
Citation: Gao, Z.; Li, D.; Wang, D.; Yu,

Z. Lagrange Relaxation for the

Capacitated Multi-Item Lot-Sizing

Problem. Appl. Sci. 2024, 14, 6517.

https://doi.org/10.3390/app14156517

Academic Editors: Jose Machado and

Paolo Renna

Received: 11 June 2024

Revised: 12 July 2024

Accepted: 23 July 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Lagrange Relaxation for the Capacitated Multi-Item
Lot-Sizing Problem
Zhen Gao 1,2,*, Danning Li 1,2, Danni Wang 1,2 and Zengcai Yu 1,2

1 National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern
University, Shenyang 110819, China; danning1019@163.com (D.L.); danni_present@foxmail.com (D.W.);
yu_zengcai@163.com (Z.Y.)

2 Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University),
Ministry of Education, Shenyang 110819, China

* Correspondence: gaozhen@ise.neu.edu.cn

Abstract: The capacitated multi-item lot-sizing problem, referred to as the CLSP, is to determine
the lot sizes of products in each period in a given planning horizon of finite periods, meeting the
product demands and resource limits in each period, and to minimize the total cost, consisting of the
production, inventory holding, and setup costs. CLSPs are often encountered in industry production
settings and they are considered NP-hard. In this paper, we propose a Lagrange relaxation (LR)
approach for their solution. This approach relaxes the capacity constraints to the objective function
and thus decomposes the CLSP into several uncapacitated single-item problems, each of which can
be easily solved by dynamic programming. Feasible solutions are achieved by solving the resulting
transportation problems and a fixup heuristic. The Lagrange multipliers in the relaxed problem are
updated by using subgradient optimization. The experimental results show that the LR approach
explores high-quality solutions and has better applicability compared with other commonly used
solution approaches in the literature.

Keywords: Lagrange relaxation; lot-sizing; CLSP; subgradient optimization

1. Introduction

The capacitated multi-item lot-sizing problem, referred to as the CLSP, is often en-
countered in industry production settings, where multiple products are produced and a
resource bottleneck exists [1–3]. The problem is to determine the production lot size of each
product and its timing over a finite number of periods, so that the total cost, consisting
of the production costs, setup costs and inventory costs, is minimal and the production
demand of each product in each period is met. Mathematically, the CLSP can be formulated
as follows.
(CLSP)

minimize z =
T

∑
t=1

I

∑
i=1

(pitxit + hit Iit + sityit) (1)

s.t.
Iit−1 + xit − Iit = dit, i ∈ I, t ∈ T (2)

∑
i∈I

aixit ≤ Ct, t ∈ T (3)

xit ≤ Myit, i ∈ I, t ∈ T (4)

xit, Iit ≥ 0, i ∈ I, t ∈ T (5)

Ii0, IiT = 0, i ∈ I (6)

yit ∈ {0, 1}, i ∈ I, t ∈ T (7)

Appl. Sci. 2024, 14, 6517. https://doi.org/10.3390/app14156517 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14156517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14156517
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14156517?type=check_update&version=4

Appl. Sci. 2024, 14, 6517 2 of 14

where the meanings of the notations are as follows.
Indices and sets:

i—product;
t—period;
I—set of products;
T—set of periods.

Parameters:

pit—unit linear production cost for product i in period t;
hit—unit inventory holding cost for one unit of product i between periods t and t + 1;
sit—setup cost for product i in period t;
dit—demand for product i in period t;
ai—unit capacity requirement for product i;
Ct—available capacity in period t;
M—a large positive number.

Variables:

xit—amount of product i produced in period t;
Iit—inventory of product i at the end of period t;
yit—binary variable that = 1 if xit > 0 and = 0 if xit = 0.

In the CLSP model, the objective function (1) minimizes the total production, inventory
holding and setup costs. Constraint (2) represents the inventory balance; for any product
i, the production in period t plus the remaining inventory at the end of period t − 1
minus the demand in period t is equal to the inventory at the end of period t. Constraint
(3) is the capacity constraint for the resource bottleneck, which means that the capacity
consumption of all products in each period t cannot exceed the available amount in that
period. Constraint (4) is the associated relation of variables x and y, where a product i is
produced in a period t if and only if it has been set up in that period. Constraints (5)–(7)
define the decision variables. Note that inventories are non-negative, meaning that no
backlogs are allowed. Note also that when the production costs do not change over time,
the first cost in the objective function is constant and can be removed.

CLSPs are the core of production planning and scheduling. In the enterprise produc-
tion environment, the production capacity of the key equipment is often limited, and many
products must share the key equipment resource, such as a key machine tool or a processing
center—for example, in the manufacturing industry, these include tires, bearings, chemical
products and pharmaceuticals. In these industries, the organization of production is often
in the form of an MRP; in this process, the main production schedule (MPS) is devised
according to the bill of materials (BOM), used to calculate the material demand. Often, the
product demand is beyond the key equipment capacity in many periods; in addition, the
key equipment capacity is not fully utilized in many periods, resulting in stock shortages
and cost increases. Therefore, it is important to consider the production capacity limit in
the process of production planning. The CLSP is useful to solve this kind of problem and
its main aim is to determine the lot sizes. However, the CLSP problem is NP-hard [4]; thus,
the search for an effective solution to the CLSP has been of interest in both industry [5,6]
and academic communities [7–9]. Many publications on the subject of “lot-sizing or lot
sizes” can be found [10,11] in the manufacturing environment. The most recent studies
include Daryna and Christian [12], who propose a two-step construct heuristic for the
CLSP. The algorithm firstly sorts the customer orders and then iteratively adds them to a
preliminary production plan in the second step. The algorithm can solve various variants of
the CLSP easily and rapidly, and the performance surpasses that of the well-known Dixon
and Silver heuristic [13] and the ABC heuristic [14]. Seiringer et al. [15] apply a simheuristic
to minimize the overall costs of an MRP production system, where an important issue is the
lot-sizing problem. This method combines different simulation and optimization schemes
for a planned MRP system to determine the optimal parameters, like the lot size, safety
stock and lead time. Cyril et al. [16] consider a lot-sizing and scheduling problem in the tire

Appl. Sci. 2024, 14, 6517 3 of 14

industry. This problem includes 170 products, 70 machines and 42 periods. A mixed integer
programming formulation is built and a problem-based metaheuristic is developed to solve
it. Gurkan and Tunc [17] use a fix-and-optimize heuristic for the capacitated multi-item
stochastic lot-sizing problem. Different item and period sets are partitioned to become
many subproblems and they set binary variables to be optimized.

2. Literature Review

The study of lot-sizing problems can be traced back to the EOQ problem [18], i.e.,
the economic ordering quantity model. The EOQ is essentially a trade-off among the
ordering/setup cost and inventory holding cost, seeking to achieve the optimal economic
lot sizes. The EOQ supposes that the problem is for a single stationary product, an invariable
demand and an unlimited production capacity. The EOQ can be solved with differential
methods. While some complex characteristics are combined in the “lot sizes” problem, this
problem is very difficult to solve. For example, when the product demand changes over
time, more products are produced. However, one of the most essential changes for problem-
solving is the existence of production capacity constraints. Consequently, the complexity
of a lot-sizing problem can be characterized in terms of the length of the horizon, number
of items and capacity constraints. Based on these characteristics, lot-sizing problems can
be classified into the uncapacitated single-item lot-sizing problem (SILSP), the capacitated
single-item lot-sizing problem (CSILSP), the uncapacitated multi-item lot-sizing problem
(ULSP) and the capacitated single-level multi-item lot-sizing problem (CLSP). Among them,
the CLSP is the most common and difficult problem and has become the core of lot-sizing
problem research. Meanwhile, the SILSP is the simplest lot sizing problem, specific to a
single product, with a finite planning horizon of T periods and no capacity constraints.
SILSPs are solvable in O (T2), except for some variants with some essential extensions, such
as the setup time and (or) cost, backlogs, time windows, etc., which are NP-hard. ULSPs are
an extension of SILSPs with multiple items and thus are also solvable in O (T2). CSILSPs
are an extension of the SILSPs with capacity constraints and are NP-hard [4]. The CLSP
is the extension of the CSILSP with multiple items and is thus NP-hard. Because of the
difficulties of the CLSP, most of the existing solution approaches are heuristic and the exact
solution approaches are only suitable for small-sized problems. In general, the solution
approaches to the CLSP can be divided into three classes: common heuristics, mathematic
programming-based and meta-heuristics approaches.

Heuristics is sometimes the only available choice when the capacity constraints are
too tight in a CLSP. The well-known common heuristics include lot-for-lot, least unit
cost (LUC) [19], part-period balancing (PPB) [20,21], Silver–Meal (SM) [22], Lambrecht–
Vanderveken (LV) [23] and Dixon–Silver (DS) [13]. The lot-for-lot heuristic directly converts
the demand matrix into a lot-size matrix to obtain an initial solution. This approach
maximizes the setup costs and minimizes the inventory holding costs. It is suitable for
problems with looser capacity constraints and can quickly obtain an initial feasible solution.
The LUC heuristic tracks the lowest cost per unit for production, and it can be expressed
mathematically as

argmin
t

k(t) =
s + h

t
∑

τ=1
(τ − 1)dτ

t
∑

τ=1
dτ

, t = 1, . . . , T (8)

Hereafter, s indicates the setup cost and h is the unit inventory holding cost. The
PPB heuristic aims at seeking the maximum production over the demand of several pe-
riods when the total holding cost does not exceed a single setup cost. It is expressed by
the formula

argmax
t

h
t

∑
τ=1

(τ − 1)dτ − s ≤ 0, t = 1, . . . , T (9)

Appl. Sci. 2024, 14, 6517 4 of 14

The SM heuristic attempts to minimize the average cost per unit time for each lot.
Mathematically, it can be expressed as

argmin
t

k(t) =
s + h

t
∑

τ=1
(τ − 1)dτ

t
, t = 1, . . . , T (10)

The LV heuristic is an extended Eisenhut heuristic [24]. LV’s idea is analogous to that
of Eisenhut’s heuristic, a period-by-period heuristic. Because we always suppose that the
current period is 1, the LV then computes the maximum order up to the period

min
t

Bt =
t

∑
τ=2

(
I

∑
i=1

diτ − Cτ) > 0, t = 2, . . . , T (11)

Suppose that Bt∗ > 0; this means that, from period 2 to period t*, the cumulative
demands exceed the cumulative capacity by Bt∗ units, which must be backward-shifted to
period 1. We repeat the above process until the current period is T and a feasible solution is
obtained. The DS heuristic can be regarded as an extension of the SM heuristic for multiple
items, because the single-item SM heuristic for the multiple-item lot-sizing problems is
not necessarily optimal or even feasible if capacity limitations exist. Consequently, for a
multiple-item problem, the DS would seek to increase the items, which results in the largest
decrease in the average costs per unit time per unit capacity.

argmax
ui

ui =
ACi(Ti)− ACi(Ti + 1)

di,Ti+1
> 0, i = 1, . . . , I (12)

where, ACi(Ti) = (si + hi
Ti
∑

τ=1
(τ − 1)diτ)/Ti, Ti = 1, . . . , T denotes the average cost per unit

time of a lot of item i that will satisfy Ti periods’ requirements. Therefore, ui indicates the
marginal decrease in the average costs per unit of capacity absorbed when increasing the
production of item i from Ti to Ti + 1.

Mathematic programming-based approaches are a broad class of methods, suited
for lot-sizing problems with complex constraints and multiple items. The well-known
W-W [25] dynamic programming for the uncapacitated single-item lot-sizing problem is
representative. It solves the USLP effectively in time O (T2). Moreover, Barany et al. [26]
proposed a linear programming (LP)-based approach for the CLSP. This approach embeds
valid inequalities into a branch-and-bound framework to solve the linear programming
relaxation of the CLSP. Up to 20-item × 13-period CLSPs are solved optimally with this
approach. Lasdon and Terjung [27] used column generation and a generalized upper bound
to solve the CLSP. Up to 393-item × 6-period CLSPs are solved with good approximation.
In addition, Bahl [28] proposed a column generation heuristic for the CLSP, where the
time-consuming W-W dynamic programming algorithm is replaced by the PPB heuristic
in computing shadow prices, thus reducing the CPU time, with a slight loss in optimality.
Hindi [29] proposed a variable redefinition approach for the CLSP. He uses computation-
ally efficient approaches, such as the shortest-path and minimum-cost network flow, to
obtain lower bounds and upper bounds in a branch-and-bound framework. Thizy and
Wassenhove [30] proposed a Lagrangian relaxation approach for the CLSP. The Lagrangian
relaxation problem consists of |I| uncapacitated single-item problems and each of them
is solved with W-W dynamic programming in O (T2). Feasible solutions are obtained
from the resulting transportation problems. The Lagrange multipliers are updated by a
subgradient procedure [31]. Trigeiro et al. [32] also proposed Lagrangian relaxation for the
CLSP and considered the setup times. They found feasible solutions with a heuristic called
the smooth procedure. Diaby et al. [33] proposed Lagrangian relaxation for the CLSP, in
which Lagrangian relaxation is used within a branch-and-bound framework to generate
bounds. However, the initial upper bounds are generated by three heuristics: (1) the DS

Appl. Sci. 2024, 14, 6517 5 of 14

heuristic, (2) linear programming-based relaxation and (3) an extension of the solution
procedure of Thizy and Van Wassenhove [30] with setup times and multiple resources.

Meta-heuristics have also been used to solve the CLSP. Xie and Dong [34] proposed a
heuristic genetic algorithm (GA) for the CLSP. They designed a domain-specific encoding
scheme for lot sizes and provided a heuristic shifting procedure for decoding for feasibility.
The computational results show that the algorithm converges a solution within 200 gen-
erations for most of the small-scale examples (N ≤ 10) and within 500 generations for
most of the modest examples (N ≤ 20). Gaafar [35] applied a genetic algorithm (GA) to
solve a lot-sizing problem and considered batch ordering and backorders. This approach
uses a “012” coding scheme specific to the problem. The computational results show that
the proposed genetic algorithm outperforms the modified SM heuristic in terms of the
optimal rate and the percentage deviation. Moreover, Gaafar et al. [36] also proposed a
simulated annealing (SA) algorithm for a lot-sizing problem. In their implementation,
the “012” coding scheme and 16 mutation-based moves are used to solve the dynamic
lot-sizing problem, and the computational results show that the performance of the SA
algorithm surpasses that of the compared GA and the modified SM heuristic. Hindi [37]
proposed a tabu search (TS) heuristic for the CLSP. In his algorithm, a reformulation of the
original problem is first executed by variable redefinition. The new problem has tighter
bounds but more variables and thus is solved by column generation. The resulting feasible
solution is further improved by solving a minimum-cost network flow problem, and then
the improved solution is used as a starting point for a tabu search procedure. More studies
for CLSPs with metaheuristics can be found [38].

Summarizing the above methods, we find that, for complex lot-sizing problems such
as the CLSP, the Lagrange relaxation method has more advantages, which are as follows:

(1) It is a method based on mathematical optimization, which can obtain the optimal solution;
(2) It can deal with complex constraint relations, differing from the heuristic method,

especially if the problem comes from a complex industrial production environment,
most of which have complex industrial constraints and coupling relations;

(3) The Lagrange relaxation method has a rich theoretical background and is easy to
implement.

Therefore, in this paper, we propose a Lagrange relaxation approach for the CLSP, and
the work is closely related to that of [30]. However, the difference lies in the methods of
finding the lower bounds and upper bounds. The contributions of this paper are as follows:

(1) A Lagrange relaxation approach for the CLSP is implemented;
(2) A stepping-stone algorithm is developed to solve the resulting transportation problem;
(3) A fix-up heuristic is proposed to obtain feasible solutions;
(4) A local neighborhood search heuristic is used to further search for high-quality solu-

tions, which increases the likelihood of finding the optimal solution.

3. Solution Approach
3.1. Lagrange Relaxation

We propose a Lagrange relaxation approach for the CLSP [39,40]. Let ut, t = 1, . . ., T, be
nonnegative Lagrange multipliers for capacity constraints (3); then, a Lagrange relaxation
problem (LR (u)) can be obtained as follows.

LR (u) : zu = min
T
∑

t=1

I
∑

i=1
(pitxit + hit Iit + siyit) + ∑

t∈T
ut(∑

i
aixit − Ct)

= ∑
t∈T

∑
i∈I

((pit+ utai)xit + hit Iit + siyit)− ∑
t∈T

utCt

s.t.
(2), (4)− (6), ut ≥ 0, t ∈ T.

The LR (u) problem can be then decomposed into |I| independent uncapacitated
single-item lot-sizing problems, each of which is solvable in O(T2) [25], and any of the
previously mentioned single-item problem methods—for example, lot-for-lot, LUC, W-
W dynamic programming, etc.—can be used to this aim. In this paper, W-W dynamic

Appl. Sci. 2024, 14, 6517 6 of 14

programming is chosen. Note that, for any given u, the solution of the LR(u) will give a
lower bound zLB for the original problem (CLSP).

3.2. Obtaining Feasible Solutions

Let (yu, xu, Iu) be the optimal solution of zu for a given Lagrange multiplier u; note
that when the production periods are specified by fixing yit at 0 or 1 for all i = 1, . . ., I,
t = 1, . . ., T, the problem can be transformed into a transportation problem with |T| origins
and |T| × |I| destinations. Note also that some of the arcs of the transportation problem
are forbidden due to either the prevention of backlogging or production not starting in
that period.

The transportation problem (TP) is formulated as follows.

TP(y) : zy = min∑
i∈I

∑
t∈T

∑
τ∈T

δitτξitτ (13)

s.t.
∑
t∈T

ξitτ ≥ aidiτ , i ∈ I, t ∈ T (14)

∑
i∈I

∑
τ∈T

ξitτ ≤ Ct, t ∈ T (15)

ξitτ = 0, if yit = 0 or t > τ; i ∈ I, t ∈ T, τ ∈ T (16)

ξitτ ≥ 0, i ∈ I, t ∈ T, t ∈ T (17)

δitτ =

 (pit +
τ−1
∑

q=t
hiq)/ai, t ≤ τ

+∞, otherwise
, i ∈ I, t ∈ T, τ ∈ T (18)

ξitτ : the amount of product i produced in period t to satisfy the demand in the future
period τ.

To solve the resulting transportation problem TP (y), we develop a stepping-stone
algorithm [41,42], which is shown in Algorithm 1.

Algorithm 1: Stepping-stone algorithm.

Input: matrix X, where xij is the number of units shipped from supply point i to demand point j
Output: the optimal basic feasible solution (bfs) X
1: Determine an initial basic feasible solution (bfs) with the matrix minimum rule.
2: Calculate dual variables ui, i = 1, . . ., m, vj, j = 1, . . ., n, for the current basis solution.
3: Find a non-basic variable with a negative reduced cost, min λ = ui + vj − cij < 0, which will

enter the basis to improve the current basic solution; if such a variable xij is not found, then
the optimal solution has been obtained; output the current bfs and stop. Otherwise, go to step 4.

4: Find the closed loop that includes the newly found non-basic variable xij.
5: Update the values of the elements along the found closed loop and obtain a new bfs.
6: Return to step 2.

Note that the solution to the transportation problem will give an upper bound zUB for
the CLSP if it is feasible. As an illustrative example from the literature [30], here, a 3-item
× 4-period CLSP with a specified y is considered. The problem and data are shown in
Tables 1–3. The iteration process of the algorithm is shown in Tables 4–8.

In Table 1, a number with a square indicates that production occurs in this period. In
Table 3, the resulting transportation problem is formed with the y specified in Table 1. The
marks X and X indicate that the corresponding arcs are forbidden, either because yit = 0
or because τ < t, respectively. The initial basis is listed in Table 4. The superscripts are
the basis variable labels. The initial objective value is 385.3 (no setups included). The
optimal solution is obtained with four iterations and the objective values are gradually

Appl. Sci. 2024, 14, 6517 7 of 14

reduced to 285.3, 193.3, 162.3 and 146 (optimal). The four closed loops found are (14-1-0),
(10-12-13-1-0-14-15), (13-1-0-14-15-10-4) and (13-1-0), which the components marked with
the green background.

Table 1. Demand and capacity.

Item
Period

1 2 3 4

1 20 30 40 10 dem
ands

2 20 10 10 10
3 25 30 30 30

Capacity 450 400 450 300

Table 2. Other data.

Item pi ai si hi

1 - 5 70 3
2 - 4 90 4
3 - 6 200 5

Table 3. The transportation problem.

Reduction
Demand |T|

t100 150 200 50 80 40 40 40 150 180 180 180 210

450 0 0.6 1.2 1.8 0 1 2 3 0 5/6 5/3 2.5 0 1
400 X 0 0.6 1.2 X X X X X 0 5/6 5/3 0 2
450 X X 0 0.6 X X 0 1 X X 0 5/6 0 3
300 X X X X X X X X X X X 0 0 4

|T|×|I| + 1 τ = 1, 2, 3, 4; i = 1 τ = 1, 2, 3, 4; i = 2 τ = 1, 2, 3, 4; i = 3 dummy

Table 4. The initial basic feasible solution and first closed loop.

1009 808 4011 4015 1507 4014 X 450 1
1506 2012 1805 5013 400 2

2004 3010 403 1802 450 3

901 2100 300 4
100 150 200 50 80 40 40 40 150 180 180 180 210

Table 5. The second basic feasible solution and closed loop.

1009 808 4011 4015 1507 4014 450 1

1506 2012 1805 5013 400 2

2004 3010 403 X 1802 450 3

1301 1700 300 4
100 150 200 50 80 40 40 40 150 180 180 180 210

Table 6. The third basic feasible solution and closed loop.

1009 808 4011 1015 1507 7014 450 1

1506 X 5012 1805 2013 400 2

2004 403 3010 1802 450 3

1601 1400 300 4
100 150 200 50 80 40 40 40 150 180 180 180 210

Appl. Sci. 2024, 14, 6517 8 of 14

Table 7. The fourth basic feasible solution and closed loop.

1009 808 4011 1507 8014 450 1
1506 1015 5012 1805 1013 X 400 2

1904 403 4010 1802 450 3

1701 1300 300 4
100 150 200 50 80 40 40 40 150 180 180 180 210

Table 8. The optimal basic solution.

1009 808 4011 1507 8014 450 1
1506 1015 5012 1805 1013 400 2

1904 403 4010 1802 450 3
1801 1200 300 4

100 150 200 50 80 40 40 40 150 180 180 180 210

3.3. Fix-Up Heuristic

For a given yu, from the LR(u), the resulting transportation problem TP(y) often is infeasi-
ble. To obtain a feasible solution, we introduce a fix-up heuristic. The fix-up heuristic shifts
the lots among periods using lot techniques. The fix-up heuristic is shown in Algorithm 2.

Algorithm 2: Fix-up heuristic.

1. Check infeasible period cp, compute the remaining capacity RCj,
RCj = ∑

i∈I
aidij − Lj, for each period j = 1, . . ., T.

2. If (cp < T), go to forward pass; otherwise, go to backward pass.
3. Forward pass: for each product, check inventory period by period and move product lots

forward into periods cp + 1, cp + 2, . . ., T, in a cost-effective fashion, until no sufficient capacity
is available. Go to 4.

4. Backward pass: if, in the following periods, no excessive capacities exist, move product lots
backward into periods cp − 1, cp − 2, . . ., in a cost-effective fashion.

5. Iteratively execute 3 and 4 until a feasible solution is obtained.

3.4. Local Neighborhood Search Algorithm

To find more high-quality solutions, we proposed a local neighborhood search algo-
rithm for the current feasible solution. The neighborhood structures are defined as follows.

(1) The neighborhood of the lot move

The first neighborhood structure is for the shifting of lots between two periods for a
single item. Assume that there exists an item i, and, for any two periods t1 and t2, there
are two lots xit1 > 0,xit2 > 0, in the corresponding period. Again, assume that there are no
positive lots among t1 and t2, i.e., the two periods t1 and t2 can be discontinuous, but there
must be no production occurring between them. The neighborhood of the lot move is then
defined for all possible moves between t1 and t2 as stated above. As an illustrative example,
let ∆ > 0 be the lot from period t1 to period t2; then, we have{

xit1 = xit1 − ∆
xit2 = xit2 + ∆

, (19)

Note that the lot move may be bidirectional. A forward move reduces the inventories,
while a backward move may reduce the setups. The cost change can be computed from
Formulas (20) and (21).

cost =− λhi · ∆ − si, forforwardmoves (20)

Appl. Sci. 2024, 14, 6517 9 of 14

cost =λhi · ∆ − si, forbackwardmoves (21)

When the inventory cost hi changes from period to period, the formula needs to be
adjusted correspondingly. The cardinal of the lot-move neighborhood is O(n3).

(2) The neighborhood of the 2-opt lot exchanges

This neighborhood is for the 2-opt lot exchanges, which change the lots for two items in
two continuous periods. Assume that there are two items i1, i2 and two continuous periods,
t1 and t2, and the related lots are xi1t1 , xi1t2 , xi2t1 , xi2t2 , respectively. Now, we swap two lots
for two items i1 and i2 in two periods t1 and t2, and assume that ∆1 ≤ min(xi1t2 , xi2t1),
∆2 ≤ min(xi1t1 , xi2t2). Then, we have

xi1t1 = xi1t1 + ∆1
xi1t2 = xi1t2 − ∆1
xi2t1 = xi2t1 − ∆1
xi2t2 = xi2t2 + ∆1

, for forward exchange,

xi1t1 = xi1t1 − ∆2
xi1t2 = xi1t2 + ∆2
xi2t1 = xi2t1 + ∆2
xi2t2 = xi2t2 − ∆2

, for backward exchange.

The cardinal of the neighborhood is O(n4).
As an illustrative example, below, a 3-item × 4-period lot-sizing problem is con-

sidered [15]. The data are referred to in the literature. The 2-opt lot exchange local
neighborhood search results are shown in Figure 1.

Appl. Sci. 2024, 14, 6517 10 of 15

two lots for two items i1 and i2 in two periods t1 and t2, and assume that

1 2 2 11 min(,)i t i tx xΔ ≤ ,
1 1 2 22 min(,)i t i tx xΔ ≤ . Then, we have

1 1 1 1

1 2 1 2

2 1 2 1

2 2 2 2

1

1

1

1

i t i t

i t i t

i t i t

i t i t

x x

x x

x x

x x

= + Δ
 = − Δ
 = − Δ
 = + Δ

, for forward exchange,

1 1 1 1

1 2 1 2

2 1 2 1

2 2 2 2

2

2

2

2

i t i t

i t i t

i t i t

i t i t

x x

x x

x x

x x

= − Δ
 = + Δ
 = + Δ
 = − Δ

, for backward exchange.

The cardinal of the neighborhood is O(n4).
As an illustrative example, below, a 3-item × 4-period lot-sizing problem is consid-

ered [15]. The data are referred to in the literature. The 2-opt lot exchange local neighbor-
hood search results are shown in Figure 1.

Figure 1. A 2-opt lot exchange for solution improvement.

An initial solution is obtained from the DS heuristic, and the objective function value
is 1415.7. Then, the two 2-opt lot exchanges are performed and two improved solutions
are obtained with values of 1414 and 1412.6, which are optimal.

3.5. Subgradient Algorithm
For any given u, the solution of the LR(u) gives a lower bound zu for the original

CLSP. To obtain the maximum lower bound, a subgradient algorithm [31] is proposed in

this paper and, according to subgradient theory, i it t
i I

ax C
∈

− is a subgradient of function

zu at point u. The Lagrange multipliers u can be updated with the formula

1
2

()max 0, () ,
()

k best k
k k k k k u
t t i it t k

i I i it t
t T i I

z zu u s a x C s
a x C

η+

∈
∈ ∈

− = + − = −

(22)

where
k
itx is the solution of LR (uk), and zbest is the best upper bound found so far, η0 = 2.

The subgradient algorithm is shown in Algorithm 3.

Algorithm 3: Subgradient algorithm.
1: given a Lagrangian multiplier uk, k = 0;
2: loop
3: Arbitrarily select a subgradient from ∂(zu);

If any of the termination criteria are met, then stop; / /see note 2
else
uk+1 = max {0, uk + θksk}; //see note 1

4: k = k + 1;
5: if k > N then stop;
6: end loop

Notes.
1. Selection of θk:

Figure 1. A 2-opt lot exchange for solution improvement.

An initial solution is obtained from the DS heuristic, and the objective function value
is 1415.7. Then, the two 2-opt lot exchanges are performed and two improved solutions are
obtained with values of 1414 and 1412.6, which are optimal.

3.5. Subgradient Algorithm

For any given u, the solution of the LR(u) gives a lower bound zu for the original CLSP.
To obtain the maximum lower bound, a subgradient algorithm [31] is proposed in this
paper and, according to subgradient theory, ∑

i∈I
aixit − Ct is a subgradient of function zu at

point u. The Lagrange multipliers u can be updated with the formula

uk+1
t = max

{
0, uk

t + sk(∑
i∈I

aixk
it − Ct)

}
, sk =

ηk(zbest − zk
u)

∑
t∈T

(∑
i∈I

aixk
it − Ct)

2 (22)

where xk
it is the solution of LR (uk), and zbest is the best upper bound found so far, η0 = 2.

The subgradient algorithm is shown in Algorithm 3.

Algorithm 3: Subgradient algorithm.

1: given a Lagrangian multiplier uk, k = 0;
2: loop
3: Arbitrarily select a subgradient from ∂(zu);

If any of the termination criteria are met, then stop; / /see note 2
else
uk+1 = max {0, uk + θksk}; //see note 1

4: k = k + 1;
5: if k > N then stop;
6: end loop

Appl. Sci. 2024, 14, 6517 10 of 14

Notes.

1. Selection of θk:

(1)
∞
∑

k=1
θk = ∞, θ → 0, k → ∞ ;

(2) θk = θ0ρk, 0 < ρ<1;

(3) θk =
zk

UB−zk
LB

∥sk∥ ηk.

2. Termination criteria:

(1) Iterations: N,

(2) sk = 0 or
∥∥∥sk

∥∥∥ ≤ ε,

(3) |zUB
k − zLB

k| < ε

(4) uk or z(uk) does not change within a given number of iterations (e.g., 7).

3.6. Lagrange Relaxation Algorithm

Based on the above description of the components of the Lagrange relaxation algorithm,
now, we can give the complete Lagrange relaxation algorithm shown in Algorithm 4.

Algorithm 4: Lagrange relaxation algorithm.

// Initialization
1: k = 0
2: LB = −1 × 1010 //a sufficiently small lower bound
3: UB = 1 × 1010 //a sufficiently large upper bound
4: Gap = 1 × 10−2 //a dual gap percentage
5: K = 5000 //the maximum number of iterations
6: ηk = 2.0 //step size
7: uk = 0 //Lagrangian multipliers
8: loop //main cycle beginning
9: Solve the Lagrangian relaxation LR (uk) by W-W dynamic programming, and

calculate the current lower bound ZLB (uk)
10: Solve the resulting transportation problem with the stepping-stone algorithm for the y
from the solution of the current LR to obtain a ZUB (uk) if it is feasible

else
{
Execute the fix-up heuristic
Solve the corresponding transportation problem using the stepping-stone algorithm
}

11: Execute the local neighborhood search algorithm to increase the solution quality
12: if ZLB (uk) ≥ ZLB, ZLB = ZLB (uk) //updating low bounds
13: if ZUB (uk) ≤ ZUB, ZUB = ZUB (uk) //updating upper bounds
14: if (ZUB

k − ZLB
k)/ZUB

k ≤ Gap, then stop
15: k++, if k ≥ K then stop;
16: Update the Lagrangian multipliers with the subgradient algorithm
17: ηk = 1/2*ηk; //update the step size
18: continue;
19: end loop //main cycle ending

4. Computational Results
4.1. Comparison Study

The Lagrange relaxation algorithm proposed in this paper has been implemented on
a personal computer using the VC++ 6.0 programming language. Computational experi-
ments for the benchmarks and randomly generated large-sized CLSPs are performed. The
benchmarks are from the literature [23]. The data are listed in Table 9. The computational
results are listed in Table 10.

Appl. Sci. 2024, 14, 6517 11 of 14

Table 9. Data for problems TVW1-4.

Item hi si
Period

TBO ➀

1 2 3 4 5 6 7 8

1 1 100 - 70 50 100 20 80 - 100 2
2 1 200 20 40 50 10 30 - 40 50 3.65
3 1 200 40 50 - 100 40 80 90 160 2.33
4 1 300 - 100 100 150 160 90 100 100 2.5
5 1 400 50 - 20 40 10 10 20 10 6.32
6 1 250 70 40 40 40 100 20 40 50 3.16
7 1 500 - 20 50 10 20 60 40 40 5.77
8 1 300 10 20 - - 10 10 20 30 6.93

Available demand 190 340 310 450 390 350 350 540 Total demand
2920

TVW1 350 350 350 400 400 400 400 500 3150 (93%)
TVW2 400 400 400 400 400 400 400 400 3200 (91%)
TVW3 500 500 500 500 500 500 500 500 4000 (73%)
TVW4 600 600 600 600 600 600 600 600 4800 (61%)

Notes: ➀ TBO = (2s/hd)1/2, time between orders; ai = 1, for all i = 1, . . ., I, hence not appeared in the table.

Table 10. Computational results for benchmarks.

Problem
ID

LP
Relaxation

Optimal
Solution LR LRFN DS LV

TVW1 7996.67 8430 8710 8520 8710 8970
TVW2 7722.27 7910 7930 7910 7930 8800
TVW3 7534.17 7610 7610 7610 7970 7970
TVW4 7446.17 7520 7520 7520 8000 8000

The four approaches, LRFN (the proposed approach), LR (without the local neigh-
borhood search), DS and LV, are compared, wherein the results of DS and LV are from the
literature [23]. The LP relaxation and optimal solutions are from CPLEX 7.0. It can be seen
that the results of the LRFN proposed in this paper are better compared to the others. For
problems with looser capacity constraints, like TVW3 and TVW4, their capacity utilization
ratios are below 73%, and the LRFN obtains the optimal solution. For problems with tighter
capacity constraints, such as TVW2, the capacity utilization ratio is 91%. The LRFN obtains
the optimal solution, and the others obtain near-optimal solutions. LV has a larger error,
about 11.3%. For the tightest capacity problem, TVW1, its capacity utilization ratio reaches
93%, the LRFN obtains the best near solution, and the error is below 1%, while the errors of
DS and LV are 3.3% and 6.4%, respectively. The computational results show that the LRFN
has the best performance. The performance comparison is shown in Figure 2.

Appl. Sci. 2024, 14, 6517 13 of 15

Figure 2. Computational results comparison.

4.2. More Computational Examples
The benchmarks that we previously computed have been regarded as traditional

problems in lot-sizing publications. However, the difficulty of lot-sizing problems can be
evaluated with the following criteria.
(1) The number of time periods |T| and the number of items |I|.

(2) The tightness of the capacity utilization: 1 1

1

T I

it
t i

T

t
t

d

C

= =

=

.

Thus, we compute larger problems at different difficulty levels. The data of these
problems are randomly generated and adhere to the following limitations:
(1) the maximal number of items is set to 512;
(2) the number of periods is set to 48;
(3) the maximal utilization ratio is set to 93%.

The other problem-specific data are randomly generated—for example, Ct: rand (800,
2000), dit: rand (0,100), si: rand (100, 2000), pi: (1,8), hi: (1,4) and ai = 1, and so on. The com-
putational results for these problems are listed in Table 11.

Table 11. Computational results of large-sized problems.

Problem
No.

Problem Size
(Items × Periods) LB Optimal

Solution
Iteration
Found Gap (%) CPU Time (s)

1 5 × 36 82,131.54 85,374 201 3.95 68.73
2 5 × 48 111,368.25 115,136 215 3.38 215
3 10 × 10 84,904.29 88,094 2 3.76 5.33
4 10 × 15 67,167.7 67,906 49 1.1 1.5
5 10 × 15 71,694.02 71,705 8 0.02 0.03
6 10 × 20 151,859.54 157,470 87 3.69 40.75
7 10 × 20 85,426.11 85,619 1 0.23 2.47
8 15 × 20 160,088.16 161,128 14 0.65 7.4
9 10 × 24 103,383.29 103,866 10 0.47 82.97

10 15 × 36 57,341.8 58,184 40 1.47 66.08
11 10 × 36 220,486.05 224,047 214 1.62 380.94
12 10 × 30 224,231.93 226,571 7 1.04 161.01
13 20 × 20 261,226.71 267,422 2 2.37 16.65

Figure 2. Computational results comparison.

Appl. Sci. 2024, 14, 6517 12 of 14

4.2. More Computational Examples

The benchmarks that we previously computed have been regarded as traditional
problems in lot-sizing publications. However, the difficulty of lot-sizing problems can be
evaluated with the following criteria.

(1) The number of time periods |T| and the number of items |I|.

(2) The tightness of the capacity utilization:

T
∑

t=1

I
∑

i=1
dit

T
∑

t=1
Ct

.

Thus, we compute larger problems at different difficulty levels. The data of these
problems are randomly generated and adhere to the following limitations:

(1) the maximal number of items is set to 512;
(2) the number of periods is set to 48;
(3) the maximal utilization ratio is set to 93%.

The other problem-specific data are randomly generated—for example, Ct: rand (800,
2000), dit: rand (0,100), si: rand (100, 2000), pi: (1,8), hi: (1,4) and ai = 1, and so on. The
computational results for these problems are listed in Table 11.

Table 11. Computational results of large-sized problems.

Problem
No.

Problem Size
(Items × Periods) LB Optimal

Solution
Iteration
Found

Gap
(%)

CPU
Time (s)

1 5 × 36 82,131.54 85,374 201 3.95 68.73
2 5 × 48 111,368.25 115,136 215 3.38 215
3 10 × 10 84,904.29 88,094 2 3.76 5.33
4 10 × 15 67,167.7 67,906 49 1.1 1.5
5 10 × 15 71,694.02 71,705 8 0.02 0.03
6 10 × 20 151,859.54 157,470 87 3.69 40.75
7 10 × 20 85,426.11 85,619 1 0.23 2.47
8 15 × 20 160,088.16 161,128 14 0.65 7.4
9 10 × 24 103,383.29 103,866 10 0.47 82.97

10 15 × 36 57,341.8 58,184 40 1.47 66.08
11 10 × 36 220,486.05 224,047 214 1.62 380.94
12 10 × 30 224,231.93 226,571 7 1.04 161.01
13 20 × 20 261,226.71 267,422 2 2.37 16.65
14 20 × 30 379,853.7 383,533 3 0.97 50.51
15 10 × 48 358,551 392,750 1 9.54 1147.91

In Table 11, the column “Iteration Found” indicates that the best solution is found in a
certain iteration. The meanings of the other columns are clear. As shown in Table 11, the
average dual gap is within 2% (exactly 1.76), with the exceptions of some extreme examples,
like problem No. 15, where the dual gap is 9.54. The reason for this result may be the
excessively tight capacity utilization. Usually, the looser the capacity utilization ratio, the
smaller the dual gap is, and vice versa.

5. Conclusions

In this paper, we propose a Lagrange relaxation approach to solve the capacitated
multi-item lot-sizing problem, the CLSP. The CLSP is often encountered in industry pro-
duction settings and the study of its solution approaches is significant. Our approach
represents a deliberate attempt to solve such industrial problems. The main work includes
(1) developing a stepping-stone algorithm to solve the resulting transportation problem to
obtain the upper bounds; (2) developing a fix-up procedure to obtain feasible solutions;
(3) developing a local search heuristic to obtain high-quality solutions; and (4) providing a
complete Lagrange relaxation algorithm framework. The computational experiments on
the benchmarks and randomly generated lot-sizing problems verify the effectiveness and
efficiency of the proposed solution approach. There are some limitations to our method:

Appl. Sci. 2024, 14, 6517 13 of 14

(1) Parameter setting in the subgradient algorithm;
(2) A feasible solution fix-up policy;
(3) Subgradient algorithm substitution, such as multiplier adjustment methods.

These also constitute the directions of our ongoing research.

Author Contributions: Conceptualization, Z.G. and D.L.; data curation, D.L.; formal analysis, D.W.;
methodology, Z.G.; experimental design and testing, D.L.; software, D.W. and Z.Y.; supervision, Z.G.;
validation, Z.Y.; writing—original draft, Z.G.; writing—review and editing, D.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was partly supported by the Major Program of the National Natural Science
Foundation of China (72192830, 72192831) and the 111 Project (B16009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Drexl, A.; Kimms, A. Lot sizing and scheduling-survey and extensions. Eur. J. Oper. Res. 1997, 99, 228–249. [CrossRef]
2. Maes, J.; Van Wassenhove, L.N. Multi-item single-level capacitated dynamic lot-sizing heuristics: A general review. J. Oper. Res.

Soc. 1988, 39, 991–1004. [CrossRef]
3. Karimi, B.; Fatemi Ghomi, S.M.T.; Wilson, J.M. The capacitated lot sizing problem: A review of models and algorithms. Omega

2003, 31, 365–378. [CrossRef]
4. Florian, M.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Deterministic production planning algorithms and complexity. Manag. Sci. 1980,

26, 669–679. [CrossRef]
5. Tang, L.; Meng, Y.; Liu, J. An improved Lagrangean relaxation algorithm for the dynamic batching decision problem: Lot sizing

and scheduling: New models and solution approaches to address industrial extensions. Int. J. Prod. Res. 2011, 49, 2501–2517.
[CrossRef]

6. Gao, Z.; Tang, L.; Jin, H.; Xu, N. An Optimization Model for the Production Planning of Overall Refinery. Chin. J. Chem. Eng. 2008,
6, 67–70. [CrossRef]

7. Zhang, X.F.; Boutat, D.; Liu, D.Y. Applications of fractional operator in image processing and stability of control systems. Fractal
Fract. 2023, 7, 359. [CrossRef]

8. Zhang, X.F.; Lin, C.; Chen, Y.Q.; Boutat, D. A unified framework of stability theorems for LTI fractional order systems with 0 < α

< 2. IEEE Trans. Circuit Syst. II Express Briefs 2020, 67, 3237–3241.
9. Zhang, X.F.; Chen, S.N.; Zhang, J.X. Adaptive sliding mode consensus control based on neural network for singular fractional

order multi-agent systems. Appl. Math. Comput. 2022, 336, 127442. [CrossRef]
10. Jans, R.; Degraeve, Z. Modeling industrial lot sizing problems: A review. Int. J. Prod. Res. 2008, 46, 1619–1643. [CrossRef]
11. Buschkuhl, L.; Sahling, F.; Helber, S.; Tempelmeier, H. Dynamic capacitated lot-sizing problems: A classification and review of

solution approaches. OR Spectr. 2010, 32, 231–261. [CrossRef]
12. Daryna, D.; Christian, A. New construction heuristic for capacitated lot sizing problems. Eur. J. Oper. Res. 2023, 311, 906–920.
13. Dixon, P.S.; Silver, E.A. A heuristics solution procedure for multi-item, single-level, limited capacity, lot-sizing problem. J. Oper.

Manag. 1981, 2, 23–39. [CrossRef]
14. Maes, J.; Van Wassenhove, L.N. A simple heuristic for the multi-item single level capacitated lot sizing problem. Oper. Res. Lett.

1986, 4, 265–274. [CrossRef]
15. Seiringer, W.; Castaneda, J.; Altendorfer, K.; Panadero, J.; Juan, A.A. Applying Simheuristics to Minimize Overall Costs of an

MRP Planned Production System. Algorithms 2022, 15, 40. [CrossRef] [PubMed]
16. Cyril, K.; Taha, A.; Yassine, O.; Farouk, Y.; Humbert, D.B.; Nicolas, J.; Antoine, D.W. A metaheuristic approach for solving a

simultaneous lot sizing and scheduling problem with client prioritization in tire industry. Comput. Ind. Eng. 2022, 165, 107932.
17. Gurkan, M.E.; Tunc, H. A fix-and-optimize heuristic for the capacitated multi-item stochastic lot-sizing problem. Int. J. Optim.

Control Theor. Appl. 2021, 11, 41–51. [CrossRef]
18. Harris, F.W. How many parts to make at once. Fact.—Mag. Manag. 1913, 10, 135–136, 152. [CrossRef]
19. Gorham, T. Dynamic order quantities. Prod. Inventory Manag. J. 1968, 9, 75–79.
20. DeMatteis, J.J. An economic lot-sizing technique. I: The part-period algorithm. IBM Syst. J. 1968, 7, 30–38. [CrossRef]
21. Mendoza, A.G. An economic lot-sizing technique. II: Mathematical analysis of the part period algorithm. IBM Syst. J. 1968, 7,

39–46. [CrossRef]

https://doi.org/10.1016/S0377-2217(97)00030-1
https://doi.org/10.1057/jors.1988.169
https://doi.org/10.1016/S0305-0483(03)00059-8
https://doi.org/10.1287/mnsc.26.7.669
https://doi.org/10.1080/00207543.2010.532915
https://doi.org/10.1016/S1004-9541(08)60039-7
https://doi.org/10.3390/fractalfract7050359
https://doi.org/10.1016/j.amc.2022.127442
https://doi.org/10.1080/00207540600902262
https://doi.org/10.1007/s00291-008-0150-7
https://doi.org/10.1016/0272-6963(81)90033-4
https://doi.org/10.1016/0167-6377(86)90027-1
https://doi.org/10.3390/a15020040
https://www.ncbi.nlm.nih.gov/pubmed/35909649
https://doi.org/10.11121/ijocta.01.2021.00945
https://doi.org/10.1287/opre.38.6.947
https://doi.org/10.1147/sj.71.0030
https://doi.org/10.1147/sj.71.0039

Appl. Sci. 2024, 14, 6517 14 of 14

22. Silver, E.A.; Meal, H.C. A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate and
discrete opportunities for replenishment. Prod. Inventory Manag. 1973, 14, 64–74.

23. Lambrecht, M.R.; Vanderveken, H. Heuristics procedures for the single operation, multi-item loading problem. AIIE Trans. 1979,
11, 319–326. [CrossRef]

24. Eisenhut, P.S. A Dynamic Lot Sizing Algorithm with capacity constraints. AIIE Trans. 1975, 7, 170–176. [CrossRef]
25. Wagner, H.M.; Whitin, T.M. Dynamic version of the economic lot size model. Manag. Sci. 1958, 5, 89–96. [CrossRef]
26. Barany, I.; Van Roy, T.J.; Wolsey, L.A. Strong formulations for multi-item capacitated lot sizing. Manag. Sci. 1984, 30, 1255–1261.

[CrossRef]
27. Lasdon, L.S.; Terjung, R.C. An efficient algorithm for multi-item scheduling. Oper. Res. 1971, 19, 946–969. [CrossRef]
28. Bahl, H.C. Column generation based heuristic algorithm for multi-item scheduling. AIIE Trans. 1983, 15, 136–141. [CrossRef]
29. Hindi, K.S. Computationally efficient solution of the multi-item, capacitated lot-sizing problem. Comput. Ind. Eng. 1995, 28,

709–719. [CrossRef]
30. Thizy, J.M.; Van Wassenhove, L.N. Lagrangian relaxation for the multi-item capacitated lot-sizing problem, a heuristics approach.

AIIE Trans. 1985, 17, 308–313.
31. Held, M.; Wolfe, P.; Crowder, H.P. Validation of subgradient optimization. Math. Program. 1974, 6, 62–88. [CrossRef]
32. Trigeiro, W.W.; Thomas, L.J.; McLain, J.O. Capacitated lot-sizing with setup times. Manag. Sci. 1989, 35, 353–366. [CrossRef]
33. Diaby, M.; Bahl, H.C.; Karwan, H.M.; Zionts, S. Capacitated lot-sizing and scheduling by Lagrangean relaxation. Eur. J. Oper. Res.

1992, 59, 444–458. [CrossRef]
34. Xie, J.; Dong, J. Heuristic genetic algorithms for general capacitated lot-sizing problems. Comput. Math. Appl. 2022, 44, 263–276.

[CrossRef]
35. Gaafar, L. Apply genetic algorithms to dynamic lot sizing with batch ordering. Comput. Ind. Eng. 2006, 51, 433–444. [CrossRef]
36. Gaafar, L.K.; Nassef, A.O.; Aly, A.I. Fixed-quantity dynamic lot sizing using simulated annealing. Int. J. Adv. Manuf. Technol. 2009,

41, 122–131. [CrossRef]
37. Hindi, K.S. Solving the CLSP by a tabu search heuristic. J. Oper. Res. Soc. 1996, 47, 151–161. [CrossRef]
38. Jans, R.; Degraeve, Z. Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. Eur. J. Oper. Res.

2007, 177, 1855–1875. [CrossRef]
39. Fisher, M.L. The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 1981, 27, 1–18. [CrossRef]
40. Fisher, M.L. An applications oriented guide to Lagrangian relaxation. Interfaces 1985, 15, 10–21. [CrossRef]
41. Charnes, A.; Cooper, W.W. The stepping-stone method of explaining linear programming calculations in transportation problems.

Manag. Sci. 1954, 1, 49–69. [CrossRef]
42. Glover, F.; Klingman, D. Locating stepping-stone paths in distribution problems via the predecessor index method. Transp. Sci.

1970, 4, 220–225. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/05695557908974478
https://doi.org/10.1080/05695557508974999
https://doi.org/10.1287/mnsc.5.1.89
https://doi.org/10.1287/mnsc.30.10.1255
https://doi.org/10.1287/opre.19.4.946
https://doi.org/10.1080/05695558308974624
https://doi.org/10.1016/0360-8352(95)00021-R
https://doi.org/10.1007/BF01580223
https://doi.org/10.1287/mnsc.35.3.353
https://doi.org/10.1016/0377-2217(92)90201-J
https://doi.org/10.1016/S0898-1221(02)00146-3
https://doi.org/10.1016/j.cie.2006.08.006
https://doi.org/10.1007/s00170-008-1447-z
https://doi.org/10.1057/jors.1996.13
https://doi.org/10.1016/j.ejor.2005.12.008
https://doi.org/10.1287/mnsc.27.1.1
https://doi.org/10.1287/inte.15.2.10
https://doi.org/10.1287/mnsc.1.1.49
https://doi.org/10.1287/trsc.4.2.220

	Introduction
	Literature Review
	Solution Approach
	Lagrange Relaxation
	Obtaining Feasible Solutions
	Fix-Up Heuristic
	Local Neighborhood Search Algorithm
	Subgradient Algorithm
	Lagrange Relaxation Algorithm

	Computational Results
	Comparison Study
	More Computational Examples

	Conclusions
	References

