
Citation: Laukaitis, A. Reversal of

the Word Sense Disambiguation Task

Using a Deep Learning Model. Appl.

Sci. 2024, 14, 5550. https://doi.org/

10.3390/app14135550

Academic Editor: Douglas

O'Shaughnessy

Received: 13 May 2024

Revised: 24 June 2024

Accepted: 25 June 2024

Published: 26 June 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Reversal of the Word Sense Disambiguation Task Using a Deep
Learning Model
Algirdas Laukaitis

The Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11,
LT-10223 Vilnius, Lithuania; algirdas.laukaitis@vilniustech.lt

Abstract: Word sense disambiguation (WSD) remains a persistent challenge in the natural language
processing (NLP) community. While various NLP packages exist, the Lesk algorithm in the NLTK
library demonstrates suboptimal accuracy. In this research article, we propose an innovative method-
ology and an open-source framework that effectively addresses the challenges of WSD by optimizing
memory usage without compromising accuracy. Our system seamlessly integrates WSD into NLP
tasks, offering functionality similar to that provided by the NLTK library. However, we go beyond the
existing approaches by introducing a novel idea related to WSD. Specifically, we leverage deep neural
networks and consider the language patterns learned by these models as the new gold standard. This
approach suggests modifying existing semantic dictionaries, such as WordNet, to align with these
patterns. Empirical validation through a series of experiments confirmed the effectiveness of our
proposed method, achieving state-of-the-art performance across multiple WSD datasets. Notably,
our system does not require the installation of additional software beyond the well-known Python
libraries. The classification model is saved in a readily usable text format, and the entire framework
(model and data) is publicly available on GitHub for the NLP research community.

Keywords: word sense disambiguation; natural language processing; WordNet

1. Introduction

The task of determining the semantic meaning of a word from the context of a sentence
is a challenging problem in natural language processing (NLP) that can be difficult for
both humans and computers [1]. The word sense disambiguation (WSD) problem is one
such challenge that has been the subject of extensive research in the field of NLP. In fact,
some researchers believe that the WSD problem is AI-complete [2]. This means that if a
computer could solve this problem, it would be able to solve all other problems of artificial
intelligence at the same time. However, in this study, the WSD problem was treated as a
simple data classification problem, which large neural networks must be able to solve with
almost 100% accuracy if a suitable classification scheme is provided.

Various WSD solutions have been proposed over several decades of research, among
which, deep neural networks are the most effective [3]. These solutions model the WSD
problem as a classification task, where each class corresponds to a specific concept or synset.
Usually, a separate model is trained for each word on a corpus of sentences annotated with
that word. However, a neural network-based WSD solution requires a large amount of
annotated data, which may not be available for many words. Therefore, knowledge-based
methods, which exploit the relationships between semantic categories in a knowledge base,
offer an alternative way to solve the WSD problem [4,5]. These methods infer the most
likely sense of a word on the basis of the semantic context.

One of the main assumptions of knowledge-based methods is that the relationships
between concepts in the knowledge base are accurate and reliable, i.e., they are free of
errors. To illustrate that this is not always the case, we took the word ‘table’ from the

Appl. Sci. 2024, 14, 5550. https://doi.org/10.3390/app14135550 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14135550
https://doi.org/10.3390/app14135550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1344-093X
https://doi.org/10.3390/app14135550
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14135550?type=check_update&version=2

Appl. Sci. 2024, 14, 5550 2 of 19

semantic dictionary WordNet [5], which was the primary knowledge base used in this
study, and examined its suitability as a formal ontology.

The word ‘table’ has eight senses, six of which are nouns. Only two of these noun
senses can be considered as ontology classes: “table%1:14:00::” (a set of data arranged in
rows and columns) and “table%1:06:01::” (a piece of furniture having a smooth flat top that
is usually supported by one or more vertical legs). The remaining four noun senses are
not appropriate as ontology classes of the word “table”. For instance, “table%1:06:02::” (a
piece of furniture with tableware for a meal laid out on it) is a specific instance of the sense
“table%1:06:01::” and can be ignored for many semantic analysis tasks of natural language.
Another sense, “table%1:14:01::” (a company of people assembled at a table for a meal or
game), is described in WordNet as an abstract entity and it is impossible logically derive
from the WordNet knowledge base that it is a collection of physical entities.

Some may contest the assertion that the word “table” possesses only two discernible
semantic meanings, thereby raising the query whether a formal methodology can be
devised for categorizing words into distinct semantic classes. This question becomes
even more pertinent when considering the lack of uniformity in the existing approaches.
Previous works [6–9] demonstrated a significant disparity in how semantic meanings
are classified for individual words. This inconsistency poses a challenge for researchers
attempting to compare findings across different studies and hinders the development of a
unified framework for semantic analysis.

Addressing this query constitutes a focal point of this research article. The central
idea of our proposed formalization revolves around harnessing the capabilities of deep
learning models to extract word embedding vectors. It is assumed that these vectors, when
subjected to clustering analysis, should correspond closely to the conceptual categories
delineated within a formal ontology, given sufficient training and parameterization of
the deep learning model. Figure 1 illustrates this premise, depicting the projection of
embedded vectors onto the first two principal components derived through principal
component analysis (PCA), obtained from the BERT [10] model after processing sentences
containing the term “table”. Notably, the visual representation in the figure reveals two
distinct clusters discerned by the BERT model. The method presented within this study
facilitated the consolidation of six synsets attributed to the word “table” within WordNet
into two coherent categories. Remarkably, the alignment between these two synsets and
the delineated clusters in the PCA projection underscored the efficacy of the approach
presented here in aligning the semantic categorization with the inherent structure of the
deep learning model’s representations.

To validate the alignment between our proposed deep learning-based categorization
and established ontological structures, we used a custom WSD debugging system. This
system, detailed in Section 4, facilitates the systematic analysis of erroneous classification
results. It allows for the exploration of alternative WordNet synset labels and their impact
on the outcome of categorization. This iterative process enables the identification of synset
groupings that yield more semantically consistent results, aligning with the inherent struc-
ture of the deep learning model’s representations. Figure 1 provides a visual representation
of our findings for the word “table”, showcasing two distinct images obtained during the
evaluation process. On the left side of Figure 1, we observe the image generated when all
the WordNet synset labels remain unchanged. Conversely, the image on the right depicts
the scenario where specific synset labels, namely “table%1:06:02::” and “table%1:14:01::”,
have been modified to the label “table%1:06:01::”. These adjustments were made after an
analysis using the WSD debugging system.

The WSD debugging system played a crucial role in identifying erroneous classification
results. By systematically examining the synsets’ values, we were able to justify the
combination of certain synsets. Notably, this formal justification enhanced the reliability of
our approach and contributed to the robustness of our WSD model. For further details and
technical specifics regarding the WSD debugging system, interested readers can refer to the
GitHub repository associated with this project (Supplementary Materials).

Appl. Sci. 2024, 14, 5550 3 of 19

Appl. Sci. 2024, 14, x FOR PEER REVIEW 2 of 20

errors. To illustrate that this is not always the case, we took the word ‘table’ from the
semantic dictionary WordNet [5], which was the primary knowledge base used in this
study, and examined its suitability as a formal ontology.

The word ‘table’ has eight senses, six of which are nouns. Only two of these noun
senses can be considered as ontology classes: “table%1:14:00::” (a set of data arranged in
rows and columns) and “table%1:06:01::” (a piece of furniture having a smooth flat top
that is usually supported by one or more vertical legs). The remaining four noun senses
are not appropriate as ontology classes of the word “table”. For instance, “ta-
ble%1:06:02::” (a piece of furniture with tableware for a meal laid out on it) is a specific
instance of the sense “table%1:06:01::” and can be ignored for many semantic analysis
tasks of natural language. Another sense, “table%1:14:01::” (a company of people assem-
bled at a table for a meal or game), is described in WordNet as an abstract entity and it is
impossible logically derive from the WordNet knowledge base that it is a collection of
physical entities.

Some may contest the assertion that the word “table” possesses only two discernible
semantic meanings, thereby raising the query whether a formal methodology can be de-
vised for categorizing words into distinct semantic classes. This question becomes even
more pertinent when considering the lack of uniformity in the existing approaches. Pre-
vious works [6–9] demonstrated a significant disparity in how semantic meanings are
classified for individual words. This inconsistency poses a challenge for researchers
attempting to compare findings across different studies and hinders the development of a
unified framework for semantic analysis.

Addressing this query constitutes a focal point of this research article. The central
idea of our proposed formalization revolves around harnessing the capabilities of deep
learning models to extract word embedding vectors. It is assumed that these vectors,
when subjected to clustering analysis, should correspond closely to the conceptual cate-
gories delineated within a formal ontology, given sufficient training and parameteriza-
tion of the deep learning model. Figure 1 illustrates this premise, depicting the projection
of embedded vectors onto the first two principal components derived through principal
component analysis (PCA), obtained from the BERT [10] model after processing sen-
tences containing the term “table”. Notably, the visual representation in the figure re-
veals two distinct clusters discerned by the BERT model. The method presented within
this study facilitated the consolidation of six synsets attributed to the word “table” within
WordNet into two coherent categories. Remarkably, the alignment between these two
synsets and the delineated clusters in the PCA projection underscored the efficacy of the
approach presented here in aligning the semantic categorization with the inherent
structure of the deep learning model’s representations.

Figure 1. Clusters of the word “table” embedded in the WordNet corpus. The projection of em-
bedded vectors is onto the first two principal components. The images were obtained using the
Figure 1. Clusters of the word “table” embedded in the WordNet corpus. The projection of embedded
vectors is onto the first two principal components. The images were obtained using the WSD
debugging system, which is presented in Section 4 of this study. The (left) side is the image when
all of the WordNet synset labels are left without changing them. The (right) is the image when the
synset labels “table%1:06:02::” and “table%1:14:01::” are changed to the label “table%1:06:01::”.

Another important assumption made in WSD tasks is the assumption that human-
annotated sentences are the gold standard that is error-free. However, this assumption is
fundamentally flawed, as errors can occur not only in programming but also in the process
of annotating data. During programming, we can compile and test the program that is to
eliminate some errors. Meanwhile, when annotating natural language sentences, we often
have no feedback about the quality of the annotations and, as a result, the probability of
errors is quite high.

The method presented in this study abandoned these two assumptions and considered
that the uncertainty of the WSD problem arises from the following elements of the knowl-
edge base: (1) not having enough annotated sentences; (2) poorly annotated sentences, that
is, cases when the person annotating the sentences made a mistake in determining the
semantic meaning of the word; and (3) an incomplete and erroneously designed knowledge
base. By addressing these issues, the suggested method is able to achieve high accuracy in
solving the WSD task.

In addition to the proposed WSD method, this study introduces a system that effec-
tively implements it. The system consists of two essential components, the first of which
is the novel WSD system, characterized by its ability to achieve a classification accuracy
comparable with state-of-the-art systems while maintaining relatively low consumption
of computational memory. This makes it particularly valuable in natural language tasks
that involve the use of embedded word vectors derived from deep neural networks, where
computational resources are often limited.

The other component of the system is a debugging tool for the WSD task. The key
idea behind this tool is to use embedded vector clusters as the reference standard, allowing
the detection of outliers in the embedding space that indicate inconsistent annotations
or inaccuracies in the design of the knowledge base. The motivation for developing
this tool came from the system’s error analysis. Interestingly, the analysis showed that
many classification errors were due to the human annotators’ mistakes rather than the
system’s limitations.

The rest of this article is organized as follows. Section 2 describes the new WSD system,
which has two main advantages over other WSD systems. First, it achieves comparable
accuracy while consuming much less computational memory. Second, it is implemented in
a Google Colab notebook, which enables easy testing and integration of the system with
other NLP frameworks using only a web browser.

Appl. Sci. 2024, 14, 5550 4 of 19

Section 3 introduces the system’s training algorithm, highlighting its reliance on
standard machine learning libraries, a unique feature that enhances its accessibility and
extensibility. Section 4 introduces the debugging method of the WSD task, a tool for creating
semantic dictionaries and ontologies. This WSD debugging method not only identifies
incorrectly annotated sentences but also lets users refine and correct these sentences, assess-
ing their impact on the model’s training. Section 6 presents the results of a comprehensive
experiment, encompassing standard datasets for the WSD problem, to evaluate the de-
veloped system’s accuracy. The article concludes with a summary and a discussion of
future work.

2. The WSD Framework

The proposed word sense disambiguation framework sits within a broader natural lan-
guage processing pipeline (Figure 2). This minimal representation showcases the system’s
integration and clarifies its role in addressing the WSD problem. The framework comprises
eight key components. To ensure reproducibility, we have developed a comprehensive
Google Colab notebook that mirrors the step-by-step process depicted in Figure 2. This
Colab notebook serves as a practical guide for researchers and practitioners interested in
implementing the proposed method. Readers can access the Colab notebook via the GitHub
repository associated with this project (Supplementary Materials). The Colab notebook
is designed for simplicity and ease of use. By executing a single command (“Run All”),
users can seamlessly reproduce our entire methodology. In the following description, we
provide a detailed breakdown of each of the eight essential steps involved in this word
sense disambiguation framework:

1. Your text: The initial stage begins by receiving raw text input.
2. spaCy NLP: This component processes the text, extracting word lemmas and deter-

mining grammatical forms through spaCy’s NLP models [11].
3. KerasNLP BERT: Leveraging the KerasNLP library [12], the system generates contex-

tual BERT neural network embedding vectors for each word in the sentence.
4. Word alignment: This alignment results from a combination of both the spaCy and

KerasNLP models, creating an index that maps corresponding words between the
two representations.

5. NLTK WordNet: Using the NLTK [13] WordNet synset tags, this module annotates all
the words in the text. The algorithm selects the most frequent synset for each word.

6. NCA projections: The system projects each word into an n-dimensional space derived
from the training data, capturing the essential semantic relationships.

7. kNN classification: The kNN method is used for the classification of words that
potentially have multiple semantic meanings, where their lemma can be described by
several WordNet synset values.

8. Final classification: This model consolidates the information from previous stages,
providing the final, refined classification for each word.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 20

Figure 2. A general implementation of the WSD method.

spaCy NLP. The core component of the proposed WSD framework is the spaCy
NLP library. spaCy offers several functionalities that are critical to WSD, each addressing
a specific aspect of the problem, as follows.
• Tokenization and lemmatization. spaCy segments the input text into individual

words (tokens) and identifies the lemma (base form) for each token. This is crucial
for WSD, as the synset classifier operates on lemmas, ensuring consistent represen-
tation across different inflections of the word.

• Noun phrase chunking. spaCy identifies noun phrases (NPs) within the text. NPs
play a twofold role. First, they help pinpoint potential word combinations aligning
with distinct synsets in WordNet. Second, chunking facilitates the identification of
the head noun within the NP, enabling the selection of the most relevant synset for
the entire phrase.

• Part-of-speech (POS) tagging. spaCy assigns grammatical tags (POS tags) to each
word, indicating its role within the sentence (e.g., noun, verb, adjective). POS tags
are valuable features for the synset classifier, providing additional context alongside
the lemma for more accurate WSD.

• Dependency parsing. spaCy can also extract the dependency relationships between
words in a sentence. While not currently utilized in this WSD framework, depend-
ency information holds promise for future development. Analyzing these relation-
ships could refine word sense disambiguation by considering the syntactic structure
of the sentence.

• Named entity recognition (NER): NLP libraries often include NER modules that
identify predefined named entities such as people, locations, and organizations.
However, NER typically covers a limited range of semantic categories compared
with WSD. In spaCy and similar libraries (e.g., Stanford CoreNLP [14]), NER ad-
dresses only a subset of noun phrases. This framework proposes aligning the NER
categories with their corresponding hypernyms in WordNet, potentially leveraging
the existing NER functionalities to support WSD. By contrast, the WordNet WSD
module independently identifies words and phrases that are suitable for disambig-
uation, going beyond the limitations of NER.
Two widely recognized NLP libraries, spaCy and Stanford CoreNLP, were subjected

to experimentation. Individual Colab documents were generated for each library, pre-
senting a comprehensive illustration of their potential in addressing the problem of word
sense disambiguation. The subsequent discussion centers on the spaCy library, with the
understanding that the outlined principles are equally applicable to the Stanford
CoreNLP library.

KerasNLP BERT. A crucial element of the proposed WSD method is the integration
of the KerasNLP. This library offers the capability to leverage various pretrained deep
neural network models, enabling further training on fresh data or the extraction of em-
bedded word vectors. In the context of this research, the focus was on showcasing the
outcomes derived from using the BERT neural network. BERT’s adeptness lies in its ca-
pacity to generate embedding vectors for words within a sentence, a process that is inte-

Figure 2. A general implementation of the WSD method.

Detailed descriptions of the critical components follow, offering a deeper understand-
ing of the WSD framework’s inner workings.

Appl. Sci. 2024, 14, 5550 5 of 19

spaCy NLP. The core component of the proposed WSD framework is the spaCy NLP
library. spaCy offers several functionalities that are critical to WSD, each addressing a
specific aspect of the problem, as follows.

• Tokenization and lemmatization. spaCy segments the input text into individual
words (tokens) and identifies the lemma (base form) for each token. This is crucial for
WSD, as the synset classifier operates on lemmas, ensuring consistent representation
across different inflections of the word.

• Noun phrase chunking. spaCy identifies noun phrases (NPs) within the text. NPs
play a twofold role. First, they help pinpoint potential word combinations aligning
with distinct synsets in WordNet. Second, chunking facilitates the identification of the
head noun within the NP, enabling the selection of the most relevant synset for the
entire phrase.

• Part-of-speech (POS) tagging. spaCy assigns grammatical tags (POS tags) to each
word, indicating its role within the sentence (e.g., noun, verb, adjective). POS tags are
valuable features for the synset classifier, providing additional context alongside the
lemma for more accurate WSD.

• Dependency parsing. spaCy can also extract the dependency relationships between
words in a sentence. While not currently utilized in this WSD framework, dependency
information holds promise for future development. Analyzing these relationships
could refine word sense disambiguation by considering the syntactic structure of
the sentence.

• Named entity recognition (NER): NLP libraries often include NER modules that iden-
tify predefined named entities such as people, locations, and organizations. However,
NER typically covers a limited range of semantic categories compared with WSD.
In spaCy and similar libraries (e.g., Stanford CoreNLP [14]), NER addresses only a
subset of noun phrases. This framework proposes aligning the NER categories with
their corresponding hypernyms in WordNet, potentially leveraging the existing NER
functionalities to support WSD. By contrast, the WordNet WSD module independently
identifies words and phrases that are suitable for disambiguation, going beyond the
limitations of NER.

Two widely recognized NLP libraries, spaCy and Stanford CoreNLP, were subjected to
experimentation. Individual Colab documents were generated for each library, presenting
a comprehensive illustration of their potential in addressing the problem of word sense
disambiguation. The subsequent discussion centers on the spaCy library, with the under-
standing that the outlined principles are equally applicable to the Stanford CoreNLP library.

KerasNLP BERT. A crucial element of the proposed WSD method is the integration of
the KerasNLP. This library offers the capability to leverage various pretrained deep neural
network models, enabling further training on fresh data or the extraction of embedded
word vectors. In the context of this research, the focus was on showcasing the outcomes
derived from using the BERT neural network. BERT’s adeptness lies in its capacity to
generate embedding vectors for words within a sentence, a process that is integral to
assessing the significance of each word synset. By using BERT’s word embedding vectors,
we aimed to enhance the precision and granularity of the results of disambiguation, thereby
reinforcing the overall efficacy of our WSD approach.

Word alignment. The integration of the spaCy NLP and KerasNLP modules stands
as a pivotal aspect of our methodology. These modules operate independently, each
generating its own tables of words (or tokens, in the case of KerasNLP). However, due
to potential disparities between these tables, an additional step is necessary to establish
correspondence. This entails creating an index that maps spaCy’s words to their respective
tokens in KerasNLP. The algorithm facilitating this matching process is straightforward
and involves the following key steps:

1. Through sequential scanning of the spaCy word table, each word is matched to the
beginning of a token from the list generated by BERT’s tokenizer.

Appl. Sci. 2024, 14, 5550 6 of 19

2. To identify the corresponding beginning of the word (token) from the BERT module,
consecutive tokens are successively combined and compared against the given spaCy
word. Upon finding a match, the index of the first located BERT token is returned.
This iterative process ensures the alignment of spaCy words with their corresponding
tokens in KerasNLP, facilitating integration within the WSD framework.

NLTK WordNet. The NLTK WordNet module is a key component of our WSD method-
ology, as it provides a convenient API for accessing the WordNet dictionary. This module
helps us assign synset values to words that either have no sample sentences or have only
one synset value. Furthermore, the choice of the NLTK WordNet module was driven by
important non-functional requirements that emerged during the project’s development.

One of these requirements was the compatibility of the WSD system code with the
Google Colab environment, especially when using the “Run all” menu option. Among
the various approaches to the WSD problem that have been proposed in the last 30 years,
only the NLTK WordNet module, along with its WSD Lesk algorithm [15], fulfilled this
requirement. This demonstrates the NLTK WordNet module’s dependability and flexibility,
making it an essential element of our WSD framework.

NCA projections. The Nearest Neighbor (KNN) algorithm is a simple yet powerful
method for solving the problem of word sense disambiguation. It only depends on one
parameter, and its accuracy improves as more training data become available. However,
KNN faces a significant challenge when applied to the WordNet WSD problem. This
challenge stems from the high computational cost of storing and searching the whole
dataset in memory to find the synsets for each word in a given sentence. In our approach,
we overcame this limitation of KNN by using a technique that projects the embedded
word vectors into a lower-dimensional subspace before applying the KNN classifier. The
dimensionality of this subspace is dynamically adjusted during the training phase. To
choose the best components for this transformation, we used the neighborhood components
analysis (NCA) method [16], which ensures an efficient and effective solution to the WSD
problem within the WordNet framework.

Final classification. The problem of word sense disambiguation is often a prerequisite
for solving other tasks in natural language processing. The final classification module,
which integrates the results of previous steps, is crucial for delivering these results to the
specific task that needs a resolution of WSD. In this project, we have identified some NLP
tasks that benefit from the outcomes of WSD. One of them is 3D scene generation, where the
WSD results help us make two important decisions: determining whether a noun phrase
refers to a physical object that needs to be represented in the 3D scene, and finding out
whether the objects in the scene have any movement. Another task is animating works of
fiction. As in 3D scenes, identifying noun phrases that describe relevant objects is essential.
Therefore, the algorithm for the final classification module consists of the following steps:

1. Using the spaCy library, we extract noun and verb phrases.
2. Using spaCy’s grammatical relation analysis, we find the main (head) word in

each phrase.
3. Using the WSD module, we select noun phrases, where the head word indicates a

physical object. We also mark verb phrases where the head word expresses movement
of a physical body.

4. Only the selected phrases that meet these criteria are used for the final NLP task,
which involves phrases related to physical objects and stages of movement, thus
enhancing the efficiency and effectiveness of subsequent NLP operations.

3. Training

The principal objective of this project was to develop a model capable of achieving
accuracy comparable with existing models utilizing embedded word vectors, as demon-
strated in [17–19]. A key innovation pursued from inception was the imperative for the
model to significantly reduce its computational memory footprint while maintaining such
levels of accuracy.

Appl. Sci. 2024, 14, 5550 7 of 19

Following the successful achievement of predefined targets related to the model’s size
and accuracy, an exhaustive investigation was undertaken to dissect the underlying causes
of error propagation in the context of word sense disambiguation. Leveraging established
datasets [17,20–23], our analysis revealed that certain inaccuracies did not originate from
inherent deficiencies in the model but rather from distinct sources, as follows.

1. Discrepancies in the test dataset: The first source of error was discrepancies within
the test datasets themselves. Variability in the quality of annotation, the distribution
of the data, and contextual diversity posed challenges for accurate disambiguation.
In Figure 3 (left), we observe a sample of test data associated with the synset value
“level%1:26:00::_test”, which exhibits proximity to the group of training data repre-
sented by the synset value “level%1:07:00::”. Further investigation using tools from
the WSD debugging system revealed that this discrepancy arose from an annota-
tion error in the standard test data [23]. Specifically, the sentence with the identifier
“semeval2013.d000.s008” contained the phrase “emissions . . . compared with 1990
levels”. Here, the model identified a possible misinterpretation of “levels” and as-
signed it the sense of “a position on a scale of intensity or amount or quality” instead
of “a specific identifiable position in a continuum or series or especially in a process”.
The analyst reviewed the model’s proposed corrections and, if in agreement, incorpo-
rated them into the “sentence_synset_to_synset.tsv” corrections file (available on the
project’s GitHub page). On the right side of Figure 3, we present an image reflecting
these corrected annotations.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 20

to consider the intended application of natural language processing. In this work,
synset merging decisions were guided by the ultimate goal of using NLP to generate
2D and 3D models, as described in [1]. Over the past five decades, starting with the
pioneering SHRDLU system [25], numerous systems have attempted natural lan-
guage manipulation of objects of computer graphics (see [26] for a review of 26 such
systems). Many of these systems process multiple sentences to identify physical ob-
jects within a 3D scene, often leveraging spatial knowledge to resolve ambiguities
(e.g., SceneSeer [27]). This specific NLP application guided the WSD solution pre-
sented in this study. Returning to the example depicted in Figure 3, we made the
decision to merge the synsets “level%1:26:00::”, “level%1:09:00::”, and “lev-
el%1:26:01::” into a single group. Subsequently, Figure 3 (right) illustrates how the
training sample points align in the plane defined by the two NCA components.
Throughout the course of this WSD project, approximately 1800 such changes were
implemented, and all details are accessible on the project’s GitHub repository in the
file “synset_to_synset.tsv”.

4. Scarcity of Data for Specific Words: Another critical constraint emerged: the lack of
sufficient data to construct reliable classifiers for specific words. This limitation
hindered the model’s ability to generalize effectively across the entire lexicon, par-
ticularly for low-frequency or domain-specific terms. Returning to the example de-
picted in Figure 3 (left), we observe that the synset value “level%1:06:00::” is associ-
ated with only one training sentence and one test sentence. These sentences are sig-
nificantly distant from each other in the NCA component space, resulting in model
errors. To address this challenge, we generated sentences using ChatGPT or Gemini
AI agents specifically for synset values with limited examples. These AI agents were
prompted with descriptions of synsets from the WordNet dictionary. Notably, on
the right side of Figure 3, we observe that this approach proved beneficial: the sen-
tences for the synset value “level%1:06:00::” formed a distinct cluster, and the test
sentence aligned within this cluster.

Figure 3. This figure showcases the impact of the proposed data transformation methodology on
word sense disambiguation. Each point on the (left) side represents a sentence containing the noun
“level” from the standard WordNet dataset. The (right) side depicts the corresponding data points
after applying the transformations outlined in the study. By visually comparing the points, we can
observe how the transformations effectively separate data points belonging to different senses of
the word “level,” improving the model’s ability to distinguish between them during disambigua-
tion.

Figure 3. This figure showcases the impact of the proposed data transformation methodology on
word sense disambiguation. Each point on the (left) side represents a sentence containing the noun
“level” from the standard WordNet dataset. The (right) side depicts the corresponding data points
after applying the transformations outlined in the study. By visually comparing the points, we can
observe how the transformations effectively separate data points belonging to different senses of the
word “level”, improving the model’s ability to distinguish between them during disambiguation.

2. Annotation errors in the training data: Secondly, we identified annotation errors
within the training dataset [24]. These inaccuracies were propagated through the
model, affecting its performance during inference. Addressing and rectifying such
errors became crucial for enhancing the model’s robustness. Similar to the test dataset,
the training data also exhibited annotation errors. We identified these errors by visu-
ally inspecting NCA projections of the data points. Points that deviated significantly
from their designated synset cluster were flagged for potential misannotation. Fol-

Appl. Sci. 2024, 14, 5550 8 of 19

lowing the analyst’s verification of the context and intended sense, corrections were
incorporated into the “sentence_synset_to_synset.tsv” file for retraining the model.

3. Limitations of WordNet synsets: Our investigation highlighted inadequacies within
WordNet synsets’ relationships and descriptions. While WordNet serves as a valuable
lexical resource, it occasionally fails to capture subtle nuances required for com-
prehensive word sense disambiguation. Notably, we observed an overly granular
segmentation of certain words into synsets, hindering accurate resolution of their
sense. Therefore, when modifying WordNet synset lists or relations, it is crucial to
consider the intended application of natural language processing. In this work, synset
merging decisions were guided by the ultimate goal of using NLP to generate 2D
and 3D models, as described in [1]. Over the past five decades, starting with the
pioneering SHRDLU system [25], numerous systems have attempted natural lan-
guage manipulation of objects of computer graphics (see [26] for a review of 26 such
systems). Many of these systems process multiple sentences to identify physical
objects within a 3D scene, often leveraging spatial knowledge to resolve ambiguities
(e.g., SceneSeer [27]). This specific NLP application guided the WSD solution pre-
sented in this study. Returning to the example depicted in Figure 3, we made the
decision to merge the synsets “level%1:26:00::”, “level%1:09:00::”, and “level%1:26:01::”
into a single group. Subsequently, Figure 3 (right) illustrates how the training sample
points align in the plane defined by the two NCA components. Throughout the course
of this WSD project, approximately 1800 such changes were implemented, and all de-
tails are accessible on the project’s GitHub repository in the file “synset_to_synset.tsv”.

4. Scarcity of Data for Specific Words: Another critical constraint emerged: the lack
of sufficient data to construct reliable classifiers for specific words. This limitation
hindered the model’s ability to generalize effectively across the entire lexicon, particu-
larly for low-frequency or domain-specific terms. Returning to the example depicted
in Figure 3 (left), we observe that the synset value “level%1:06:00::” is associated with
only one training sentence and one test sentence. These sentences are significantly
distant from each other in the NCA component space, resulting in model errors. To
address this challenge, we generated sentences using ChatGPT or Gemini AI agents
specifically for synset values with limited examples. These AI agents were prompted
with descriptions of synsets from the WordNet dictionary. Notably, on the right side
of Figure 3, we observe that this approach proved beneficial: the sentences for the
synset value “level%1:06:00::” formed a distinct cluster, and the test sentence aligned
within this cluster.

To address the limitations identified in the error analysis, we propose the refined
model training process outlined in Figure 4. This section delves into a detailed breakdown
of each component and its contribution to the enhanced performance of the model.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 20

To address the limitations identified in the error analysis, we propose the refined
model training process outlined in Figure 4. This section delves into a detailed break-
down of each component and its contribution to the enhanced performance of the model.

Figure 4. Process of the WSD training model.

Obtaining the training data. This project used a multi-phased approach to acquir-
ing data, aiming to create a robust and iteratively improvable WSD model.

The initial training data consisted of sentences from the widely used SemCor corpus
[24]. While effective, this dataset’s limitations necessitated exploring alternative sources.
Here, we detail the exploration of various data augmentation techniques and their impact
on the model’s performance.

WordNet definitions: Initially, we attempted to improve the model’s performance
by augmenting data using the existing WordNet synsets’ definitions. However, utilizing
the WSD debugging method described later, we observed a detrimental effect on accu-
racy when incorporating certain definitions. Consequently, some definitions were ex-
cluded during the process of iterative improvement.

Artificially generated sentences: We further investigated the inclusion of artificially
generated sentences based on WordNet’s hypernym and hyponym relations. These sen-
tences were constructed by combining hypernym/hyponym definitions with a phrase
indicating the intended meaning. Evaluation revealed this approach to be ineffective, and
the generated sentences were not used in further training.

Wikipedia articles: Given the BERT neural network’s pretraining on Wikipedia data,
we explored the impact of incorporating additional Wikipedia sentences. This approach
proved successful. Adding approximately 10 new sentences per novel synset value de-
monstrably improved the model’s ability to identify those synsets.

FrameNet sentences: Considering the planned future integration of FrameNet with
WordNet, we investigated the inclusion of FrameNet sentences. While a comprehensive
FrameNet–WordNet merger falls outside this study’s scope, a subset of FrameNet sen-
tences was incorporated to enhance the model’s performance.

Chatbot-generated sentences: Finally, we explored the use of chatbots (ChatGPT 3.5,
Microsoft Copilot, and Google Gemini) for generating new training data. This method
offered a convenient way to obtain novel sentences. However, rigorous human expert
evaluation ensured that only accurate sentences were added to the training data.

Changing the training data. Following acquisition of the data, a process of data re-
placement ensued, whereby synset tags of certain words were substituted either due to
mislabeling within the dataset or as a result of the consolidation of WordNet synsets by
the knowledge base manager, thereby creating a new version of WordNet. All requisite
transformations were documented in textual format on the GitHub portal, facilitating
direct editing through the platform’s integrated text editor.

KerasNLP BERT. Subsequently, the KerasNLP library was employed to generate
embedding vectors for each word within the sentences. Noteworthy observations during
this phase highlighted a limitation of the BERT model pertaining to its sensitivity when

Figure 4. Process of the WSD training model.

Obtaining the training data. This project used a multi-phased approach to acquiring
data, aiming to create a robust and iteratively improvable WSD model.

The initial training data consisted of sentences from the widely used SemCor cor-
pus [24]. While effective, this dataset’s limitations necessitated exploring alternative sources.

Appl. Sci. 2024, 14, 5550 9 of 19

Here, we detail the exploration of various data augmentation techniques and their impact
on the model’s performance.

WordNet definitions: Initially, we attempted to improve the model’s performance by
augmenting data using the existing WordNet synsets’ definitions. However, utilizing the
WSD debugging method described later, we observed a detrimental effect on accuracy
when incorporating certain definitions. Consequently, some definitions were excluded
during the process of iterative improvement.

Artificially generated sentences: We further investigated the inclusion of artificially
generated sentences based on WordNet’s hypernym and hyponym relations. These sen-
tences were constructed by combining hypernym/hyponym definitions with a phrase
indicating the intended meaning. Evaluation revealed this approach to be ineffective, and
the generated sentences were not used in further training.

Wikipedia articles: Given the BERT neural network’s pretraining on Wikipedia data,
we explored the impact of incorporating additional Wikipedia sentences. This approach
proved successful. Adding approximately 10 new sentences per novel synset value demon-
strably improved the model’s ability to identify those synsets.

FrameNet sentences: Considering the planned future integration of FrameNet with
WordNet, we investigated the inclusion of FrameNet sentences. While a comprehensive
FrameNet–WordNet merger falls outside this study’s scope, a subset of FrameNet sentences
was incorporated to enhance the model’s performance.

Chatbot-generated sentences: Finally, we explored the use of chatbots (ChatGPT 3.5,
Microsoft Copilot, and Google Gemini) for generating new training data. This method
offered a convenient way to obtain novel sentences. However, rigorous human expert
evaluation ensured that only accurate sentences were added to the training data.

Changing the training data. Following acquisition of the data, a process of data
replacement ensued, whereby synset tags of certain words were substituted either due to
mislabeling within the dataset or as a result of the consolidation of WordNet synsets by
the knowledge base manager, thereby creating a new version of WordNet. All requisite
transformations were documented in textual format on the GitHub portal, facilitating direct
editing through the platform’s integrated text editor.

KerasNLP BERT. Subsequently, the KerasNLP library was employed to generate em-
bedding vectors for each word within the sentences. Noteworthy observations during
this phase highlighted a limitation of the BERT model pertaining to its sensitivity when
encountering words absent from its dictionary. For instance, the word “Fujimoto” would
be tokenized into “Fuji”, “mo”, and “to”, potentially leading to significant deviations
in the embedded vectors for other words within the sentence. Nevertheless, the selec-
tion of the KerasNLP library was predicated upon its adherence to key non-functional
requirements, namely stable performance, rapid loading of the model, and the anticipated
long-term support.

Obtaining the components. This project explored a novel approach to word sense dis-
ambiguation (WSD) by leveraging neighborhood component analysis (NCA) in conjunction
with word embedding vectors derived from the BERT neural network. While established
methods such as fine-tuning and transfer learning excel at integrating pretrained networks
for new tasks (e.g., sentiment analysis), they are often tailored towards creating new classi-
fiers. Our objective, however, diverged from simply generating a WordNet synset classifier.
Instead, we aimed to reshape WordNet’s structure to align better with the knowledge
encoded within BERT. This focus on interactive restructuring of knowledge necessitated a
WSD method that facilitates the visualization of learned knowledge.

Here, word embedding vectors and their multidimensional projections became the
cornerstone of selecting the model due to their inherent visualizability. Following a compre-
hensive evaluation of the vector design methods offered by scikit-learn, NCA projections
were chosen for their demonstrably superior performance in identifying the synset values.

We further refined the NCA model by meticulously tuning its meta-parameters. No-
tably, each word sense was assigned a k-nearest neighbors (k-NN) classifier operating

Appl. Sci. 2024, 14, 5550 10 of 19

within the n-dimensional NCA component space. Exploration of these parameters (k
ranging from 2 to 5, n ranging from 2 to 5) was conducted during the model’s training, with
a focus on maximizing the classification accuracy. Additionally, a stringent regularization
criterion was implemented: each unit of increase in a parameter had to yield at least a 1%
enhancement of the model’s accuracy. This ensured robustness and stability during the
training process.

Transforming the training data. In our model, we used a systematic approach to
project word embedding vectors into the foundational NCA component space. This pro-
jection process constitutes the core architecture of our model, which is composed of two
principal elements: the NCA component vectors and the training data projections derived
from the NCA framework. It is crucial to highlight that both vector types (the NCA compo-
nents and the data projections) were precisely rounded to two decimal places. This exacting
standard served a twofold purpose: it optimizes the utilization of memory resource, fa-
cilitating efficient data storage and computational processing, and it ensures uniformity
and coherence in the model’s representational schema. By adopting this method, we
achieved equilibrium between computational efficiency and the fidelity of the model’s
representations, allowing for smooth integration and deployment across various computa-
tional settings.

Saving the components. A critical stage in the training process involves the develop-
ment of a dedicated classifier. This independent classifier plays a vital role in refining the
model’s capacity for accurate word sense disambiguation. Once the training phase is com-
plete, the WSD model is serialized and stored in the JSON format. JSON (JavaScript Object
Notation) is a well-established and interoperable data exchange standard that facilitates the
efficient storage and transmission of the model’s architecture and parameters. This preser-
vation strategy ensures seamless accessibility and enables straightforward dissemination of
the model for future research applications.

4. Debugging and the Knowledge Base Management System

The WSD model relies heavily on established lexical resources such as WordNet and
the SemCor corpus. While these resources have proven valuable for NLP tasks, their lack
of recent updates (over a decade) can limit their ability to handle the evolution of language
and the emergence of new word senses. This study proposes a systematic approach to
address this limitation. We aimed to enhance the quality and coverage of WordNet and
SemCor for WSD tasks. This section will focus on debugging and expanding the knowledge
base within WordNet, as well as enriching the annotated textual sentences in SemCor. By
improving these resources, we aimed to increase the adaptability and applicability of
WordNet to diverse linguistic contexts and domains.

This study proposes a multifaceted methodology to address the limitations in ex-
isting lexical resources such as WordNet. The methodology focuses on two key aspects:
(1) debugging the WordNet knowledge base to identify and rectify inconsistencies and
inaccuracies in the synsets’ descriptions, thereby enhancing their reliability for WSD tasks;
(2) expanding WordNet with new synsets to accommodate the evolving nature of language
and ensure its continued relevance for contemporary NLP applications. By improving the
quality and coverage of WordNet and similar resources such as SemCor, this approach
aimed to increase the adaptability and applicability of these tools to diverse linguistic
contexts and domains.

Figure 5 illustrates a schematic of the proposed WSD debugging methodology, which
is a five-stage process designed to address inconsistencies and inaccuracies in WordNet. The
initial stages (1 and 2) focus on preparation of the data and semantic representation. Stage
1 involves rigorous selection of the data and preprocessing of the training and testing data
(including cleaning and augmentation) to ensure the data’s quality and representativeness.
Stage 2 leverages the pretrained “KerasNLP BERT” module to acquire embedded word
vectors from the prepared data. This captures rich semantic representations for each word
within its context.

Appl. Sci. 2024, 14, 5550 11 of 19

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20

guage and the emergence of new word senses. This study proposes a systematic ap-
proach to address this limitation. We aimed to enhance the quality and coverage of
WordNet and SemCor for WSD tasks. This section will focus on debugging and ex-
panding the knowledge base within WordNet, as well as enriching the annotated textual
sentences in SemCor. By improving these resources, we aimed to increase the adaptabil-
ity and applicability of WordNet to diverse linguistic contexts and domains.

This study proposes a multifaceted methodology to address the limitations in ex-
isting lexical resources such as WordNet. The methodology focuses on two key aspects:
(1) debugging the WordNet knowledge base to identify and rectify inconsistencies and
inaccuracies in the synsets’ descriptions, thereby enhancing their reliability for WSD
tasks; (2) expanding WordNet with new synsets to accommodate the evolving nature of
language and ensure its continued relevance for contemporary NLP applications. By
improving the quality and coverage of WordNet and similar resources such as SemCor,
this approach aimed to increase the adaptability and applicability of these tools to diverse
linguistic contexts and domains.

Figure 5 illustrates a schematic of the proposed WSD debugging methodology,
which is a five-stage process designed to address inconsistencies and inaccuracies in
WordNet. The initial stages (1 and 2) focus on preparation of the data and semantic rep-
resentation. Stage 1 involves rigorous selection of the data and preprocessing of the
training and testing data (including cleaning and augmentation) to ensure the data’s
quality and representativeness. Stage 2 leverages the pretrained “KerasNLP BERT”
module to acquire embedded word vectors from the prepared data. This captures rich
semantic representations for each word within its context.

Figure 5. WSD debugging method.

Stages 3–5 address exploration and refinement of the knowledge base. Stage 3 per-
forms cluster analysis on the embedded vectors. Principal component analysis (PCA)
reduces the dimensionality and groups words with similar semantic properties, facili-
tating consolidation of the synsets and revealing potential inconsistencies. Stage 4 utilizes
projection analysis to provide an interactive interface for exploring the semantic rela-
tionships between synsets. This visual exploration (2D/3D) helps identify and rectify in-
consistencies within the hierarchy of synsets. Finally, Stage 5 involves the evaluation and
integration of various candidate models of WSD. This rigorous assessment ensures the
selection of the most effective model for integration, ultimately improving the perfor-
mance of disambiguation. Next, we describe these steps in the WSD debugging task in
more detail.

4.1. Select Data
This work introduces the “Select Data” process, a flexible framework for evaluating

the word sense disambiguation model’s performance through targeted data selection
(Figure 6). The process empowers researchers to investigate the influence of both indi-
vidual words and the characteristics of word group on the model’s accuracy.

Figure 5. WSD debugging method.

Stages 3–5 address exploration and refinement of the knowledge base. Stage 3 per-
forms cluster analysis on the embedded vectors. Principal component analysis (PCA)
reduces the dimensionality and groups words with similar semantic properties, facilitating
consolidation of the synsets and revealing potential inconsistencies. Stage 4 utilizes projec-
tion analysis to provide an interactive interface for exploring the semantic relationships
between synsets. This visual exploration (2D/3D) helps identify and rectify inconsistencies
within the hierarchy of synsets. Finally, Stage 5 involves the evaluation and integration of
various candidate models of WSD. This rigorous assessment ensures the selection of the
most effective model for integration, ultimately improving the performance of disambigua-
tion. Next, we describe these steps in the WSD debugging task in more detail.

4.1. Select Data

This work introduces the “Select Data” process, a flexible framework for evaluating the
word sense disambiguation model’s performance through targeted data selection (Figure 6).
The process empowers researchers to investigate the influence of both individual words
and the characteristics of word group on the model’s accuracy.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 20

Figure 6. The Select Data subprocess.

The first step involves choosing an appropriate data source. This project used a cu-
rated training and testing dataset publicly available on GitHub
(https://github.com/aalgirdas/wordnet_onto (accessed on 1 June 2024)). Alternatively,
researchers can leverage custom datasets stored locally (e.g., Google Drive) to address
specific research questions.

Despite its extensive history, WordNet remains a foundational resource for WSD
tasks. However, inaccuracies in annotation of the corpus and the WordNet synsets’ rela-
tionships were identified during this project, necessitating modifications for improved
semantic representation. The “Modify Synsets” step allows researchers to select either the
original WordNet version or implement targeted modifications of the synsets’ descrip-
tions and sentence annotations. Importantly, all modifications have been meticulously
documented and stored on GitHub, enabling transparent and reproducible research.

Finally, the “Target Word Selection” step provides granular control over the analy-
sis. Researchers can choose to investigate a specific lemma, select individual words, or
designate a list of lemmas for analysis. This flexibility ensures that the investigations
align precisely with research objectives, facilitating a more refined and targeted approach
to the development of WSD models.

4.2. Clustering
This work hypothesized that a deep neural network (DNN) trained on comprehen-

sive natural language processing tasks can implicitly capture semantic relationships that
are useful for word sense disambiguation. We propose an approach where the embedded
vectors learned by such a DNN are clustered, with each cluster potentially representing a
distinct sense. By comparing these data-driven clusters with the existing sense inventory
of a knowledge base (e.g., WordNet), discrepancies between the two can be identified.
These inconsistencies may indicate the need for refinements of either the knowledge
base’s sense definitions or the DNN’s architecture and training data.

To facilitate WSD debugging and refinement of the knowledge base, we propose a
clustering-based approach to analyze the embedded vectors. This method empowers
knowledge engineers to make informed decisions regarding the merging, deletion, or
creation of synsets. Two clustering algorithms were considered for this purpose: princi-
pal component analysis and neighborhood component analysis. While KMeans was used
for all clustering tasks throughout this project for consistency, future work will explore
the potential benefits of utilizing alternative algorithms in the context of WSD debugging
to assess their impact on efficacy.

The initial phase of clustering entails determining the optimal number of clusters.
The algorithm unfolds through several key steps:
1. Selection of the method of vector projection: The clustering algorithm offers flexi-

bility in the methods of vector projection, including principal component analysis or
neighborhood component analysis.

2. Vector projection: Embedded vectors undergo projection, a crucial preparatory step
for subsequent calculations.

Figure 6. The Select Data subprocess.

The first step involves choosing an appropriate data source. This project used a curated
training and testing dataset publicly available on GitHub (https://github.com/aalgirdas/
wordnet_onto (accessed on 1 June 2024)). Alternatively, researchers can leverage custom
datasets stored locally (e.g., Google Drive) to address specific research questions.

Despite its extensive history, WordNet remains a foundational resource for WSD tasks.
However, inaccuracies in annotation of the corpus and the WordNet synsets’ relationships
were identified during this project, necessitating modifications for improved semantic
representation. The “Modify Synsets” step allows researchers to select either the original
WordNet version or implement targeted modifications of the synsets’ descriptions and
sentence annotations. Importantly, all modifications have been meticulously documented
and stored on GitHub, enabling transparent and reproducible research.

Finally, the “Target Word Selection” step provides granular control over the analysis.
Researchers can choose to investigate a specific lemma, select individual words, or des-
ignate a list of lemmas for analysis. This flexibility ensures that the investigations align
precisely with research objectives, facilitating a more refined and targeted approach to the
development of WSD models.

https://github.com/aalgirdas/wordnet_onto
https://github.com/aalgirdas/wordnet_onto

Appl. Sci. 2024, 14, 5550 12 of 19

4.2. Clustering

This work hypothesized that a deep neural network (DNN) trained on comprehensive
natural language processing tasks can implicitly capture semantic relationships that are
useful for word sense disambiguation. We propose an approach where the embedded
vectors learned by such a DNN are clustered, with each cluster potentially representing a
distinct sense. By comparing these data-driven clusters with the existing sense inventory of
a knowledge base (e.g., WordNet), discrepancies between the two can be identified. These
inconsistencies may indicate the need for refinements of either the knowledge base’s sense
definitions or the DNN’s architecture and training data.

To facilitate WSD debugging and refinement of the knowledge base, we propose
a clustering-based approach to analyze the embedded vectors. This method empowers
knowledge engineers to make informed decisions regarding the merging, deletion, or
creation of synsets. Two clustering algorithms were considered for this purpose: principal
component analysis and neighborhood component analysis. While KMeans was used for
all clustering tasks throughout this project for consistency, future work will explore the
potential benefits of utilizing alternative algorithms in the context of WSD debugging to
assess their impact on efficacy.

The initial phase of clustering entails determining the optimal number of clusters. The
algorithm unfolds through several key steps:

1. Selection of the method of vector projection: The clustering algorithm offers flexi-
bility in the methods of vector projection, including principal component analysis or
neighborhood component analysis.

2. Vector projection: Embedded vectors undergo projection, a crucial preparatory step
for subsequent calculations.

3. Determination and evaluation of clusters as follows.

3.1. Application of the KMeans clustering algorithm: Use of the KMeans algorithm
on the projected vectors enables the delineation of clusters and the assignment
of each sample to its corresponding cluster.

3.2. Metric calculation: Two pivotal metrics, namely the silhouette score and the
adjusted mutual information score, are computed for each potential config-
uration of the clusters, providing quantitative insights into the quality and
coherence of the resulting clusters.

4. Selection of the optimal cluster: The ultimate determination of the ideal number
of clusters hinges upon selecting the configuration yielding the highest product of
the silhouette score and the adjusted mutual information score, indicative of optimal
clustering performance.

This systematic approach to determination of the clusters not only ensures robustness
and reproducibility but also facilitates informed decision-making for knowledge engineers
engaged in WSD debugging tasks. Furthermore, the incorporation of diverse vector design
methods and comprehensive evaluation metrics underscores the methodological rigor that
is essential for advancing the field of natural language processing.

4.3. Clasification

In alignment with the objectives of this project, the classification module within the
WSD debugging task shares a fundamental aim with its clustering counterpart: to equip
knowledge engineers with actionable insights for merging, deleting, or introducing new
sentence examples. To achieve this objective, a submodel named the “confusion matrix”
was designed and implemented. The procedural delineation of this component is outlined
as follows.

1. Partitioning of the data: The initial step entails determining the allocation ratio for
the testing and training data. By default, this parameter is set to 0.1, signifying that
10% of the total dataset will be randomly earmarked for testing purposes, with the
remainder designated for training.

Appl. Sci. 2024, 14, 5550 13 of 19

2. k-Nearest neighbors exploration: Subsequently, an experimental phase ensues, ap-
plying the k-nearest neighbors (KNN) method to the designated testing and
training datasets.

3. Iterative experimentation: This experimentation process is iterated N times, facilitat-
ing the accumulation of a broader spectrum of measurements.

4. Computation of the confusion matrix: Following experimentation, the confusion
matrix is computed on the basis of the amassed data. These results are then pre-
sented to the knowledge engineer, who assumes the pivotal role of making the final
determinations concerning potential redesigns of the synsets.

This methodical approach to classification not only serves to enhance the efficacy of
the WSD debugging endeavor but also empowers knowledge engineers with actionable
insights derived from rigorous experimentation. Moreover, the iterative nature of the
experimentation process, coupled with the utilization of established methodologies such
as KNN and the computation of the confusion matrix, underscores the methodological
robustness, which is essential for advancing the domain of natural language processing.

4.4. Interactive Analysis for Informed Editing of the Synsets

In tandem with the classification and clustering models, an interactive analysis mod-
ule was developed to facilitate informed decisions regarding editing of the synsets by
knowledge engineers. This module leverages techniques of reducing dimensionality and
visual representations to provide a user-friendly exploration of the underlying semantic
relationships within the data.

1. Visualizing semantic clusters: The module offers a 2D scatter plot depicting the
projections of the words’ embedding vectors onto the first two principal components
(PCs) derived from the principal component analysis applied to the training data. Pro-
jections of the testing data are overlaid for comparison. Users can interactively select
data points or regions on the plot to retrieve the corresponding sentence examples.
Additionally, the ability to overlay WordNet lexnames, synset labels, or hypernym
labels further aids in comprehending whether specific data clusters align with these
semantic categories. This visual exploration empowers knowledge engineers to iden-
tify potential refinements of the synsets by uncovering clusters that deviate from the
expected semantic groupings.

2. Reducing the dimensionality and neighborhood analysis: While PCA provides a
valuable 2D visualization for an initial analysis, neighborhood component analysis can
be used to assess the information retained in higher dimensions. The NCA projection,
presented as another interactive 2D graph, allows users to evaluate the feasibility
of disambiguating the target word based on the inherent structure of the data. This
visualization can also serve as a valuable tool for identifying potential annotation
errors within the training data by highlighting points that deviate significantly from
their expected semantic neighbors.

3. 3D exploration for enhanced insights: For a more comprehensive perspective, the
system offers the option to explore the data in a 3D scatter plot. Similar to the 2D view,
users can select between PCA and NCA for reducing the dimensionality, allowing
for in-depth examinations of the potential semantic relationships across multiple
dimensions. This interactive 3D environment provides additional opportunities for
knowledge engineers to refine their understanding of the data and make informed
decisions regarding modifications of the synsets.

Overall, the inclusion of the interactive analysis module empowers knowledge engi-
neers with a comprehensive set of visual tools to analyze the semantic relationships within
the data [28,29]. This facilitates a more informed approach to editing synsets, ultimately
enhancing the effectiveness of the WSD system.

Appl. Sci. 2024, 14, 5550 14 of 19

5. Results

This work initially focused on enriching the SemCor dataset with WordNet gloss
descriptions to enhance semantic representation. The core objective was to develop a WSD
model with two key properties: (1) a significantly reduced memory footprint compared with
the existing deep learning approaches, ensuring compatibility with resource-constrained en-
vironments such as Google Colab; and (2) state-of-the-art accuracy on benchmark datasets
such as SemEval. This goal was achieved through a novel method that leverages NCA for
reducing the dimensionality and incorporates a vector quantization step, where embedded
vector values are rounded to a predefined precision (e.g., two decimal places).

Following the development of the initial model, a detailed error analysis was con-
ducted to investigate the misclassification of a significant number of synsets. This analysis
revealed two key issues: (1) the presence of errors in sentence annotations within the train-
ing data, and (2) inconsistencies in the synsets’ assignments for semantically similar words
within WordNet. To address these shortcomings, we developed a WordNet debugging
tool specifically designed to identify annotation errors, and proposed modifications for
improved alignment between the embedded vector clusters and the WordNet structure.
This comprehensive approach not only led to the creation of a novel WSD system but also
resulted in the development of an updated WordNet version, ensuring compatibility with
the latest iteration. A crucial modification involved the merging of synonymous synsets to
maximize the overlap between embedded vector representations and their corresponding
WordNet concepts.

To achieve the first project objective of reducing the memory footprint while main-
taining accuracy, we investigated techniques of reducing the dimensionality. Notably, the
size of the embedded vector base was compressed from 3 gigabytes to 100 megabytes,
representing a significant reduction. Interestingly, this compression not only preserved the
model’s accuracy but also led to a slight improvement in the F1 scores (Table 1).

Table 1. Results of WordNet sense disambiguation (F1 score).

Method POS Senseval All

MFS
Verb 49.6

Noun 67.5

BERT-2NCA 1-NN
Verb 61.7

Noun 74.1

BERT-NCA k-NN
Verb 64.4

Noun 76.7

BERT1024 1-NN Verb 63.9
Noun 76.4

To evaluate the model’s performance, we used the Senseval All test dataset [18], encom-
passing five subdatasets from 2001 to 2015 (Senseval-2 [20], Senseval-3 [21], SemEval-07 [22],
SemEval-13 [23], and SemEval-15 [17]). These data are readily available on the project’s
GitHub repository in a tab-separated values (.tsv) format, where each line represents a
synset’s test value with its corresponding sentence example.

The training data comprised two components: (1) SemCor [24], a manually sense-
annotated corpus containing 226,040 annotations across 352 documents; and (2) WordNet
synsets’ meanings and definitions, curated by removing outliers identified by the WSD
debugging system on the basis of their distance from the class centers in the NCA projection
space (details of “bad” definitions are provided in the GitHub repository). Notably, the
training data are dynamic and evolve as the WSD model is refined.

This unexpected finding in Table 1 (BERT-NCA k-NN was better than BERT1024 1-NN)
suggests the effectiveness of the NCA component model in mitigating noise in the data dur-
ing the projection of embedding vectors from a high-dimensional space (1024 dimensions)
to a lower-dimensional space (ranging from two to five dimensions). Table 1 summarizes

Appl. Sci. 2024, 14, 5550 15 of 19

the F1 scores achieved by various models using the unmodified relationships of WordNet
synsets. The training data excluded chart-bot generated examples of synsets in order to ob-
tain consistency with the reference models (Most Frequent Sense (MFS) [18] and BERT1024
1-NN [1]).

Additionally, it is essential to discuss the BERT1024 1-NN model, which played a pivotal
role in our research. The BERT1024 1-NN model, which uses a BERT neural network [10],
generates 1024-dimensional embedding vectors for each word in a sentence (using the first
token’s vector if a word is split). Word sense disambiguation is achieved by finding the
closest training data vector to the new word’s vector and assigning its corresponding synset
value. This model’s large size (>3 GB) limited its deployment on GitHub and motivated
the development of the solution presented in this project.

The evaluation in Table 1 focuses solely on nouns and verbs, aligning with the word
forms used in the reference work [1]. While the BERT-2NCA 1-NN model, using two
fixed NCA components and a kNN classification with k = 1, exhibited a slightly lower F1
score compared with BERT1024 1-NN; the BERT-NCA k-NN model achieved a marginally
higher F1 score. This improvement stemmed from its ability to dynamically determine the
optimal number of NCA components and the k parameter for each lemma individually.
This data-driven approach highlights the efficacy of dynamic parameter tuning in achieving
superior performance for semantic classification tasks.

Table 1 clearly demonstrates a significant improvement in the accuracy of noun clas-
sification for the WSD task when using neural networks such as BERT. Compared with
the MFS baseline, which assigns the most frequent sense in the SemCor dataset to a word,
BERT achieved an approximate 10% improvement in the F1 score (Table 1). This finding
highlights the limitations of simple rule-based approaches and the effectiveness of deep
learning for WSD.

However, the observed improvement of 10% served as a basis for further exploration.
We aimed to redefine the state of the art for WSD by pushing the boundaries of accuracy
beyond this initial gain. This work further sought to transform WordNet into a formal
ontology similar to established resources such as Cyc [30] or SUMO [31,32]. This led to
a two-pronged strategy: (1) enhancing the semantic knowledge base (WordNet) itself,
and (2) enriching its training corpus with meticulously annotated sentences. The ultimate
objective of this approach was to achieve near-perfect WSD accuracy. We implemented
three distinct types of modifications to WordNet during the project.

1. Refinement of the synsets: To enhance the accuracy of sense representation, our
system implements refinement of the synset. In specific cases, the system auto-
matically replaces synsets with more contextually appropriate alternatives. For in-
stance, in Figure 3, all training and testing examples containing words with the synset
value level%1:26:00:: were automatically replaced with level%1:26:01::. The rationale
for this replacement is detailed in Section 3. Notably, the system prioritizes user
control, allowing easy modification or removal of these replacements through the
synset_to_synset.tsv file.

2. Pruning: In the synset_to_synset.tsv file, we conveniently specify the DELETE key-
word for synset values we wish to discard. These values correspond to synsets that
have been identified as having negligible semantic value, especially those associated
with niche domains.

3. Expansion of the lexicon: Novel synsets were introduced to broaden the scope and
capture the evolving nature of language. Consider the word “window” as an exam-
ple. While WordNet lacks a semantic meaning specifically denoting a user interface
element in software systems, we addressed this gap by introducing new synset values.
To achieve this, we updated the project file NewSynsets.tsv by adding the word “win-
dow”. We provided a web address (such as a Wikipedia article) where information
about this value can be found. Additionally, we specified the synset value from
the unmodified (old) WordNet that served as the hypernym (in this case, “window”
corresponds to “software%1:10:00::”). Our new WSD system then associates the word

Appl. Sci. 2024, 14, 5550 16 of 19

“window” with the synset tag “software%1:10:00::” in relevant sentences. The use of
hypernyms ensures compatibility with other WordNet systems, such as NLTK.

It is important to note that the deletions and additions of synsets were primarily
undertaken as an experimental investigation, paving the way for future advancements
in research into the knowledge base. Table 2 details the statistics of these modifications
to WordNet.

Table 2. Statistics of WordNet modifications.

WordNet Modification Number of Records

Synset to synset 1452
Delete synset 335
New synset 7

New sentences from FrameNet 3091
ChatGPT sentences 4355

Training sentence corrections 579
Testing sentence corrections 126

Within the framework of the WSD task, additional refinements were implemented,
including the generation of new sentences and rectification of errors in the existing anno-
tations. A detailed breakdown of these modifications is presented in Table 2. It is crucial
to recognize the iterative process of development that was undertaken, similar to that of
evolving software ecosystems. Each subsequent version of the WSD system incorporated
updates to improve the functionality and address new requirements. The statistics pro-
vided in Table 2 reflect the version used for the model’s classification accuracy reported in
Table 3. This highlights the ongoing effort to continually refine WSD capabilities.

Table 3. Results of sense disambiguation with WordNet (F1 score).

Method POS Senseval All

BERT-1NCA 1-NN
Verb 83.2

Noun 95.1

BERT-NCA k-NN
Verb 84.6

Noun 96.7

BERT1024 1-NN Verb 83.3
Noun 94.4

Our work aimed to significantly advance the state of the art in WSD, potentially
limiting direct comparisons with previous studies due to the implemented modifications.
Table 3 details the accuracy achieved by the model, reflecting these adjustments. While the
results exceeded a 92% accuracy threshold, we acknowledge the ongoing pursuit of 100%
accuracy. Several factors hindered this goal.

Limitations in the vVocabulary: The BERT neural network’s inherent limitations in
the vocabulary (30,522 words/tokens) can significantly impact WSD outcomes for out-of-
vocabulary words.

Incomplete WordNet modification: Incomplete supplementation of the data or aug-
mentation of the relationships within the WordNet synsets posed a further challenge.

The network’s Architecture and training data: The specific architecture of the neural
network and the composition of its training dataset likely contributed to the deviation from
perfect accuracy. Exhaustive testing was conducted using all variants of the KerasNLP
library’s neural network, with BERT chosen for comparability with prior research. However,
larger LLM networks might yield superior results, warranting future investigation.

Appl. Sci. 2024, 14, 5550 17 of 19

6. Related Work

Over the years, significant effort has been devoted to developing algorithms and
systems for word sense disambiguation since its inception. Among the earliest and most
intuitively comprehensible approaches is the Lesk algorithm [15]. Essentially, the Lesk
algorithm counts the number of overlapping words between the target word in a sentence
and the definition of the synset associated with that word. To address the limitations
arising from the Lesk algorithm’s heavy reliance on dictionary definitions of the synsets,
several extensions have been proposed [33]. Recent advancements have focused on learning
distributional word representations from large corpora and replacing the traditional bag of
words’ overlap with a more sophisticated cosine similarity of the vectors [34].

In parallel, knowledge-based approaches have explored graph theory algorithms
to leverage the semantic relationships provided by dictionaries. For instance, the UKB
algorithm uses random walks on the semantic graph derived from WordNet to determine
word senses using the PageRank metric [35].

Alternatively, machine learning algorithms that construct classifiers from annotated
text data have gained prominence. Early works in this field experimented with well-
known algorithms such as decision trees [36], support vector machines [37], and neural
networks [38].

Numerous WSD systems have been developed to implement these algorithms. In
our investigation, we explored systems that are accessible on GitHub. One such system,
ConSeC [39], leverages deep neural networks and achieved higher accuracy than the model
presented in this article. However, ConSeC requires downloading a large 5 GB model,
which is significantly larger than the model discussed here (~100 MB). Additionally, the
installation process can be complex (we provide a link to the Colab notebook attempting to
run ConSeC in the GitHub repository).

Another system, ESR [40], utilizes the RoBERTTa neural network and demonstrated
impressive F1 metric results. However, the documentation lacks details on the imple-
mentation of the predict(. . .) function. The SparseLMMS system, which incorporates large
pretrained language models, offers an online demonstration and uses a contextualized
mapping mechanism [41]. However, deploying this system can be intricate, and the size of
its model significantly exceeds that of the model discussed in this study. Another notable
system, EWISER [42], utilizes a neural supervised architecture that taps into a wealth
of knowledge by embedding information from the KB graph within the neural frame-
work, resulting in impressive F1 metric results. Nevertheless, setting up EWISER can be a
challenging process.

In contrast, the system described in [43] leverages the BERT neural network and
achieved a classification accuracy comparable with the results presented in this study.
Unfortunately, the system’s GitHub page lacks comprehensive documentation, posing
challenges for its implementation on other NLP frameworks.

All reviewed works and algorithms rely on the standard WordNet dictionary, and the
accompanying test dataset is referenced in related works [17,20–23]. Our solution was also
evaluated on this dataset. However, this work introduces a novel component of the WSD
system, which we called the “WSD debugging system”. To our knowledge, no analogous
approach has been presented previously. The essence of this idea, encapsulated in the title
of our article (“Reversal WSD”), centers on treating the existing WSD model as the gold
standard. The knowledge engineer’s task is to modify the WordNet dictionary in a way
that maximizes the accuracy in the standard testing dataset.

7. Discussion

This work introduces a WSD system, emphasizing its minimal memory footprint.
The system leverages the KerasNLP library and the BERT model for efficient acquisition
of embedded word vectors, promoting the conservation of computational resources. A
key feature is its seamless compatibility with the Google Colab environment, enabling
straightforward execution through a single “Run All” command.

Appl. Sci. 2024, 14, 5550 18 of 19

Traditional construction of semantic dictionary relies on subjective interpretations by
knowledge engineers for assigning semantic tags. This study proposes a novel methodology
for formalizing the attribution of semantic knowledge by correlating it with neural network-
derived word embedding vector clusters. Our study demonstrated the effectiveness of
this approach in justifying merging of WordNet synsets where the granularity becomes
excessive. While the initial validation used a moderate-sized neural network, we anticipate
that further exploration with larger language models (LLMs) will produce insightful results
in future investigations.

Supplementary Materials: The New WordNet project code and data are available online at https://
github.com/aalgirdas/wordnet_onto.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Laukaitis, A.; Ostašius, E.; Plikynas, D. Deep semantic parsing with upper ontologies. Appl. Sci. 2021, 11, 9423. [CrossRef]
2. Navigli, R. Word sense disambiguation: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–69. [CrossRef]
3. Loureiro, D.; Jorge, A. Language Modelling Makes Sense: Propagating Representations through WordNet for Full-Coverage Word

Sense Disambiguation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, 28 July–2 August 2019; pp. 5682–5691. [CrossRef]

4. Baker, C.F.; Fillmore, C.J.; Lowe, J.B. The berkeley framenet project. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational Linguistics, Montreal, QC, Canada, 10–14
August 1998; Volume 1, pp. 86–90.

5. Fellbaum, C. WordNet. In Theory and Applications of Ontology: Computer Applications; Poli, R., Healy, M., Kameas, A., Eds.; Springer:
Dordrecht, The Netherlands, 2010; pp. 231–243.

6. Chang, A.; Savva, M.; Manning, C.D. Learning spatial knowledge for text to 3D scene generation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; pp. 2028–2038.
[CrossRef]

7. Niles, I.; Pease, A. Towards a standard upper ontology. In Proceedings of the International Conference on Formal Ontology in
Information Systems, Ogunquit, ME, USA, 17–19 October 2001; pp. 2–9.

8. Laukaitis, A.; Plikynas, D.; Ostasius, E. Sentence Level Alignment of Digitized Books Parallel Corpora. Informatica 2018, 29,
693–710. [CrossRef]

9. Das, D.; Chen, D.; Martins, A.F.; Schneider, N.; Smith, N.A. Frame-semantic parsing. Comput. Linguist. 2014, 40, 9–56. [CrossRef]
10. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
11. Vasiliev, Y. Natural Language Processing with Python and spaCy: A Practical Introduction; No Starch Press: San Francisco, CA,

USA, 2020.
12. Available online: https://github.com/keras-team/keras-nlp (accessed on 1 June 2024).
13. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly

Media, Inc.: Newton, MA, USA, 2009.
14. Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.R.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural language processing

toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
Baltimore, MD, USA, 23–24 June 2014; pp. 55–60. [CrossRef]

15. Lesk, M. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone.
In Proceedings of the 5th Annual International Conference on Systems Documentation, Toronto, ON, Canada, 1986; pp. 24–26.

16. Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. Adv. Neural Inf. Process. Syst.
2004, 17, 513–520.

17. Moro, A.; Navigli, R. Semeval-2015 task 13: Multilingual all-words sense disambiguation and entity linking. In Proceedings of
the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, CO, USA, 4–5 June 2015; pp. 288–297.

18. Raganato, A.; Camacho-Collados, J.; Navigli, R. Word sense disambiguation: A unified evaluation framework and empirical
comparison. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics,
Valencia, Spain, 3–7 April 2017; pp. 99–110.

https://github.com/aalgirdas/wordnet_onto
https://github.com/aalgirdas/wordnet_onto
https://doi.org/10.3390/app11209423
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.18653/v1/P19-1569
https://doi.org/10.3115/v1/D14-1217
https://doi.org/10.15388/Informatica.2018.188
https://doi.org/10.1162/COLI_a_00163
https://github.com/keras-team/keras-nlp
https://doi.org/10.3115/v1/P14-5

Appl. Sci. 2024, 14, 5550 19 of 19

19. Loureiro, D.; Jorge, A.M.; Camacho-Collados, J. LMMS Reloaded: Transformer-Based Sense Embeddings for Disambiguation and
Beyond. arXiv 2021, arXiv:2105.12449. [CrossRef]

20. Edmonds, P.; Cotton, S. Senseval-2: Overview. In Proceedings of the SENSEVAL-2 Second International Workshop on Evaluating
Word Sense Disambiguation Systems, Toulouse, France, 5–6 July 2001; pp. 1–5.

21. Snyder, B.; Palmer, M. The English all-words task. In Proceedings of the SENSEVAL-3, Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 25–26 July 2004; pp. 41–43.

22. Pradhan, S.; Loper, E.; Dligach, D.; Palmer, M. Semeval-2007 task-17: English lexical sample, srl and all words. In Proceedings of
the Fourth International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, 23–24 June 2007; pp. 87–92.

23. Navigli, R.; Jurgens, D.; Vannella, D. Semeval-2013 task 12: Multilingual word sense disambiguation. In Proceedings of the
Second Joint Conference on Lexical and Computational Semantics, Volume 2: Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), Atlanta, GA, USA, 14–15 June 2013; pp. 222–231.

24. Miller, G.A.; Chodorow, M.; Landes, S.; Leacock, C.; Thomas, R.G. Using a semantic concordance for sense identification. In
Proceedings of the Workshop Human Language Technology, Plainsboro, NJ, USA, 8–11 March 1994; pp. 8–11.

25. Winograd, T. Understanding natural language. Cogn. Psychol. 1972, 3, 1–191. [CrossRef]
26. Hassani, K.; Lee, W.S. Visualizing natural language descriptions: A survey. ACM Comput. Surv. 2016, 49, 1–34. [CrossRef]
27. Chang, A.X.; Eric, M.; Savva, M.; Manning, C.D. SceneSeer: 3D scene design with natural language. arXiv 2017, arXiv:1703.00050.
28. Doval, Y.; Vilares, J.; Gómez-Rodríguez, C. Towards robust word embeddings for noisy texts. Appl. Sci. 2020, 10, 6893. [CrossRef]
29. Castro-Bleda, M.J.; Iklódi, E.; Recski, G.; Borbély, G. Towards a Universal Semantic Dictionary. Appl. Sci. 2019, 9, 4060. [CrossRef]
30. Lenat, D.B. CYC: A large-scale investment in knowledge infrastructure. Commun. ACM 1995, 38, 33–38. [CrossRef]
31. Schulz, S.; Sutcliffe, G.; Urban, J.; Pease, A. Detecting inconsistencies in large first-order knowledge bases. In Proceedings of the

International Conference on Automated Deduction, Gothenburg, Sweden, 6–11 August 2017; pp. 310–325.
32. Pease, A.; Sutcliffe, G.; Siegel, N.; Trac, S. Large theory reasoning with SUMO at CASC. AI Commun. 2010, 23, 137–144. [CrossRef]
33. Banerjee, S.; Pedersen, T. Extended gloss overlaps as a measure of semantic relatedness. IJCAI 2003, 3, 805–810.
34. Basile, P.; Caputo, A.; Semeraro, G. An enhanced Lesk word sense disambiguation algorithm through a distributional semantic

model. In Proceedings of the COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
Dublin, Ireland, 23–29 August 2014; pp. 1591–1600.

35. Agirre, E.; López de Lacalle, O.; Soroa, A. Random walks for knowledge-based word sense disambiguation. Comput. Linguist.
2014, 40, 57–84. [CrossRef]

36. Mooney, R.J. Comparative experiments on disambiguating word senses: An illustration of the role of bias in machine learning. In
Proceedings of the 1996 Conference on Empirical Methods in Natural Language Processing, EMNLP ‘96, Philadelphia, PA, USA,
17–18 May 1996; pp. 82–91.

37. Lee, Y.K.; Ng, H.T. An empirical evaluation of knowledge sources and learning algorithms for word sense disambiguation. In
Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP ‘02, Philadelphia, PA, USA,
6–7 July 2002; pp. 41–48.

38. Tsatsaronis, G.; Vazirgiannis, M.; Androutsopoulos, I. Word sense disambiguation with spreading activation networks generated
from thesauri. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI ‘07, Hyderabad, India,
6–12 January 2007; pp. 1725–1730.

39. Barba, E.; Procopio, L.; Navigli, R. ConSeC: Word sense disambiguation as continuous sense comprehension. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November
2021; pp. 1492–1503.

40. Song, Y.; Ong, X.C.; Ng, H.T.; Lin, Q. Improved word sense disambiguation with enhanced sense representations. In Proceedings
of the Findings of the Association for Computational Linguistics: EMNLP, Punta Cana, Dominican Republic, 16–20 November
2021; pp. 4311–4320.

41. Berend, G. Combating the Curse of Multilinguality in Cross-Lingual WSD by Aligning Sparse Contextualized Word Representa-
tions. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Seattle, WA, USA, 10–15 July 2022; pp. 2459–2471.

42. Bevilacqua, M.; Navigli, R. Breaking through the 80% glass ceiling: Raising the state of the art in word sense disambiguation
by incorporating knowledge graph information. In Proceedings of the Conference-Association for Computational Linguistics,
Online, 5–10 July 2020; pp. 2854–2864.

43. Hadiwinoto, C.; Ng, H.T.; Gan, W.C. Improved Word Sense Disambiguation Using Pre-Trained Contextualized Word Representa-
tions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 5297–5306.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/10.1016/0010-0285(72)90002-3
https://doi.org/10.1145/2932710
https://doi.org/10.3390/app10196893
https://doi.org/10.3390/app9194060
https://doi.org/10.1145/219717.219745
https://doi.org/10.3233/AIC-2010-0466
https://doi.org/10.1162/COLI_a_00164

	Introduction
	The WSD Framework
	Training
	Debugging and the Knowledge Base Management System
	Select Data
	Clustering
	Clasification
	Interactive Analysis for Informed Editing of the Synsets

	Results
	Related Work
	Discussion
	References

