A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network
Abstract
:1. Introduction
2. Related Research
3. Research Methods
3.1. Study Design
3.2. Construction of the PSO-BP Neural Network Model
3.2.1. Particle Swarm Optimization
3.2.2. BP Neural Network Algorithm
3.2.3. PSO-BP Neural Network Algorithm
- (1)
- Constructing the PSO-BP neural network, entailing the initialization of network parameters and the random assignment of velocities and positions to the particle swarm.
- (2)
- Computing the fitness for all particles, employing a fitness function that calculates the mean squared error between the BP neural network’s output and the target values. A lower fitness value signifies reduced error and thus an improved particle position. The fitness function is defined as follows:
- (3)
- In accordance with Equations (1) and (2), the PSO-BP neural network iteratively updates the velocity and position of each particle, guided by individual and global optimal positions. Upon reaching the maximum number of iterations, or achieving the desired error accuracy, the PSO-determined optimized initial weights and thresholds are integrated into the neural network for predictive analysis. The network configuration is then saved. If these criteria are not met, the process reverts to the preceding step for further adjustments.
- (4)
- The final stage involves applying the data from Goodnotes to this trained network model to validate its efficacy and accuracy in a different yet relevant context.
3.3. Selection and Collection of User Data
3.3.1. Facial Expression Data
3.3.2. Interface Operation Data
3.3.3. User Subjective Satisfaction Score
4. Research Process
4.1. Selection of Software Functions
4.2. Participants
4.3. Experimental Environment and Equipment
4.4. Experimental Process
- using orange dotted handwriting to draw a heart;
- inserting a picture and placing it isometrically into the designated box;
- using the eraser to erase the purple lines;
- changing the handwriting on the picture to black and resizing it to fit into the box.
4.5. The User Satisfaction Model Based on Objective Data
5. Research Results
5.1. Notability Data Results
5.2. Goodnotes Data Results
5.3. PSO-BP Model Prediction Results
6. Result Analysis
6.1. Model Verification
6.2. Error Analysis
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Cardozo, R.N. An Experimental Study of Customer Effort, Expectation, and Satisfaction. J. Mark. Res. 1965, 2, 244–249. [Google Scholar] [CrossRef]
- ISO 9241-11:2018(en); Ergonomics of Human-System Interaction—Part 11: Usability: Definitions and Concepts. ISO: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en (accessed on 5 April 2024).
- Zamzami, I.; Mahmud, M. User Satisfaction on Smart Phone Interface Design, Information Quality Evaluation. In Proceedings of the 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 26–28 November 2012; pp. 78–82. [Google Scholar] [CrossRef]
- Lewis, J.R. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int. J. Hum.–Comput. Interact. 1995, 7, 57–78. [Google Scholar] [CrossRef]
- Palmer, J.W. Web Site Usability, Design, and Performance Metrics. Inf. Syst. Res. 2002, 13, 151–167. [Google Scholar] [CrossRef]
- Phan, M.H.; Keebler, J.R.; Chaparro, B.S. The Development and Validation of the Game User Experience Satisfaction Scale (GUESS). Hum. Factors 2016, 58, 1217–1247. [Google Scholar] [CrossRef]
- Lee, E.; Roh, J.-S.; Kim, S. User-centered Interface Design Approach for a Smart Heated Garment. Fibers Polym. 2018, 19, 238–247. [Google Scholar] [CrossRef]
- Jeng, J. Usability Assessment of Academic Digital Libraries: Effectiveness, Efficiency, Satisfaction, and Learnability. Libri 2005, 55, 96–121. [Google Scholar] [CrossRef]
- Zhao, Y.; Ruan, P.; Liu, X.; Shan, X. Study on User Satisfaction Evaluation Based on Online comment. Manag. Rev. 2020, 32, 179–189. [Google Scholar] [CrossRef]
- Zhao, J. Research on Measurement and Evaluation of User Satisfaction with Digital Resources in Library. Inf. Stud. Theory Appl. 2012, 35, 91–94. [Google Scholar] [CrossRef]
- Huang, C. A Study on Library Satisfaction Model Based on Contextualized User Profile. Res. Libr. Sci. 2015, 21, 61–65. [Google Scholar] [CrossRef]
- Guo, F.; Liu, W.; Wang, X.; Ding, Y.; Liu, C. Event-Related Potential Study on Webpages Satisfaction Evaluation. Ind. Eng. Manag. 2016, 21, 126–131+138. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Kilmarx, J.; Esterwood, C.; Jiang, Y.; Zhao, X. A Usability Study of Low-Cost Wireless Brain-Computer Interface for Cursor Control Using Online Linear Model. IEEE Trans. Hum.-Mach. Syst. 2020, 50, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xu, Y.; Ye, J. Application of Nielsen Principle in the Usability Evaluation of the Backstage Interface of Intelligent Nursing Bed. Mach. Des. Manuf. 2022, 09, 77–82. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y. Eye-tracking based adaptive user interface: Implicit human-computer interaction for preference indication. J. Multimodal User Interfaces 2012, 5, 77–84. [Google Scholar] [CrossRef]
- Guo, F.; Chen, J.; Li, M.; Lyu, W.; Zhang, J. Effects of visual complexity on user search behavior and satisfaction: An eye-tracking study of mobile news apps. Univ. Access Inf. Soc. 2022, 21, 795–808. [Google Scholar] [CrossRef]
- Diego-Mas, J.A.; Garzon-Leal, D.; Poveda-Bautista, R.; Alcaide-Marzal, J. User-interfaces layout optimization using eye-tracking, mouse movements and genetic algorithms. Appl. Ergon. 2019, 78, 197–209. [Google Scholar] [CrossRef]
- Wang, H.; Lv, Z.; Li, X. User Research Method Based on Expression Recognition Technology. Packag. Eng. 2022, 43, 116–121. [Google Scholar] [CrossRef]
- Alves, A.L.; de Giuli, M.R.; Zitkus, E.; Paschoarelli, L.C. Color influence on the use satisfaction of kitchen utensils: An ergonomic and perceptual study. Int. J. Ind. Ergon. 2022, 90, 103314. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Tang, Y. Prediction of popular elements of children’s wear based on BP neural network. Wool Text. J. 2022, 50, 109–115. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L. Research on Product Image Form Design Based on Neural Network. Packag. Eng. 2009, 30, 88–90. [Google Scholar] [CrossRef]
- Zhao, Y. Study on the Construction of Perceptual Image Prediction Model for Office Chairs Based on BP Neural Network. Furnit. Inter. Decor. 2021, 9, 118–122. [Google Scholar] [CrossRef]
- Zhong, J.; Tang, M.; Tang, Q.; Li, W.; Xu, N. Method for Measuring User Satisfaction with Human-computer Interaction Products of Automobiles. Packag. Eng. 2019, 40, 239–244. [Google Scholar] [CrossRef]
- Eseye, A.T.; Zhang, J.; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renew. Energy 2018, 118, 357–367. [Google Scholar] [CrossRef]
- Wan, P.; Shi, P.; Liang, T.; Yin, Z. Research on Model Predictive Control of Lane Keeping Based on Particle Swarm Optimization. Mach. Des. Res. 2022, 38, 38–42+50. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, C.; Cao, Y. Based on the fuzzy rough set and neural network short-term load forecasting method. Proc. CSEE 2005, 25, 7–11. [Google Scholar] [CrossRef]
- Yang, Y. Kansei evaluation method of product form design based on hesitant fuzzy linguistic term sets and particle swarm optimization. J. Graph. 2021, 42, 680–687. [Google Scholar] [CrossRef]
- Lou, G.; Tan, Y. Prediction of water conduction fracture zone height based on PSO-BP neural network. Coal Geol. Explor. 2021, 49, 198–204. [Google Scholar] [CrossRef]
- Li, B.; Lima, D. Facial expression recognition via ResNet-50. Int. J. Cogn. Comput. Eng. 2021, 2, 57–64. [Google Scholar] [CrossRef]
- Chowdary, M.K.; Nguyen, T.N.; Hemanth, D.J. Deep learning-based facial emotion recognition for human–computer interaction applications. Neural Comput. Appl. 2023, 35, 23311–23328. [Google Scholar] [CrossRef]
- Pearson, R.; van Schaik, P. The effect of spatial layout of and link colour in web pages on performance in a visual search task and an interactive search task. Int. J. Hum.-Comput. Stud. 2003, 59, 327–353. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Fu, G. Research on Usability Evaluation Index System of Combat Command Software Interface Based on the IPO Model. J. China Acad. Electron. Inf. Technol. 2021, 16, 1060–1066. [Google Scholar]
- Pauline, A. Smith Towards a practical measure of hypertext usability. Interact. Comput. 1996, 8, 365–381. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572. [Google Scholar] [CrossRef]
- Baia, A.E.; Biondi, G.; Franzoni, V.; Milani, A.; Poggioni, V. Lie to me: Shield your emotions from prying software. Sensors 2022, 22, 967. [Google Scholar] [CrossRef] [PubMed]
Feature | Pen | Eraser | Insert Media | Lasso Tool | Highlighter | Text Box | Catalogue | Amplification | Recording | Laser Pointer |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 8.92 | 8.29 | 6.67 | 6.48 | 5.92 | 5.48 | 5.32 | 3.83 | 3.57 | 2.92 |
Standard Deviation | 0.96 | 1.26 | 1.38 | 1.35 | 1.34 | 1.6 | 1.6 | 1.73 | 1.72 | 1.86 |
Variance | 0.93 | 1.59 | 1.91 | 1.81 | 1.80 | 2.56 | 2.68 | 3.00 | 2.96 | 3.44 |
Notability (n = 21) | Variables | Mean | Standard Deviation | Variance |
---|---|---|---|---|
Pen | N | 9 | 1.95 | 3.81 |
S | 14 | 7.1 | 50.38 | |
R | 7 | 0 | 0 | |
Lostness | 0.35 | 0.21 | 0.04 | |
Time | 59.14 | 40.13 | 1610.79 | |
Complete | 0.9 | 0.29 | 0.09 | |
Score | 6.81 | 2.32 | 5.39 | |
Neutral | 0.43 | 0.19 | 0.03 | |
Pleasant | 0.12 | 0.23 | 0.05 | |
Sad | 0.17 | 0.23 | 0.05 | |
Angry | 0.1 | 0.12 | 0.01 | |
Surprise | 0.06 | 0.1 | 0.01 | |
Fear | 0.01 | 0.01 | 0 | |
Disgust | 0.07 | 0.1 | 0.01 | |
Picture | N | 6.86 | 0.99 | 0.98 |
S | 7.81 | 2.44 | 5.96 | |
R | 6 | 0 | 0 | |
Lostness | 0.16 | 0.14 | 0.02 | |
Time | 35.81 | 28.37 | 804.92 | |
Complete | 1 | 0 | 0 | |
Score | 8.29 | 1.42 | 2.01 | |
Neutral | 0.48 | 0.22 | 0.05 | |
Pleasant | 0.07 | 0.11 | 0.01 | |
Sad | 0.22 | 0.25 | 0.06 | |
Angry | 0.13 | 0.15 | 0.02 | |
Surprise | 0.02 | 0.02 | 0 | |
Fear | 0.03 | 0.05 | 0 | |
Disgust | 0.05 | 0.06 | 0 | |
Eraser | N | 5.86 | 1.17 | 1.36 |
S | 7 | 2.53 | 6.38 | |
R | 5 | 0 | 0 | |
Lostness | 0.2 | 0.18 | 0.03 | |
Time | 31.81 | 16.97 | 288.06 | |
Complete | 1 | 0 | 0 | |
Score | 8.43 | 1.79 | 3.2 | |
Neutral | 0.49 | 0.21 | 0.04 | |
Pleasant | 0.06 | 0.1 | 0.01 | |
Sad | 0.16 | 0.23 | 0.05 | |
Angry | 0.08 | 0.08 | 0.01 | |
Surprise | 0.03 | 0.05 | 0 | |
Fear | 0.02 | 0.03 | 0 | |
Disgust | 0.08 | 0.12 | 0.01 | |
Lasso | N | 10.43 | 3.06 | 9.39 |
S | 24.57 | 9 | 81.01 | |
R | 6 | 0 | 0 | |
Lostness | 0.67 | 0.17 | 0.03 | |
Time | 157.14 | 63.1 | 3981.36 | |
Complete | 0.48 | 0.5 | 0.25 | |
Score | 4.33 | 1.86 | 3.46 | |
Neutral | 0.44 | 0.19 | 0.04 | |
Pleasant | 0.14 | 0.22 | 0.05 | |
Sad | 0.12 | 0.18 | 0.03 | |
Angry | 0.08 | 0.08 | 0.01 | |
Surprise | 0.02 | 0.04 | 0 | |
Fear | 0.02 | 0.02 | 0 | |
Disgust | 0.06 | 0.08 | 0.01 |
Goodnote (n = 21) | Variables | Mean | Standard Deviation | Variance |
---|---|---|---|---|
Pen | N | 11.62 | 3.92 | 15.38 |
S | 19 | 9.54 | 90.95 | |
R | 7 | 0 | 0 | |
Lostness | 0.48 | 0.23 | 0.06 | |
Time | 108.48 | 76.89 | 5912.82 | |
Complete | 0.57 | 0.49 | 0.24 | |
Score | 5.57 | 2.74 | 7.48 | |
Neutral | 0.4 | 0.19 | 0.04 | |
Pleasant | 0.11 | 0.18 | 0.03 | |
Sad | 0.2 | 0.25 | 0.06 | |
Angry | 0.15 | 0.16 | 0.03 | |
Surprise | 0.05 | 0.12 | 0.01 | |
Fear | 0.03 | 0.03 | 0 | |
Disgust | 0.03 | 0.05 | 0 | |
Picture | N | 6.9 | 0.87 | 0.75 |
S | 8.05 | 2.19 | 4.81 | |
R | 6 | 0 | 0 | |
Lostness | 0.19 | 0.14 | 0.02 | |
Time | 33.05 | 14.4 | 207.47 | |
Complete | 1 | 0 | 0 | |
Score | 7.9 | 1.6 | 2.56 | |
Neutral | 0.52 | 0.21 | 0.04 | |
Pleasant | 0.09 | 0.14 | 0.02 | |
Sad | 0.16 | 0.23 | 0.05 | |
Angry | 0.09 | 0.07 | 0.01 | |
Surprise | 0.03 | 0.04 | 0 | |
Fear | 0.04 | 0.09 | 0.01 | |
Disgust | 0.06 | 0.07 | 0 | |
Eraser | N | 6.57 | 1.09 | 1.2 |
S | 9.76 | 3.64 | 13.23 | |
R | 5 | 0 | 0 | |
Lostness | 0.36 | 0.18 | 0.03 | |
Time | 43.67 | 29.37 | 862.7 | |
Complete | 0.9 | 0.29 | 0.09 | |
Score | 7.33 | 1.94 | 3.75 | |
Neutral | 0.46 | 0.18 | 0.03 | |
Pleasant | 0.07 | 0.11 | 0.01 | |
Sad | 0.14 | 0.26 | 0.07 | |
Angry | 0.13 | 0.12 | 0.01 | |
Surprise | 0.03 | 0.03 | 0 | |
Fear | 0.02 | 0.03 | 0 | |
Disgust | 0.06 | 0.07 | 0 | |
Lasso | N | 11.43 | 2.08 | 4.34 |
S | 24.1 | 8.57 | 73.51 | |
R | 9 | 0 | 0 | |
Lostness | 0.52 | 0.18 | 0.03 | |
Time | 165.57 | 86.45 | 7473.96 | |
Complete | 0.48 | 0.5 | 0.25 | |
Score | 5.95 | 2.26 | 5.09 | |
Neutral | 0.44 | 0.16 | 0.03 | |
Pleasant | 0.07 | 0.13 | 0.02 | |
Sad | 0.17 | 0.24 | 0.06 | |
Angry | 0.1 | 0.1 | 0.01 | |
Surprise | 0.04 | 0.05 | 0 | |
Fear | 0.02 | 0.04 | 0 | |
Disgust | 0.06 | 0.07 | 0.01 |
Task 1 | Task 2 | Task 3 | Task 4 | Average | |
---|---|---|---|---|---|
MAPE | 19.81% | 12.55% | 9.13% | 13.47% | 13.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zheng, B.; Wu, T.; Li, Y.; Hao, P. A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network. Appl. Sci. 2024, 14, 5649. https://doi.org/10.3390/app14135649
Li Q, Zheng B, Wu T, Li Y, Hao P. A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network. Applied Sciences. 2024; 14(13):5649. https://doi.org/10.3390/app14135649
Chicago/Turabian StyleLi, Qingchen, Bingzhu Zheng, Tianyu Wu, Yajun Li, and Pingting Hao. 2024. "A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network" Applied Sciences 14, no. 13: 5649. https://doi.org/10.3390/app14135649
APA StyleLi, Q., Zheng, B., Wu, T., Li, Y., & Hao, P. (2024). A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network. Applied Sciences, 14(13), 5649. https://doi.org/10.3390/app14135649