed in Distribution Focal
Loss, allowing each independent branch to focus more on its respective feature information.
YOLOv8 instance segmentation (YOLOv8-seg), an extension of the YOLOv8 model for
instance segmentation, enhances the base target detection model by incorporating the
YOLACT [28] network to achieve pixel-level instance segmentation. The model outputs
masks, class labels, and confidence scores for each object located in the image.
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2.2.2. Structure of the BFFDC-YOLOv8-Seg Network

To enhance the accuracy of weed segmentation in complex, cluttered agricultural fields
with overlapping plants, while ensuring model simplicity and real-time segmentation, this
paper introduces the new BFFDC-YOLOv8-seg instance segmentation network. As shown
in Figure 3, the network reconstructs the Concat module in the original Neck structure,
replacing the existing FPN and PAN with BiFPN for innovative multiscale feature fusion,
effectively enhancing the network’s ability to detect small targets. The introduction of
DSConv to replace some of the 3 × 3 convolutions in the original Backbone, integrating
features extracted by 3 × 3 convolutions with DSConv, increases the flexibility of the
convolution kernels, thus improving the accuracy of segmentation for irregular edges of
plant stems and leaves. The BFFDC-YOLOv8-seg network achieves precise segmentation
of highly similar, cluttered, and overlapping weeds in complex field backgrounds, with
features that ensure simplicity and real-time performance, making it feasible for operation
on standalone devices.
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• Appropriate weight documents and scales

Ultralytics officially provides five different scales of networks (N/S/M/L/X) and
corresponding initial weight files on Github to cater to various application scenarios. These
training weight files, essential for assisting training, enhance the accuracy and speed of
training, containing model parameters such as weights and biases for each layer. However,
the official weight files, trained on the COCO2017 dataset, lack the capability to perceive veg-
etable field environments. To better acclimate the model to vegetable fields and achieve im-
proved training outcomes, this paper utilizes a public plant instance segmentation dataset
with over 5000 images. By iterating 200 times on the original YOLOv8(N/S/M/L/X)-seg
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networks, this study obtains training weights adapted to vegetable field environments,
serving as optimized training weights for the model.

Table 2 clearly shows that under the same training batches, the S model has signifi-
cantly lower inference speed compared to the N model, with only a 1.3% improvement in
accuracy and a substantial increase in model size. The M/L/X models, compared to the N
model, show a notable increase in size and a significant decrease in inference speed, with a
maximum of only 1.9% improvement in accuracy. With no significant gains in detection
accuracy, the larger models require substantial storage resources and higher processing
power, making them unsuitable for resource-limited laser weeding devices. Therefore, this
paper chooses to optimize the N-scale model.

Table 2. Results of training multiscale models.

Scale Depth Width mAP50 FPS Size (MB)

N 0.33 0.25 0.859 277.7 6.8
S 0.33 0.50 0.872 147.0 23.9
M 0.67 0.75 0.875 33.2 54.9
L 1.00 1.00 0.876 5.4 92.3
X 1.00 1.25 0.878 1.2 548

• Multiscale feature fusion

The Concat module in the Neck section, which includes both FPN and PAN, plays
a critical role in the fusion of image information. As depicted in Figure 4a and described
by Equation (1), traditional FPN networks use input features Pin

i =
(

Pin
3 · · · Pin

7
)

with
3–7 layers, where Pin

i denotes the resolution level in/2i of the input image. Features are
aggregated from top to bottom, and resize usually involves upsampling or downsampling
for resolution matching, while Conv is typically used for feature processing. This results in
feature fusion being limited by a unidirectional flow of information, which is ineffective in
extracting features of small weed targets in agricultural settings with high similarity and
indistinct color features. To enhance the detection capabilities of small targets in agricultural
environment, this paper introduces a Bidirectional Feature Pyramid Network (BiFPN).

Pout
7 = Conv

(
Pin

7
)
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6 = Conv
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· · ·
Pout

3 = Conv
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BiFPN represents an efficient bidirectional framework for cross-scale connections and
fast normalization of feature fusion. From the network topology (Figure 4b,c), it can be
seen that BiFPN modifies the multiscale connections within the PAN architecture: Initially,
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it removes network nodes that have a single input feature edge without fusion, creating a
simplified bidirectional network. Subsequently, when the original input and output nodes
are at the same level, an additional pathway is added between them to enable more feature
fusion without significantly increasing computational costs; Lastly, unlike PAN, which
features only one top-down and one bottom-up pathway, each bidirectional (top-down and
bottom-up) pathway is implemented as a feature network layer, repeated multiple times to
achieve advanced feature fusion.

Different input features have varying resolutions, and compared to the high resolution
of crops, the smaller resolution of weed inputs leads to a significant imbalance in the
network’s output contributions. Traditional methods treat all input features equally without
distinction, which is not ideal in practical applications. Tan et al. [24] assigned varying
weights to input features, significantly enhancing the network’s performance in detecting
small objects. Therefore, we propose adding an additional weight to each input feature,
enabling the network to learn the significance of each feature and preventing it from
overlooking the small-scale features of weeds. Based on this concept, BiFPN uses fast
normalized fusion, as described in Equation (2), an efficient and stable weighted fusion
mechanism that applies an ReLu activation function after each wi to ensure that wi ≥ 0 and
ε = 0.001 are small, keeping each normalized weight between 0 and 1. Fast normalized
fusion, similar in learning behavior and accuracy to Equation (3) (Softmax-based fusion),
omits the So f tmax operation, allowing BiFPN to run 30% faster on GPUs. To further
enhance efficiency, we use depthwise separable convolutions for feature fusion and add
batch normalization and activation after each convolution.

O = ∑i
wi

ε + ∑j wj
·Ii (2)

O = ∑i
ewi

∑j ewj
·Ii (3)

The original Concat module is restructured, using BiFPN to replace the traditional
FPN and PAN for a novel feature fusion approach, thereby assigning higher weights to
small object features, enhancing the focus on small targets.

• Deformable convolution

In laser weeding operations, targeting the critical tissue parts of weeds with laser
beams is essential for effective weed eradication; imprecise targeting can increase the
accidental injury rate to crop seedlings. The original YOLOv8-seg network relies on the
detection accuracy of bounding boxes within the Backbone, but square bounding boxes
are not sensitive to the local information of irregular targets. Therefore, to enhance the
network’s perception of the irregular edges of weeds, deformable convolutions (DCNs) [29]
are considered for integration into the Backbone, allowing some 3 × 3 convolutional ker-
nels to adjust their shapes to fit the irregular structures of weeds, while maintaining the
stability of the convolutional structure and reducing deviation. Given that Dynamic Snake
Convolution (DSConv) [30] performs well in segmenting tubular structures, adapting to
slender and twisted local structural features to enhance geometric structure perception,
this paper introduces DSConv, constructing convolutional kernels with strong perception
of irregular curves.

This section elucidates the application of DSConv in extracting irregular local fea-
tures of weed stems and leaf edges, assuming standard 2D convolutional coordinates K,
with the center coordinate as Ki = (xi, yi). The original 3 × 3 convolutional kernel is K,
represented by

K = {(x − 1, y − 1), (x − 1, y), · · · , (x + 1, y + 1)} (4)

By introducing deformation offsets ∆, the convolutional kernel becomes more flexible,
focusing on the irregular edges of tubular weed stems and leaves. Figure 5 linearizes the
standard kernel in both axial directions, expanding it into a kernel of size 9. Taking the
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X axial direction as an example, each grid position in K is denoted as Ki±c = (xi±c, yi±c),
where c = 0, 1, 2, 3, 4 represents the horizontal distance from the center grid. The selection
of each grid position Ki±c in kernel K is a cumulative process. Starting from the central
position Ki, the position away from the center grid depends on the position of the previous
grid: Ki±1 increases by an offset ∆ = {δ|δ ∈ [−1, 1]} relative to Ki [30]. Therefore, the offsets
need to be accumulated to ensure that the kernel conforms to a linear structural form.
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The change in the X-axis direction is

Ki±c =

(xi±c, yi±c) =
(

xi + c, yi + ∑i+c
i ∆y

)
(xi±c, yi±c) =

(
xi − c, yi + ∑i

i−c ∆y
) (5)

The change in the Y-axis direction is

Kj±c =


(

xj±c, yj±c
)
=

(
xj + ∑

j+c
j ∆x, yj + c

)
(
xj±c, yj±c

)
=

(
xj + ∑

j
j−c ∆x, yi − c

) (6)

Since the offset ∆ is typically a decimal, while coordinates are usually in integer form,
bilinear interpolation is employed, expressed as

K = ∑k′ B
(
K′, K

)
·K′ (7)

Here, K represents the decimal positions in Equations (5) and (6). K′ enumerates all
integer spatial positions. B is a bilinear interpolation kernel, which can be decomposed into
two one-dimensional kernels:

B
(
K, K′) = b

(
Kx, K′

x
)
·b
(

Ky, K′
y

)
(8)

As shown in Figure 6, the changes in the two-dimensional (X and Y axes) setup enable
the dynamic serpentine convolutional kernels described in this paper to cover a 9 × 9
perceptual field during their deformation, better adapting to elongated tubular structures
and enhancing the perception of critical features. The use of 3 × 3 convolutional kernels to
perform the functions of 9 × 9 kernels allow for greater flexibility in the model’s kernels
while keeping scale increases minimal.
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2.3. Model Training and Outputs

This study’s model training was conducted on a Windows 10 operating system. The
computer was equipped with a 13th Gen Intel Core i5-13600KF CPU @ 5.1 GHz, 32 GB of
RAM, and an NVIDIA GeForce RTX 4060 8 GB GPU. Under the PyTorch deep learning
framework, a multiclass segmentation task neural network training model was constructed,
with the main software versions as shown in Table 3. The training configuration included
an input image size of 640 × 640, batch size of 16, momentum of 0.937, initial learning rate
of 0.0001, and 50 iterations.

Table 3. Training and testing environment.

Configuration Allocation

CUDA version 11.3
Python version 3.8
PyTorch version 1.12

The trained model was output in onnx format and tested on an embedded edge
computing device (NVIDIA Jetson Orin nano 4 GB) running Ubuntu 20.04 OS, featuring an
arm64 CPU (512 CUDA cores) with TensorRT acceleration.

2.4. Model Evaluation Criteria

This paper evaluates the model’s detection accuracy and image segmentation capabili-
ties through metrics such as precision, recall, and mean average precision (mAP). Frames
per second (FPS) measures the inference speed on hardware, i.e., the number of images
processed per second by the device.

Precision (P) and Recall (R) are calculated using a confusion matrix, which includes
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).
Precision is the proportion of actual targets in the total predicted targets by the network,
representing the classification accuracy of the network, whereas recall is the ratio of true
targets correctly predicted by the network to the actual number of true targets. The
corresponding formulas are as follows:

Precision =
True Positive

True Positive + False Positive
(9)

Recall =
TruePositive

True Positive + False Negative
(10)
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Intersection over union (IoU) represents the ratio of intersection to union in object
detection, used to measure the degree of overlap between the model-generated boundaries
and the original annotated boundaries. When IoU exceeds 0.5, it is considered that the
object is detectable. If the true region is A and the annotated region is B, then

IoU =
A ∩ B
A ∪ B

(11)

The average precision (AP) for a single category is determined by ranking the model’s
predictions based on their confidence scores and calculating the area under the precision–
recall (PR) curve, as follows:

AP =
∫ 1

0
P(R)d(R) (12)

Mean average precision (mAP) indicates the average precision across multiple cate-
gories, with mAP50 representing the mAP at a 50% IoU threshold. mAP50 − 95 is a stricter
evaluation metric, calculating the average of the AP at each IoU threshold from 50% to 95%,
with increments of 0.05, allowing for a more accurate assessment of model performance at
various IoU thresholds.

mAP50 − 95 =
APIoU=0.5+ + APIoU=0.55 + APIoU=0.6 + ... + APIoU=0.95

n
(13)

3. Results
3.1. Ablation Experiments and Model Training Details
3.1.1. Ablation Experiments

This paper constructs ablation comparative experiments to verify the efficacy of opti-
mization techniques, ensuring there is no competition or conflict among various methods,
and that resource utilization is optimal to avoid inconsistencies and confusion in the model
training and decision-making process. Two distinct optimization approaches were indi-
vidually integrated into the original YOLOv8-seg network for comparative analysis of
YOLOv8-seg, BiFPN YOLOv8-seg, DSConv YOLOv8-seg, and BiDS-YOLOv8-seg networks
using the publicly available coco128 dataset, training 50 batches, as shown in Table 4.

Table 4. Performance of YOLOv8-seg combined with various optimization techniques.

Network Precision Recall mAP50 mAP50-95

YOLOv8-seg 0.904 0.811 0.875 0.637
BiFPN + YOLOv8-seg 0.914 0.836 0.889 0.641

DSConv + YOLOv8-seg 0.912 0.811 0.887 0.636
BiFPN + DSConv + TOLOv8-seg 0.917 0.835 0.893 0.640

The introduction of BiFPN enhanced the model’s precision, recall, mAP50, and
mAP50:95 to 91.4%, 83.6%, 88.9%, and 64.1%, respectively, showing improvements over the
original model by 1%, 2.5%, 1.8%, and 0.4%. This indicates that BiFPN effectively enhances
the model’s ability to fuse features across different scales. The introduction of DSConv
resulted in an 8% increase in precision and a 1.6% increase in mAP50 compared to the
original model, indicating that deformable convolutions perform well in segmenting object
edges, beneficial for the segmentation of weed stems and irregular leaf surfaces. However,
recall and mAP50:95 are similar to the original network, suggesting that DSConv’s feature
recognition across multiple categories is somewhat limited, leading to poor balance, and,
thus, should not be used in isolation.

The mAP50 curves for different models across training batches are shown in Figure 7.
The BiDS-YOLOv8-seg model, formed by the fusion of BiFPN, DSConv, and YOLOv8-
seg, exhibits the best detection performance with significant improvements in all metrics,
achieving a precision of 91.7%, recall rate of 83.5%, and mAP50 of 89.3%.
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3.1.2. Training Results for the BFFDC-YOLOv8-Seg

In the present study, we trained the BFFDC-YOLOv8-seg on a vegetable field weed
dataset, with Figure 8 detailing various performance metrics during the training and
validation processes. During model training, we observed that the Box Loss (box_loss)
rapidly decreased from a high initial value to below 0.2 and converged, demonstrating
high precision in detecting weed boundaries without overfitting. The Segmentation Loss
(seg_loss) also showed a significant decreasing and converging trend, validating the model’s
effectiveness in segmentation tasks. The decrease in Classification Loss (cls-loss) indicated
a gradual enhancement in the model’s reliability for object classification. The reduction
in the specific loss metric, Direction/Flow Loss (dfl_loss), reflected the model’s learning
capability in predicting object direction or flow. During model validation, all loss metrics
showed a converging trend similar to training, with final stable values slightly higher than
training results, indicating that the model also has good generalization capabilities on data
outside the training set. Moreover, the Mask’s precision (precision(M)) and recall (recall(M))
remained above 0.9, with the mean average precision at 50% IoU (mAP50) exceeding 0.9,
and at a stricter 50–95% IoU (mAP50-95) also demonstrating performance above 0.8, further
confirming the model’s strong segmentation performance and robustness under rigorous
evaluation standards.

In summary, the final loss values are low and stable, a good balance is achieved
between precision and recall, and the model performs excellently in segmenting small
weed targets at different IoU thresholds, effectively learning weed characteristics without
overfitting, achieving excellent training results.
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(a) The upper part of the figure displays four loss metrics on the training set, including Box Loss
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displays the curves for precision, recall, mAP50, and mAP50-95 of the segmentation Mask.

3.1.3. BFFDC-YOLOv8-Seg Detection and Segmentation Effect

This study tested the BFFDC-YOLOv8-seg model using reserved test set images to
verify its actual detection and segmentation effects. A normalized confusion matrix for each
weed category was created, as shown in Figure 9, and results were assessed based on the
classification accuracy of the weeds. The matrix results indicate that the model performs
uniformly in detection, achieving 100% accuracy for Amaranthus, Cirsium, Digitaria, Eleusine,
and Portulaca, 96% for Platostoma, Cyperus, Senna, and Mollugo, 92% for Euphorbia, and 89%
for Ipomoea. During testing, the model exhibited numerous errors in detecting Euphorbia and
Ipomoea, missing some Euphorbia instances and misidentifying some Ipomoea as Cirsium or
Senna. This issue could be mitigated by collecting more data to enhance the model’s ability
to distinguish similar physical features such as the shape, texture, and color of leaves.
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By comparing masks, the study found that the original model (YOLOv8-seg) failed
to adequately segment weed stems and edges and missed small targets, as shown in
Figure 10. The analysis suggests that the original network’s insufficient convolution flex-
ibility and limited ability to perceive irregular edges resulted in the omission of stems
and edges; inadequate feature fusion also led to the nondetection of small targets. The
weighted bidirectional multiscale feature fusion in BFFDC-YOLOv8-seg model enhances
the network’s ability to perceive small targets; DSConv, with its more flexible convolution
kernels, has a stronger ability to detect stems and irregular edges, improving edge segmen-
tation accuracy. Experiments demonstrate that in complex agricultural environments, our
model outperforms the original in extracting small target features and segmenting irregular
edges. Although our model demonstrates superior segmentation capabilities for irregular
small targets, some gaps caused by overlapping leaves are still present within the mask.
These gaps can lead to ineffective laser burning, thereby reducing overall work efficiency.
Consequently, there is still room for improvement in edge segmentation.
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3.2. Comparison of the Performance with the Other Segmentation Models

To validate the efficiency and advantages of the BFFDC-YOLOv8-seg weed segmenta-
tion model in this study, we compared it with mainstream segmentation networks such as
Mask-RCNN [31], YOLOv5-seg [32], and YOLOv7-seg [33]. The same dataset and training
parameters were used for training the models, and tests were conducted on the test set. The
complete experiment assessed the accuracy (P), recall (R), mean average precision (mAP),
inference speed (FPS), and model size for each segmentation network, as shown in Table 5.
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Table 5. Comparison results of different segmentation model performances.

Model Precision Recall mAP50 mAP50-95 FPS Size (MB)

Mask RCNN 0.895 0.876 0.88 0.682 34 228
YOLOv5-seg 0.701 0.781 0.854 0.593 227 4.2
YOLOv7-seg 0.917 0.95 0.975 0.749 18.3 76.4
YOLOv8-seg 0.926 0.894 0.96 0.776 270 6.8

Ours 0.975 0.975 0.988 0.842 101 6.8

From a comprehensive comparison of tests, it is evident that the BFFDC-YOLOv8-seg
model proposed in this paper exceeds the original YOLOv8-seg model by 2.8% in mAP50
for segmenting small weed targets, and surpasses the Mask-RCNN, YOLOv5-seg, and
YOLOv7-seg models by 10.8%, 13.4%, and 1.3% respectively, showing the highest precision
in detecting and segmenting weeds in complex agricultural environments. In terms of
real-time detection capabilities, Mask-RCNN, with its complex model and high-density
computations, and YOLOv7-seg’s large-scale network require high computational costs,
resulting in inference speeds of only 34 and 18.3 FPS, respectively. After increasing the
sampling scale, this paper’s network has a reduced inference speed compared to YOLOv8-
seg’s 270 FPS, but at 101 FPS, it fully meets the real-time detection needs of slow-moving
laser weeding device, while maintaining optimal segmentation accuracy. Regarding model
size, the network retains its lightweight characteristics, making the 6.8 MB model more
suitable for deployment on resource-limited automatic laser weeders compared to the
Mask-RCNN and YOLOv7-seg models.

3.3. Testing on Standalone Devices

To ensure that the BFFDC-YOLOv8-seg model adapts well to standalone devices, this
paper ports the trained model to the standalone embedded device Jetson Orin nano (4 GB)
for compatibility testing. The Nvidia Jetson, as an embedded AI computing platform,
significantly reduces the computational cost of deep learning models, facilitating broader
application of compact laser weeding devices. This paper also uses precision, recall, mAP50,
mAP59-95, and FPS metrics to evaluate the model’s performance on standalone devices.
As shown in Table 6, the model achieves a 95.8% mAP50 on the Jetson Orin nano and
processes images at 24.8 FPS, suitable for real-time weed segmentation.

Table 6. Testing results on Jetson Orin nano.

Box Mask
FPS

Precision Recall mAP50 mAP50-95 Precision Recall mAP50 mAP50-95

0.974 0.924 0.958 0.916 0.974 0.924 0.958 0.817 24.8

4. Discussion

In research on automated laser weeding, many scholars focus on object detection
algorithms, neglecting the coarseness of bounding box localization, which can lead to
accidental damage to seedlings and incomplete eradication of weeds. Conversely, with
significant improvements in the efficiency and portability of segmentation algorithms,
instance segmentation techniques are more advantageous for locating weeds in complex
environments. Yue et al. [34] reported an mAP50 of 92.2% using an improved YOLOv8-
seg model for segmenting tomato diseases at different stages, demonstrating significant
potential of the YOLOv8 series in segmentation tasks.

Feature extraction of small and irregular objects has always been a hot topic in com-
puter vision, with multiscale feature fusion and dynamic deformable convolutions being
the most common in addressing segmentation of such objects. In agricultural production,
there are many applications for the segmentation of small targets, such as determining the
extent of infection in plants by segmenting and locating plant pests and diseases. There-
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fore, precise segmentation of irregular small targets in complex backgrounds remains a
significant challenge in agricultural applications.

The present study demonstrates that the BFFDC-YOLOv8-seg effectively enhances
weed segmentation capabilities in complex agricultural environments, making it suitable for
small, cost-effective, automated laser weeding devices and capable of efficiently detecting
and segmenting weeds in vegetable fields. Although this research has made some progress,
many key technical issues still need to be addressed to make laser-targeted weeding equip-
ment more aligned with practical needs: a more comprehensive dataset of field weeds
needs to be established to increase the diversity of feature collection and further enhance
the model’s accuracy and generalizability; the model’s detection precision needs further
optimization and its complexity reduced to meet the real-time demands and resource
constraints of practical applications; image coordinates obtained from the model’s segmen-
tation need to be integrated with a positioning algorithm for precise target localization; a
mismatch between the speed of the laser source and detection efficiency leads to reduced
efficiency, necessitating a more efficient laser source. Although this research has achieved
certain results, further optimization of the model’s detection precision and reduction in
complexity remains a focus. We hope that our efforts will lead to widespread adoption
of laser weeding devices equipped with the BFFDC-YOLOv8-seg model in agricultural
production, promoting sustainable green agriculture.

5. Conclusions

Addressing the challenges of inaccurate weed targeting and high crop damage rates
associated with traditional laser weeding equipment, the present study is the first to apply
image segmentation technology to the field of laser weeding, using instance segmentation to
precisely guide the laser targeting. We propose a BFFDC-YOLOv8-seg weed segmentation
model that integrates dynamic snake convolution and a weighted bidirectional feature
pyramid network to precisely locate the boundaries of weed stems and leaves, addressing
the issues of inaccurate weed targeting and high crop damage rates in traditional laser
weeding equipment. In the original YOLOv8 network, weighted multiscale feature fusion
is implemented to enhance the network’s ability to perceive small objects; DSConv replaces
some 3 × 3 convolutional kernels, making the existing convolutional layers more flexible
and better adapted to the irregular edges of weed stems and leaves. Experimental results
demonstrate that the BFFDC-YOLOv8-seg model achieves an accuracy of 97.5%, a recall
of 97.5%, an mAP50 of 98.8%, and an mAP50-95 of 84.2% on the test set. Compared to
the current mainstream models such as Mask-RCNN, YOLOv5-seg, YOLOv7-seg, and
YOLOv8-seg, this model achieves better mAP50 values, with improvements of 10.8%,
13.4%, 1.3%, and 2.8%, respectively. Additionally, the model size is only 6.8 MB, and in
stability tests on the Jetson Orin nano independent device, the actual scenes captured by
the camera can be processed at a detection speed of 24.8 FPS with an mAP50 of 95.8%. The
proposed model delivers precise real-time weed segmentation, making it suitable for small,
cost-effective automatic laser weeding devices.
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