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Abstract: Real-time target detection plays an important role in campus intelligent surveillance systems.
This paper introduces Soft-NMS, GSConv, Triplet Attention, and other advanced technologies to
propose a lightweight pedestrian and vehicle detection model named SGST-YOLOv8. In this paper,
the improved YOLOv8 model is trained on the self-made dataset, and the tracking algorithm is
combined to achieve an accurate and efficient real-time pedestrian and vehicle tracking detection
system. The improved model achieved an accuracy of 88.6%, which is 1.2% higher than the baseline
model YOLOv8. Additionally, the mAP0.5:0.95 increased by 3.2%. The model parameters and
GFLOPS reduced by 5.6% and 7.9%, respectively. In addition, this study also employed the improved
YOLOv8 model combined with the bot sort tracking algorithm on the website for actual detection.
The results showed that the improved model achieves higher FPS than the baseline YOLOv8 model
when detecting the same scenes, with an average increase of 3–5 frames per second. The above results
verify the effectiveness of the improved model for real-time target detection in complex environments.

Keywords: YOLOv8; target tracking; Soft-NMS; GSConv; triplet attention

1. Introduction

In China, with the expansion of the number of students on campuses, campus security
is becoming more and more important, which brings great challenges to the maintenance
of students’ safety and campus order. With the continuous development of deep learning,
intelligent surveillance based on target recognition has gradually been introduced into
campuses, providing new solutions for campus stability. However, current target detection
algorithms available on the market tend to be bulky when deployed on the web, so the
network structure of the deployment model needs to be optimized.

Real-time target detection is one of the key technologies in campus surveillance
systems. It can automatically identify and track various targets on the campus, such
as individuals and vehicles, based on their recognition IDs. However, traditional target
detection algorithms such as HOG [1], SIFT [2], and DDPM [3] face performance challenges
in campus surveillance scenarios, including low real-time capability and high computing
resource consumption.

Yun Wei et al. proposed a two-step target detection algorithm by combining Haar
and HOG features, which improved the performance of multi-vehicle target detection and
tracking in complex urban environments. The results showed that compared to traditional
methods, this algorithm achieves higher detection accuracy and time efficiency [4]. Hongzhi
Zhou et al. conducted experiments by combining HOG and LTP features and weighted the
features of the color map and depth map to provide richer visual information. The results
showed that this method improved the accuracy and efficiency of pedestrian detection [5].

With the continuous development of target detection algorithms, such as the emer-
gence of new algorithms such as YOLO, Faster R-CNN, SSD, and RetinaNet, remarkable
breakthroughs and progress have been made in the field of target detection. Currently, tar-
get detection algorithms can generally be categorized into two main directions: two-stage
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detection and one-stage detection. Two-stage detection algorithms consist of two main
components: (1) candidate region extraction and target classification and (2) boundary box
regression, such as Faster R-CNN, Cascade R-CNN, and Mask R-CNN. Faster R-CNN is a
type of target detection model that introduces a region proposal network (RPN). This model
can simultaneously generate target proposals and their corresponding class probabilities,
thus improving detection accuracy [6]. Cascade R-CNN enhances the performance of target
detection through a cascaded approach, progressively filtering out more accurate target
bounding boxes using a cascaded structure [7]. Based on Faster R-CNN, Mask R-CNN
adds support for object instance segmentation, which can predict the boundary box and
pixel level mask of the object at the same time [8]. Two-stage detection algorithms perform
well in terms of accuracy, but correspondingly sacrifice a certain amount of detection speed.
Sirisha discussed the advantages and disadvantages of one-stage detection and two-stage
detection through various variants of the current YOLO detector [9]. She found that in
terms of detection accuracy, two-stage detection is generally superior to one-stage detection.
However, they are slightly inferior in inference speed. Lingcai Zeng et al. combined the
Adversarial Occlusion Network (AON) with the standard Faster R-CNN detection algo-
rithm to detect complex underwater targets [10]. The results showed that joint training for
target detection helps alleviate overfitting caused by fixed pre-generated data, providing a
promising detection solution for underwater exploration. Lehai Zhong et al. integrated
the bidirectional feature pyramid network (BiFPN) into the Cascade R-CNN to overcome
errors and omissions in target occlusion and small target scenes [11]. The improved method
achieved a 0.91 mAP accuracy on the wildlife video frame dataset, and each detection time
was only 0.42 s. For the problems of poor quality and accuracy of multi-object segmentation
and detection in complex traffic scenes, Shuqi Fang improved the MaskR-CNN: the path
enhancement strategy is introduced, and the Efficient Channel Attention module (ECA) is
added to optimize the semantic infographic; ResNet in the original backbone network is
replaced by ResNet network with group convolution to enhance feature extraction ability.
The results showed that the detection accuracy and segmentation accuracy of the improved
Mask R-CNN algorithm increased by 4.73% and 3.96%, respectively.

One-stage detection algorithms mainly include YOLO, SSD, and RetinaNet. Compared
with two-stage detection, these algorithms directly predict the category and bounding box
of the target through a single neural network, omitting the process of candidate region
extraction, which is faster. YOLO is a fast and accurate target detection algorithm with
a single forward propagation [12]. SSD is another popular real-time target detection
algorithm. It predicts bounding boxes and class probabilities for objects of different scales
using multiple layers of feature maps [13]. Unlike the previous two, RetinaNet combines
an efficient feature pyramid network and Focal Loss to solve the problem of category
imbalance in target detection, thereby improving detection performance [14]. Therefore,
one-stage detection algorithms can achieve real-time target detection, but compared to
two-stage detection algorithms, they may have slightly lower accuracy. Heming Hu et al.
achieved high accuracy in strawberry detection by combining two-stage detection (Mask
R-CNN) and one-stage detection (YOLOv3) networks for training and recognition [15].
To solve multiple complex situations in actual traffic scenes, Yalin Miao et al. proposed
a deep learning target detection network based on SI-SSD [16]. This network utilizes the
feature pyramid network (FPN) and feature map fusion method to combine shallow and
deep feature maps and enhance its sensitivity to small objects. Hong Liang et al. addressed
the issue of insufficient information features for small objects by combining MFEM with
RetinaNet [17]. They constructed a bidirectional feature pyramid network model, which
prevented information loss and effectively integrated strong semantic information and
high-resolution information.

Among them, the YOLO algorithm has achieved tremendous success in the field
of target detection due to its unique concept and outstanding performance. More and
more researchers are starting to explore the application of target detection algorithms in
actual scenarios.
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Yang Wu et al. proposed a lightweight and real-time method based on an improved
instance segmentation model, which has achieved remarkable results in pixel-level crack
detection [18]. Shichu Li et al. proposed a glove detection algorithm (YOLOv8-AFPN-
M-C2F) based on YOLOv8 [19]. This algorithm replaces the head of YOLOv8 with the
AFPN-M-C2f network, expanding the path of feature vector propagation and alleviating
semantic differences between non-adjacent feature layers. At the same time, the surface
feature information is enriched by introducing a superficial feature layer, and the sensitivity
to small objects is improved.

To achieve real-time detection of students and passing vehicles in the complex campus
environment, while addressing the challenges of lightweight model and high performance,
the main contributions of this paper are as follows:

1. By introducing the Triplet Attention module, which reduces background interference
by enhancing target representation and integrating context information. The results
show that the introduction of the module can improve the performance of target
detection tasks.

2. Using the GSConv + SlimNeck to replace Conv and C2f modules in the YOLOv8
model for lightweight operation. In addition, compared with the original NMS
algorithm, the Soft-NMS algorithm is introduced to optimize potential batch omission
issues that may arise in dense occlusion scenes.

3. The model was deployed into actual production, achieving a real-time monitoring FPS
3–5 frames higher than the baseline YOLOv8 model. The experiments demonstrate
that in campus surveillance scenarios, SGST-YOLOv8 has a smaller model size and
better detection capability.

2. Method

The real-time pedestrian and vehicle detection method proposed in this study is based
on an improved version of the YOLOv8 model, named SGST-YOLOv8. This model is
capable of real-time detection of vehicles and pedestrians. As shown in Figure 1, the
study first performed data cleaning on the existing dataset, which includes thousands of
images of vehicles and pedestrians. Subsequently, the dataset was divided into training,
validation, and test sets. In this study, the training and verification sets were first used
for the pre-training stage. Then, the pre-training weight results were transferred to the
SGST-YOLOv8 model trained with data-enhanced pedestrian and vehicle datasets through
transfer learning for training and verification.

2.1. Overview of YOLOv8

YOLOv8 is a novel target detection model created and maintained by the startup
company Ultralytics, offering state-of-the-art performance in terms of accuracy and speed.
YOLOv8 has been iterated and optimized based on the previous YOLO version, which has
made it a new favorite in the target detection field [20]. The architecture of YOLOv8 is built
upon earlier versions of the YOLO series, as shown in Figure 2.

YOLOv8 uses an anchor-free detection method to predict the target, which improves
the detection speed and accuracy [21]. However, some issues remain in handling real-world
campus surveillance scenarios, such as crowded crowds, mutual occlusion between mem-
bers, and computational performance [22]. To solve these problems, this paper proposes a
lightweight YOLOv8 model.
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Figure 1. Research framework for the model improvement approach.

Figure 2. YOLOv8’s network structure diagram.
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2.2. SGST-YOLOv8: Lightweight Pedestrian and Vehicle Detection Network Architecture

SGST-YOLOv8 (Figure 3) has made some optimized modifications based on YOLOv8:
Soft-NMS was introduced to replace the original NMS loss function to reduce the missed
rate in complex scenarios. At the same time, the GSConv lightweight module and the
generated VoV-GSCSP on this basis was introduced to replace the Conv and C2f modules of
the original neck part. Additionally, the Triplet Attention module is added to the backbone
network to enhance the dimensional interpretation and improve the accuracy of the model.

Figure 3. Network structure diagram of SGST-YOLOv8 with added modules. “(a)–(c)” They re-
spectively represent three branches capturing cross-dimensional interaction information between
different dimensions.

2.3. Lightweight Neck Network Module: GSConv

GSConv (Group Separable Convolution) is a unique convolution operation tech-
nique [23]. Its core objective is to enhance the performance of Depth-wise Separable
Convolution (DSC) [24] by making its output closer to Standard Convolution (SC) [25]. The
design concept of GSConv is to find an optimal balance between the accuracy of the model
and the speed of calculation. By using GSConv, the computational cost of the model can be
effectively reduced while maintaining or even improving the performance of the model.

In the improved model of this study, the Standard Convolution (SC) in the neck
networks is replaced by GSConv. The reason for not using this method in the backbone
network is that employing GSConv in the backbone may lead to excessively high computa-
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tional complexity. Meanwhile, in the neck part, the feature map has become elongated, and
hence, transformation is no longer needed [26]. Replace the formula as

YOLOv8(input) = GSConv(SC(C2/2 × 2)) (1)

Here, “input” refers to the input feature map, and (C2/2 × 2) represents the convolu-
tion results after two depth-wise convolutions. GSConv uses a combination of SC, DSC, and
shuffle-mixed convolutions for dense convolution calculations, maximizing the retention
of hidden connections between each channel. Consequently, it achieves the same output
effect as SC with fewer computational costs. In this study, a cross-stage part network called
VoV-GSCSP module was used, which is generated based on GSConv. The introduction
of convolutions like GSConv and VoV-GSCSP increases the model’s non-linear capabil-
ity while maintaining parameter sharing, thereby enhancing the model’s generalization
ability [27]. It decreases computational complexity and simplifies network structure while
preserving adequate accuracy. This helps to reduce the risk of overfitting in the model.

2.4. The Triplet Attention Module

In recent research, attention mechanism modules such as SE, CA, ECA, CBAM, GAM,
etc., have appeared more frequently in computer vision tasks. While these attention
mechanism modules have achieved significant success in enhancing the performance
of deep learning models, they may pose risks such as large memory consumption or
overfitting due to the complex network structure.

The Triplet Attention is a lightweight triple attention mechanism proposed by Diganta
Misra et al. [28]. The attention mechanism module captures relevant information in three
directions: horizontally, vertically, and across channels, in multiple dimensions. At the
same time, weights are calculated and applied to enhance the characteristics of the target
information. It has been proven by the results of previous experiments that Triplet Atten-
tion is effective and practical in target detection tasks and can capture cross-dimensional
dependencies [29]. This innovative attention mechanism has brought breakthroughs and
advancements to the field of target detection.

2.5. Soft-NMS Loss Function

Soft-NMS is an improved loss function used to suppress redundant bounding boxes
more smoothly during the NMS process [30]. Previously, the traditional NMS method used
a fixed threshold to determine if two bounding boxes overlap and to suppress them [31].
However, due to the fixed threshold, it may adapt to situations between different objects,
resulting in some candidate boxes with low confidence but which incorrectly exclude
significantly overlapping true objects. In contrast, Soft-NMS employs a smoother strategy
to handle overlapping bounding boxes. For adjacent bounding boxes with an Intersection
over Union (IoU) greater than the NMS threshold, traditional NMS methods set their scores
to 0, effectively discarding them, which may lead to missing boundary boxes, especially in
occlusion scenarios. However, Soft-NMS retains confidence information by reducing the
scores of overlapping bounding boxes rather than immediately discarding them (Figure 4).

Specifically, in Soft-NMS, the scores of overlapping bounding boxes are adjusted based
on their degree of overlap and confidence level. Bounding boxes with higher overlap and
confidence levels will receive smaller score penalties, while those with lower overlap and
confidence levels will receive larger score penalties.

Soft-NMS performs this by introducing a decay function. Soft-NMS can be more
flexible in adjusting the weights of candidate boxes. For the candidate box that is highly
overlapping with the selected box but has low confidence, there is still a chance for them to
be retained, thus improving the accuracy of target detection.
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Figure 4. Plot of the results of target recognition for dormitory students after the introduction
of Soft-NMS.

2.6. Transfer Learning Strategy

Introducing a new backbone network and modifying the neck structure require train-
ing the new convolutional network architecture from scratch. This process is typically
an iterative trial-and-error process, requiring continuous iteration and parameter-tuning
of the network architecture and hyperparameters to find the optimal configuration [32].
However, surveillance devices used in campus environments often struggle to capture
high-quality images. This presents a challenge for target detection tasks, as models need
to accurately identify and locate objects in low-quality images. To solve these problems,
transfer learning technology is introduced into the research, which uses prior knowledge
and feature transfer to reduce training costs [33].

As shown in Figure 5, the model undergoes initial pre-training on a large dataset for
feature learning. Then, feature transfer is performed, followed by secondary model training
on the pedestrian and vehicle dataset. Using cross-domain transfer learning strategies to
adjust models and transfer parameters can reduce the model’s data dependency, improve
its robustness, and lower the training cost.
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Figure 5. Basic road map for pre-training.

3. Experiments
3.1. Data Preprocessing and Enhancement

The dataset was downloaded from the Kaggle database and contains pedestrian and
vehicle data. However, the initial data had some invalid areas and data format issues for
this study. Therefore, all the data were screened, the invalid areas were removed, and noise
removal and data balance were performed on the data. The study divided the original
dataset into proportions of 7:1.5:1.5. To match the training of the YOLO model, the dataset
format was converted to the COCO dataset format.

To improve the model’s generalization and robustness, the study applied data en-
richment to the training dataset. Several data enhancement strategies (Figure 6) were
used in this study, including brightness adjustment, Gaussian noise adjustment, and
contrast adjustment.

Figure 6. Data enhancement operations.

3.2. Experimental Environment and Training Parameters

The experimental environment of this research project is based on the cloud server
platform ‘Featurize’. The NVIDIA RTX A4000 graphics card with a total memory of 30.1 GB
was used as the hardware platform for model training, with specific parameters as shown
in Table 1. The programming work throughout this study was based on the Python 3.10.12
environment, using the PyTorch2.0.1 GPU version for deep learning model training. The
model training and testing are performed strictly according to the above parameters.
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Table 1. Experimental environments for model training and testing.

Scenario Graphics Card
Model

Random Access
Memory (RAM)

Display
Memory

Experimental
Environment

Model training NVIDIA RTX
A4000 30.1 16.9 Python 3.10.12

torch2.0.1GPU

Model testing NVIDIA GeForce
RTX 3060 16 8 Python 3.8.1

torch2.0.1GPU

In terms of model training, the study specified an input image size of 640 × 640, a
batch size of 53, and utilized 8 workers. The number of training epochs was determined
through grid search, and early stopping epochs were adjusted based on parameter settings.
For model inference and practical deployment testing, the experiment utilized the NVIDIA
GeForce RTX 3060 graphics card and a Hikvision 4-million-pixel HD camera to verify the
model’s efficiency on the website.

3.3. Evaluation Index

In the experiments of this paper, Precision, Recall, mAP50, and mAP0.5–0.95 were
used as accuracy metrics from the experimental results, while the model’s parameters,
GFLOPs, and the FPS of the deployed system are used as lightweight evaluation criteria.
Precision, Recall and mAP are calculated as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

AP =
∫ 1

r=0
P(r)dr (4)

mAP =
1
K

K

∑
i=1

APi (5)

TP, FP, and FN represent the number of correctly identified true samples, the number of
incorrect identifications, and the number of correct samples missed, respectively.

4. Results and Validation
4.1. Experimental Results
4.1.1. Pre-Training Results

To explore and verify the possibility of model improvement more quickly, we con-
ducted pre-training on the original pedestrian and vehicle dataset. As shown in Figure 7,
the model closely approximates the fitting accuracy of the baseline model while showing
significant improvement in training efficiency.

By observing the model accuracy and convergence efficiency (Table 2), it can be
inferred that this YOLOv8 model may outperform the baseline YOLOv8 on medium- to
large-sized objects.
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Figure 7. Plot of pre-training results of the improved model and baseline model.

Table 2. Accuracy results for the three types of mAP targets.

Epoch Model APs APm APl

Model training YOLOv8 0.485 0.583 0.810
SGST-YOLOv8 0.471 0.579 0.811

4.1.2. Further Training

The study conducted further training on the augmented dataset. The training results
of the improved model on the pedestrian and vehicle dataset are shown in Figure 8: as
the number of epochs increases, each loss and Precision changes. It can be observed that
during the initial epochs, both training loss and validation loss first increase and then
decrease rapidly because of the transfer of training parameters from the pre-trained model
to continued training. Subsequently, both losses decrease as the training epochs increase.
Meanwhile, Precision, Recall, mAP0.5, and mAP0.5:0.95 exhibit an increasing trend.

Figure 8. Plot of training results for the improved model.

The horizontal coordinate in Figure 8 is the number of training cycles of the model,
and the vertical coordinate is the error size and parameter accuracy. The smaller the loss
and the higher the Precision, the better the accuracy of the model.

4.2. Ablation Experiment

Follow-up studies performed ablation experiments and obtained the following data
results (Table 3). The experimental dataset used the same pedestrian and vehicle dataset to
ensure that the experiments were credible. The inclusion of the Soft-NMS technique led
to a significant improvement in accuracy compared to the baseline YOLOv8 model. It is
worth noting that when only Soft-NMS technology was introduced into the baseline model,
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the Recall increased by 0.8%, while mAP0.5 and mAP0.5: 0.95 increased by 0.5 percent and
9 percent, respectively. Additionally, the introduction of the GSConv lightweight module
alone also resulted in a certain degree of improvement in mAP. The combination of GSConv,
Triplet Attention, and Soft-NMS reduced the model parameters by 5.6% and GFLOPs by
7.9%. Meanwhile, SGST-YOLOv8 improved by 1.2% in Precision, 3.1% in Recall, 2.0% in
mAP0.5, and 3.2% in mAP0.5:0.95.

Table 3. Accuracy results for each scenario of the ablation experiment.

Scenario Model Precision Recall mAP0.5 mAP0.5:0.95 Parameter GFLOPs

1 YOlOv8 0.874 0.711 0.811 0.577 3,157,200 8.9
2 +Soft-NMS 0.862 0.718 0.816 0.586 3,157,200 8.9
3 +GSConv 0.874 0.710 0.812 0.580 2,947,792 8.1
4 +Triplet A 1 0.877 0.705 0.810 0.578 3,190,168 9.0
5 1 + 3 + 4 2 0.875 0.735 0.826 0.598 2,980,760 8.2
6 1 + 2 + 3 + 4 0.886 0.742 0.831 0.609 2,980,760 8.2

1 +Triplet A is short for Triplet Attention. 2 Here is the baseline model YOLOv8 introducing modules such as
GSConv and Triplet Attention.

Compared to Scenario 3, which contains the GSConv module, Scenario 6 of the
improved model has a slightly higher number of parameters. However, overall, the model
combination in Scenario 6 enhances the comprehensive capability of the model. Although
there is a slight decrease in performance after introducing the GSConv convolution, the
combination of GSConv and Triplet Attention has improved the accuracy compared to
the baseline YOLOv8 model. This is because these two techniques complement each
other in terms of performance. The Triplet Attention module reduces information loss
by enhancing feature representation, thereby improving accuracy. It compensates for the
minor impact on performance resulting from the introduction of the GSConv convolution
and VoV-GSCSP lightweight module. At the same time, convolutional operations like
GSConv and VoV-GSCSP can reduce the complexity of calculations, thereby improving
the model’s computational efficiency. This makes the model more efficient during both
training and inference stages.

4.3. Evaluation Experiment

To test the model’s efficiency and experiment, the experiment uses sample test images
to make predictions. Figure 9 shows the improved and baseline models’ detection results.
The figure shows that the improved model exhibits better detection performance for
pedestrians and vehicles in crowded environments. Even in cases where vehicles and
pedestrians are partially occluded, the improved model still performs remarkably well.
Furthermore, it can be observed that the improved model exhibits higher sensitivity to
variations in image scale. This result is particularly crucial for subsequent deployment on
the web for real-time monitoring.

To further validate the theoretical effectiveness of the model in practice, this study
employs Grad-CAM for heatmap visualization. Grad-CAM is a computer vision technique
for interpretability. It generates a gradient-weighted-class activation map to represent the
key contributing regions of the neural network’s prediction on the image.
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Figure 9. Validation result chart.

Utilizing Grad-CAM for analysis, it is evident that in complex regions where targets
are detected, the improved model shows greater sensitivity within corresponding heatmap
areas than the baseline YOLOv8 model (Figure 10).

The improved model can analyze images of varying scales and extract useful informa-
tion from images to the greatest extent. In contrast, the baseline model focuses on large areas
containing vehicles and pedestrians in complex scenes and fails to capture information
about pedestrians in distant regions. The results showed that the improved model is more
effective in capturing the characteristics of the detection target in a complex environment.

Figure 10. SGST-YOLOv8 and baseline model YOLOv8 visualization results.

4.4. Web Deployment Testing

As long as the target vehicles and pedestrians can be successfully detected, the experi-
ment can deploy the tracking algorithm for further tracking. The study used two commonly
used tracking algorithms for experimentation and testing, that is, BoT-SORT and ByteTrack.
Figure 11 shows the algorithm model’s web deployment and testing workflow. The BoT-
SORT algorithm is an improved version of the SORT algorithm, which enhances tracking
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capabilities in complex scenarios by integrating appearance and motion information. Espe-
cially when targets are occluded or crossed, its deep learning appearance model, combined
with a refined cost function and rapid motion model, can optimize data and enhance the
accuracy and robustness of target identification. It is applicable in areas such as video
surveillance and autonomous driving. The ByteTrack algorithm improves the detection
and tracking of small targets and performs excellently in handling target occlusion and
interactions. A low-confidence detection box processing mechanism effectively enhances
the tracking capability of small and temporarily occluded targets.

Figure 11. Baseline model YOLOv8 and SGST-YLOV8 visualization results.

This study evaluated the models by obtaining the FPS from three different surveillance
footage scenarios (Table 4). To accurately evaluate the operating efficiency of the model,
multiple counts were performed and the median average method was used to determine
the final result of each scenario. This method can better capture the performance of the
model in different scenarios. During the evaluation process, the experiment selected three
representative monitoring screen scenarios and recorded the FPS values for each scenario.
These scenarios include complex outdoor environments, simple outdoor scenes, and static
scenes without physical objects for monitoring. By conducting multiple counts for each
scenario, the experiment was able to obtain more reliable results and eliminate the influence
of occasional outliers on the evaluation outcomes. It can be seen from the results that in the
static scene without physical objects, the FPS difference between the improved YOLOv8
model, other enhanced models, and the baseline YOLOv8 model is minimal, with detection
efficiency remaining relatively consistent. When transitioning to a simple scenario, a certain
decrease in the detection efficiency of the model can be observed. After median averaging,
the FPS of the improved model was 2.6 FPS higher than the baseline model. However,
when entering the complex outdoor scene, the model’s ability to handle complexity began
to weaken. Compared to the simple scene, the FPS generally dropped by around 50%.
The improved SGST-YOLOv8 model that takes GSConv+Triplet Attention as its core has
better performance than other models. This result is crucial for practical applications, as it
indicates that the model can effectively detect targets even in real-world environments.
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Table 4. Scenario PFS for each model in the three scenarios.

Scenario Model FPS

No Physical Scene
CSGT-YOLOv8 44.7

YOLOV8 44.4
YOLOV8+ 1 42.9–43.6

Simple Scene
CSGT-YOLOv8 34.9

YOLOV8 32.3
YOLOV8+ 28.1–31.4

Intricate Scene
CSGT-YOLOv8 22.9

YOLOV8 17.6
YOLOV8+ 15.8–16.8

1 YOLOv8+ means that the baseline model introduces modules such as other attention mechanisms such as CNeB,
ECA-Net, and GAM.

5. Discussion

This research is based on campus safety hazards, using object detection and object
tracking algorithms as technical methods to achieve the combination of theoretical algo-
rithm improvements and practical applications. Looking at the existing literature, this
is the first research to use an improved YOLOv8 model combined with a target tracking
algorithm for real-time detection and recognition of pedestrians and vehicles based on
web-based campus surveillance. Typically, using algorithms for object recognition and
tracking in surveillance helps managers efficiently identify abnormal situations. However,
the accuracy of the object detection algorithm and the inference speed after deployment
can affect the results.

This paper presents an improved lightweight model named SGST-YOLOv8, which
replaces the original module with a GSConv backbone to reduce the overall complexity
of the model. At the same time, adding the Triplet Attention mechanism module to the
head section enhances the target representation and integrates contextual information,
reducing background interference to improve classification accuracy. The method achieved
an accuracy of 88.6% on the pedestrian and vehicle dataset and an FPS increase of 3–5 fps
compared to the baseline model on real-time surveillance videos. The model is superior to
YOLOv8n in parameters, GFLOPS, and Precision, indicating that the model is a practical
real-time pedestrian and vehicle detection algorithm. Therefore, the SGST-YOLOv8 model
and deployment method framework proposed in this study can help subsequent scholars
to carry out related research and provide ideas and directions for them.

Although this improved model reduces the overall complexity of the target monitoring
model and adds the Triplet Attention mechanism to improve the classification accuracy,
the model’s ability to monitor small targets still needs to be improved. In future research,
follow-up experiments will further optimize the algorithm to improve the accuracy and
efficiency of the model, and explore its integration with tasks such as target tracking and
semantic segmentation to meet the evolving application requirements.

The current work’s main contributions are compared with those reported in existing
technologies, as shown in Table 5.

From the table, it can be seen that most of the current research in this field focuses
on offline processing and object recognition for static targets, while there has been little
in-depth exploration of subsequent target path tracking. In terms of practical application,
previous research primarily conducted in-depth studies in the scientific domain without
performing relevant experiments for actual deployment. This can be seen from the de-
ployment types and detection targets. Previous research has proposed many excellent and
practical improved algorithms. However, new algorithms continue to emerge in the field
of technology and object detection. Therefore, this study presents a lightweight improved
model, SGST-YOLOv8, providing a new algorithm direction for future research.
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Table 5. Compare the results of this experimental method with contributions from the current stage.

Scenario Method Type of Deployment Target of Detection

City street Existing methods Offline processing Static
such as RANSAC (not real-time) (no tracking)

Campus road YOLOv7 target Offline processing Static and Dynamic
detection algorithm (not real-time) (no tracking)

City street Improved Siamese Offline processing Static and Dynamic
tracking algorithm (not real-time) (tracking)

Campus road Improved YOLOv8 1 Online processing Static and Dynamic
bot sort (real-time) (tracking)

1 This scenario provides the experimental methodology and related techniques for this study.

6. Conclusions

Although the SGST-YOLOv8 improved model performs well in terms of accuracy
and lightweight design, its effectiveness in practical deployment is not outstanding. The
improved model only considers the detection of medium to large objects such as vehi-
cles and pedestrians on campus, without testing and optimizing its capability for small
object detection. Additionally, the experiment used a single dataset of pedestrians and
vehicles, without utilizing a large number of public datasets to further validate the model’s
generalization ability.

Therefore, future research will further optimize the algorithm to enhance the model’s
accuracy and efficiency, as well as improve its capability to detect small objects. Addition-
ally, we will explore integration with other tasks, such as target tracking and semantic
segmentation, to meet the evolving application needs. Subsequent experiments will also
include multiple datasets to test and evaluate the model, enhancing its generalization
and reliability.
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