Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Methods
4. Results
4.1. Coal Petrology
4.2. Coal Quality
4.3. Mineralogy
4.4. Elemental Geochemical Analysis
4.4.1. Major Elements
4.4.2. Trace Elements
4.4.3. Rare Earth Elements and Yttrium (REY)
- Light rare earth-enriched type (L-type): LaN/LuN > 1.0;
- Medium rare earth-enriched type (M-type): LaN/SmN < 1.0 and GdN/LuN > 1.0;
- Heavy rare earth-enriched type (H-type): LaN/LuN < 1.0.
5. Discussion
5.1. Provenance Analysis
5.2. Depositional Palaeoenvironment
5.2.1. Redox Conditions
5.2.2. Palaeosalinity
5.2.3. Palaeoclimate and Peat Swamp Facies
5.2.4. Seawater and Hydrothermal Influences
5.3. Occurrence Modes of Li in Coal
5.4. Favorable Enrichment Environment of Li in Coal
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and Competition for Resources That Enable Emerging Technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and Geochemical Compositions of the Coal in the Guanbanwusu Mine, Inner Mongolia, China: Further Evidence for the Existence of an Al (Ga and REE) Ore Deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zhao, C.; Lin, M.; Wang, J.; Qin, S. Concentrations of Lithium in Chinese Coals. Energy Explor. Exploit. 2010, 28, 97–104. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Zhao, C. Minimum Mining Grade of Associated Li Deposits in Coal Seams. Energy Explor. Exploit. 2012, 30, 167–170. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal Deposits as Promising Sources of Rare Metals for Alternative Power and Energy-Efficient Technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment Origin of Critical Elements (Li and Rare Earth Elements) and a Mo-U-Se-Re Assemblage in Pennsylvanian Anthracite from the Jincheng Coalfield, Southeastern Qinshui Basin, Northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.; He, H.; Mishra, V.; Li, Y.; Wang, J.; Zhao, C. Geochemistry of Carboniferous Coals from the Laoyaogou Mine, Ningwu Coalfield, Shanxi Province, Northern China: Emphasis on the Enrichment of Valuable Elements. Fuel 2020, 279, 118414. [Google Scholar] [CrossRef]
- Xie, P.; Hower, J.C.; Nechaev, V.P.; Ju, D.; Liu, X. Lithium and Redox-Sensitive (Ge, U, Mo, V) Element Mineralization in the Pennsylvanian Coals from the Huangtupo Coalfield, Shanxi, Northern China: With Emphasis on the Interaction of Infiltrating Seawater and Exfiltrating Groundwater. Fuel 2021, 300, 120948. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and Geochemical Characteristics of Coal from the Southeastern Qinshui Basin: Implications for the Enrichment and Economic Value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and Geochemical Characteristics of the Permian Coal from the Qinshui Basin, Northern China, with Emphasis on Lithium Enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Zheng, Q.; Shi, S.; Liu, Q.; Xu, Z. Modes of Occurrences of Major and Trace Elements in Coals from Yangquan Mining District, North China. J. Geochem. Explor. 2017, 175, 36–47. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Dai, S.; Yang, C.; Xie, P.; Zhang, S. Origin of a Kaolinite-NH 4 -Illite-Pyrophyllite-Chlorite Assemblage in a Marine-Influenced Anthracite and Associated Strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 2018, 185, 61–78. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, F.; Zhao, F.; Wang, H.; Xie, X.; Zou, Y. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province. Coal Geol. Explor. 2018, 46, 1–7. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and Geochemistry of Boehmite-Rich Coals: New Insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y.H.; Wang, J.X.; Lin, M. Li Distribution and Mode of Occurrences in Li-Bearing Coal Seam 9 from Pingshuo Mining District, Ningwu Coalfield, Northern China. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2013, 31, 27–38. [Google Scholar]
- Zhang, J. Modes of Occurrence and Technique of Extracting of Li and Al in Guanbanwusu Mine. Master’s Thesis, Hebei University of Engineering, Handan, China, 2013. [Google Scholar]
- Yi, S.; Wang, J. Lithium Occurrences and Enrichment Factor Law in No. 9 Coal Seam of Anjialing Mine. Coal Chem. Ind. 2014, 37, 7–10. [Google Scholar]
- Zuo, G.; Li, H.; Sun, M.; Lin, J.; Wang, Z.; Tian, Z.; Xiao, L. Coal No.2 Lithium Distribution Pattern and Provenance Analysis in Xuangang Mining Area, Ningwu Coalfield. Coal Geol. China 2022, 34, 7–12. [Google Scholar]
- Wang, J. Sedimentary Control of Lithium Enrichment in Permo-Carboniferous Coals from Ningwu Basin, Shanxi, China. Ph.D. Thesis, China University of Mining & Technology, Xuzhou, China, 2019. [Google Scholar]
- Zhou, M.; Zhao, L.; Wang, X.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Dai, S. Mineralogy and Geochemistry of the Late Triassic Coal from the Caotang Mine, Northeastern Sichuan Basin, China, with Emphasis on the Enrichment of the Critical Element Lithium. Ore Geol. Rev. 2021, 139, 104582. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of Occurrence of Elements in Coal: A Critical Evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Liu, H.; Qin, Y.; Sang, S. Geology of Coalbed Methane in Southern Shanxi, China; China University of Mining and Technology Press: Xuzhou, China, 1998; ISBN 978-7-81040-655-0. [Google Scholar]
- Su, X.; Lin, X.; Liu, S.; Zhao, M.; Song, Y. Geology of Coalbed Methane Reservoirs in the Southeast Qinshui Basin of China. Int. J. Coal Geol. 2005, 62, 197–210. [Google Scholar] [CrossRef]
- Shao, L.; Xiao, Z.; He, Z.; Liu, Y.; Shang, L.; Zhang, P. Palaeogeography and Coal Accumulation for Coal Measures of the Carboniferous—Permian in Qinshui Basin, Southeastern Shanxi Province. J. Palaeogeogr. 2006, 8, 43–52. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Lv, D.; Li, Y.; Liu, H.; Wang, P.; Liu, Y.; Liu, J.; Li, D. The Geologic Settings of Chinese Coal Deposits. Int. Geol. Rev. 2018, 60, 548–578. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, Z. Late Mesozoic Comparative Research on the Geothermal Field of the Ordos Basin and Qinshui Basin. Acta Sedimentol. Sin. 1997, 15, 134–137. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, Z.; Chen, G. Tectonic Thermal Events of Late Mesozoic in Qinshui Basin. Oil Gas Geol 1999, 20, 46–48. [Google Scholar] [CrossRef]
- Sang, S.; Qin, Y.; Song, D.; Zeng, Y. Geochemistry of Vein Mineral Inclusions in Coal Measures in Southern Shanxi: A Reference to the Regional Thermal-Metamorphism of High-Rank Coal. J. China Univ. Min. Technol. 1997, 26, 4–7. [Google Scholar]
- Ning, S.; Huang, S.; Zhu, S.; Zhang, W.; Deng, X.; Li, C.; Qiao, J.; Zhang, J.; Zhang, N. Mineralization Zoning of Coal-Metal Deposits in China. Chin. Sci. Bull. 2019, 64, 2501–2513. [Google Scholar] [CrossRef]
- ASTM D4596-22; Standard Practice for Collection of Channel Samples of Coal in a Mine. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- GB/T 16773-2008; Method of Preparing Coal Samples for the Coal Petrographic Analysis. Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
- ASTM D2798-21; Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Ling, K.; Wen, H.; Zhang, Q.; Luo, C.; Gu, H.; Du, S.; Yu, W. Super-Enrichment of Lithium and Niobium in the Upper Permian Heshan Formation in Pingguo, Guangxi, China. Sci. China Earth Sci. 2021, 64, 753–772. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Z.; Zhang, S.; Zhou, X.; Wang, Y.; Cheng, H. Geochemical Features of Lithium–Rich Bauxite from the Benxi Formation in Qinyuan County, Shanxi, China: Insights into Their Depositional Environment and Lithium Enrichment. Ore Geol. Rev. 2023, 163, 105780. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, S.; Liu, D.; Zhao, F.; Zhang, X.; Wang, Y.; Dai, G.; Li, L.; Li, X. Genesis of Carboniferous Aluminous-Bearing Strata in the Northern Part of the North China Craton: A Case Study of the Xingxian Bauxite Deposit. Ore Geol. Rev. 2024, 170, 106125. [Google Scholar] [CrossRef]
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements. Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- Dai, S.; Ward, C.R.; French, D.; Hower, J.C. Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. Energy Fuels 2018, 32, 8891–8894. [Google Scholar] [CrossRef]
- Tang, D.; Yang, Q.; Zhou, C.; Kang, X.; Liu, D.; Huang, W. Study on the genetic relationship between Late Paleozoic coal-forming swamp microenvironment and sulfur in coal in North China. Sci. China Ser. D—Earth Sci. 2000, 30, 584–891. [Google Scholar]
- ASTM D3173/D3173M-17a; Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM D388-23; Standard Classification of Coals by Rank. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- GB/T 15224.1-2018; Classification for Quality of Coal—Part 1: Ash. Standardization Administration of the People’s Republic of China: Beijing, China, 2018.
- GB/T 15224.2-2021; Classification for Quality of Coal—Part 2: Sulfur Content. Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- Yang, Z.; Zhao, X.; Zhang, L. Infra-red spectra analysis for clay minerals of kaolinites. Pet. Geol. Exp. 1988, 10, 60–66. [Google Scholar]
- Liu, Q.; Zhang, P.; Ding, S.; Lin, X.; Zheng, N. Ammonium Illite in the Carboniferous Permian Coal-Bearing Strata of North China. Chin. Sci. Bull. 1996, 41, 717–719. [Google Scholar] [CrossRef]
- Liang, S.; Liu, Q.; Yu, C.; Song, H. Ammonium-Bearing Illite in Tonsteins of Permo-Carboniferous Coal Accumulation Area of Northern China. J. Hebei Univ. Eng. (Nat. Sci. Ed.) 2005, 4, 59–65. [Google Scholar]
- Zheng, Q.; Liu, Q.; Shen, Q.; Wu, Z.; Zhang, P. Mineralogy and Origin of Ammonium-Illite of the Carboniferous Taiyuan Formation in Jincheng and Yangquan Districts of Shanxi Province. J. Palaeogeogr. 2011, 13, 501–508. [Google Scholar]
- He, Y.; Li, S.; Liang, S.; Zhou, X.; Wu, Z.; Zhao, H.; Wang, Y.; Cheng, H. Mineralogical Characteristic and Thermostability of Ammonium Illite. J. Earth Sci. Environ. 2024, 46, 229–239. [Google Scholar] [CrossRef]
- Sigorova, T.A.; Kotov, N.V.; Kotelnikova, Y.N.; Shmakin, B.M.; Frank-Kamenetskiy, V.A. Synthesis, Diffractometry, and IR Spectroscopy of Micas in the Series from Muscovite to the Ammonium Analog. Geochem. Int. 1981, 18, 76–82. [Google Scholar]
- Vedder, W. Ammonium in Moscovite. Geochim. Cosmochim. Acta 1965, 29, 221–228. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in Coals Preserved within Marine Carbonate Successions: Geochemical and Mineralogical Data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of Trace Elements in Chinese Coals: A Review of Abundances, Genetic Types, Impacts on Human Health, and Industrial Utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Li, X.; Li, W. Geochemical characteristics of trace elements in Zhuzhuang Coal Mine of Huaibei coalfield. Coal Sci. Technol. 2023, 51, 178–191. [Google Scholar] [CrossRef]
- Liu, B. Geochemical Characteristics of Trace Elements and Rare Earth Elements in the Late Paleozoic Coal from the Qinshui Basin. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2015. [Google Scholar]
- Seredin, V.V.; Dai, S. Coal Deposits as Potential Alternative Sources for Lanthanides and Yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. Geol. Mag. 1985, 122, 673–674. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Wesolowski, D.J. Aluminum Speciation and Equilibria in Aqueous Solution: I. The Solubility of Gibbsite in the System Na-K-Cl-OH-Al(OH)4 from 0 to 100 °C. Geochim. Cosmochim. Acta 1992, 56, 1065–1091. [Google Scholar] [CrossRef]
- Zou, J.; Han, F.; Li, T.; Tian, H.; Li, Y. Mineralogical and Geochemical Compositions of the Lopingian Coals in the Zhongliangshan Coalfield, Southwestern China. Minerals 2018, 8, 104. [Google Scholar] [CrossRef]
- Shen, M.; Dai, S.; Graham, I.T.; Nechaev, V.P.; French, D.; Zhao, F.; Shao, L.; Liu, S.; Zuo, J.; Zhao, J.; et al. Mineralogical and Geochemical Characteristics of Altered Volcanic Ashes (Tonsteins and K-Bentonites) from the Latest Permian Coal-Bearing Strata of Western Guizhou Province, Southwestern China. Int. J. Coal Geol. 2021, 237, 103707. [Google Scholar] [CrossRef]
- Spears, D.A. The Origin of Tonsteins, an Overview, and Links with Seatearths, Fireclays and Fragmental Clay Rocks. Int. J. Coal Geol. 2012, 94, 22–31. [Google Scholar] [CrossRef]
- Spears, D.A.; Rice, C.M. An Upper Carboniferous Tonstein of Volcanic Origin. Sedimentology 1973, 20, 281–294. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and Geochemical Compositions of Late Permian Coals and Host Rocks from the Guxu Coalfield, Sichuan Province, China, with Emphasis on Enrichment of Rare Metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O’Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and Phosphorus Minerals in the Middle Jurassic Inertinite-Rich Coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144–145, 23–47. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and Geochemical Compositions of the Pennsylvanian Coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of Sediment-Source Region and Acid Hydrothermal Solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.-G.; Zhong, Y.-T.; Guan, J.-P. The Guadalupian–Lopingian Boundary Mudstones at Chaotian (SW China) Are Clastic Rocks Rather than Acidic Tuffs: Implication for a Temporal Coincidence between the End-Guadalupian Mass Extinction and the Emeishan Volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Liu, J.; Nechaev, V.P.; Dai, S.; Song, H.; Nechaeva, E.V.; Jiang, Y.; Graham, I.T.; French, D.; Yang, P.; Hower, J.C. Evidence for Multiple Sources for Inorganic Components in the Tucheng Coal Deposit, Western Guizhou, China and the Lack of Critical-Elements. Int. J. Coal Geol. 2020, 223, 103468. [Google Scholar] [CrossRef]
- Möller, P. Rare Earth Elements and Yttrium as Geochemical Indicators of the Source of Mineral and Thermal Waters. In Hydrogeology of Crystalline Rocks; Stober, I., Bucher, K., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 227–246. ISBN 978-94-017-1816-5. [Google Scholar]
- Zheng, X.; Dai, S.; Nechaev, V.; Sun, R. Environmental Perturbations during the Latest Permian: Evidence from Organic Carbon and Mercury Isotopes of a Coal-Bearing Section in Yunnan Province, Southwestern China. Chem. Geol. 2020, 549, 119680. [Google Scholar] [CrossRef]
- Hu, G.; Hu, J.; Chen, W.; Zhao, T. Geochemistry and Tectonic Setting of the 1.78 Ga Mafic Dyke Swarms in the Mt. Zhongtiao and Mt. Song Areas, the Southern Margin of the North China Craton. Acta Petrol. Sin. 2010, 26, 1563–1576. [Google Scholar]
- Wang, T.; Wang, X.; Tian, W.; Zhang, C.; Li, W.; Li, S. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Sci. China Ser. D—Earth Sci. 2009, 39, 949–971. [Google Scholar] [CrossRef]
- Ma, X.; Zhong, Y. Geochemistry and Chronology of a Diorite Pluton in the Yinshan Block, Implications for Crustal Growth and Evolution of North China Craton. Geol. J. 2018, 53, 2849–2862. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; Long, X. Early Paleoproterozoic Tectonic Evolution of the Yinshan Block in the North China Craton: Constraints from the Geochronology and Geochemistry of Basic to Felsic Magmatic Rocks in the Guyang Area. Precambrian Res. 2023, 388, 107016. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Yang, S.; Ma, X.; Liu, L.; Sun, X. Regional Multi-Sources of Carboniferous Karstic Bauxite Deposits in North China Craton: Insights from Multi-Proxy Provenance Systems. Sediment. Geol. 2021, 421, 105958. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Zhao, F.; Liu, D.; Zou, Y.; Zhang, W.; Liu, X.; Li, L.; Zhao, L. Geological and Geochemical Characteristics of Karst Bauxite-Bearing Sequences in Xiabu Area, Central Shanxi Province, North China. J. Geochem. Explor. 2021, 230, 106849. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Zhu, W.-B.; Ge, R.-F.; Wang, X. Late Paleozoic Provenance Shift in the South-Central North China Craton: Implications for Tectonic Evolution and Crustal Growth. Gondwana Res. 2014, 25, 383–400. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Sun, R.; Chen, J.; Wu, B.; Chou, C.-L. Relationships between Trace Element Abundances and Depositional Environments of Coals from the Zhangji Coal Mine, Anhui Province, China. Energy Explor. Exploit. 2013, 31, 89–107. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, H.; Yang, Y.; Kong, Q.; Wu, K. Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin. Geochimica 2008, 37, 59–64. [Google Scholar] [CrossRef]
- Imboden, D.M.; Lerman, A. Chemical Models of Lakes. In Lakes–Chemistry, Geology, Physics; Lerman, A., Ed.; Springer: New York, NY, USA, 1978; pp. 341–356. ISBN 978-1-4757-1154-7. [Google Scholar]
- Diessel, C.F.K. Coal-Bearing Depositional Systems; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-642-75670-2. [Google Scholar]
- Hou, X.; Tang, Y.; Song, X.; Yang, M.; Guo, M.; Jia, L. Coal petrology and coal facies of Zhongliangshan mining area, Chongqing. Coal Geol. Explor. 2013, 41, 6–10. [Google Scholar] [CrossRef]
- Fu, L.; Zhuang, X.; Li, J.; Pang, Q. The Analysis on Coal Facies of Coal Seams in Early Cretaceous Wujianfang Coal Basin, Inner Mongolia. Coal Geol. Explor. 2011, 39, 1–6, 13. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Fan, X. Analysis on Coal Facies of Seam in Xishanyao Formation of Kumtag Coalfield in Turpan-Hami Basin, XinJiang. Xinjiang Geol. 2019, 37, 96–101. [Google Scholar]
- Li, J.; Wang, Z.; Zhang, K.; Gao, P.; Zhang, S.; Zhao, C. Research on coal macreal characteristics and Paleo-environment in Wujiagou Coalfield. Coal Sci. Technol. 2020, 48, 156–160. [Google Scholar]
- Li, W.; Yao, W.; Ma, J.; Zhao, C. Coal Petrological Features and Coal Facies Analysis of Coal No.12 in Wumuchang District, Yimin Coalfield. Coal Geol. China 2017, 29, 20–23. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Dai, S.; Zhang, J.; Luo, K. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006; ISBN 7-03-017621-9. [Google Scholar]
- Liu, D.; Zhou, A.; Chang, Z. Geochemistry characteristics of major and rare earth elements in No.8 raw and weathered coal from Taiyuan Formation of Datong coalfield. J. China Coal Soc. 2015, 40, 422–430. [Google Scholar] [CrossRef]
- Hu, B.; Yang, L.; Hu, L.; Guo, R. Analysis of Upper Carboniferous-Lower Permian Taiyuan Formation Coal Seam No.15 Coal-Forming Environment in Lingchuan Area, Shanxi. Coal Geol. China 2013, 25, 4–11, 31. [Google Scholar] [CrossRef]
- Shang, G. An Outline of Basining Structures of North China Late Palaeozoic Coal Accumulation Basin. Coal Geol. China 1995, 7, 1–6, 17. [Google Scholar]
- Wang, B.; Hu, B.; Bai, J.; Yang, L. Coal-Accumulating Environments of the Upper Carboniferous-Lower Permian Taiyuan Formation in Southeastern Qinshui Basin, Shanxi Province. J. Palaeogeogr. 2015, 17, 677–688. [Google Scholar]
- Kong, H.; Zeng, R.; Zhuang, X. Research on the Minerals in Coals. Acta Petrol. Mineral. 2001, 20, 441–444. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine Derived 87Sr 86Sr in Coal, a New Key to Geochronology and Palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina Collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Kortenski, J.; Kostova, I. Occurrence and Morphology of Pyrite in Bulgarian Coals. Int. J. Coal Geol. 1996, 29, 273–290. [Google Scholar] [CrossRef]
- Nayak, B. Mineral Matter and the Nature of Pyrite in Some High-Sulfur Tertiary Coals of Meghalaya, Northeast India. J. Geol. Soc. India 2013, 81, 203–214. [Google Scholar] [CrossRef]
- Fečko, P.; Raclavská, H.; Malysiak, V. Desulphurization of Coal from Northern Bohemian Brown Coal Basin by Bacterial Leaching. Fuel 1991, 70, 1187–1191. [Google Scholar] [CrossRef]
- Ren, Z.; Xiao, H.; Liu, L.; Zhang, S.; Qin, Y.; Wei, C. The Evidence of Fission-Track Data for the Study of Tectonic Thermal History in Qinshui Basin. Chin. Sci. Bull. 2005, 50, 104–110. [Google Scholar] [CrossRef]
- Bau, M. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors Controlling Geochemical and Mineralogical Compositions of Coals Preserved within Marine Carbonate Successions: A Case Study from the Heshan Coalfield, Southern China. Int. J. Coal Geol. 2013, 109–110, 77–100. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Z.; Wang, L.; Xu, Y.; Liu, J. Mineralogical and Geochemical Compositions of the Lopingian Coals and Carbonaceous Rocks in the Shugentian Coalfield, Yunnan, China: With Emphasis on Fe-Bearing Minerals in a Continental-Marine Transitional Environment. Minerals 2017, 7, 170. [Google Scholar] [CrossRef]
- Hao, G. Characteristics, Origin and Geological Significance of Ammonium Illite in Coal Measures. Ph.D. Thesis, China University of Mining & Technology (Beijing), Beijing, China, 2013. [Google Scholar]
- Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and Origin of Minerals in High-Rank Coals of the South Walker Creek Area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116–117, 185–207. [Google Scholar] [CrossRef]
- Liu, B.; Lin, M. Enrichment Mechanism and Material Sources of Lithium in Li-Bearing Coal Seam No.9 from Pingshuo Mining District of Shanxi Province. Coal Technol. 2015, 34, 115–117. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the Modes of Occurrence of 42 Elements in Coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Sun, B.; Guo, Z.; Liu, C.; Kong, Y.; French, D.; Zhu, Z. Lithium Isotopic Composition of Two High-lithium Coals and Their Fractions with Different Lithium Occurrence Modes, Shanxi Province, China. Int. J. Coal Geol. 2023, 277, 104338. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Shi, J.; Li, Z. Distribution and Enrichment Mode of Li in the No. 11 Coal Seam from Pingshuo Mining District, Shanxi Province. Energy Explor. Exploit. 2015, 33, 203–215. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Qin, S.; Xiao, L.; Li, Z.; Lin, M. Occurrence of Some Valuable Elements in the Unique ‘High-Aluminium Coals’ from the Jungar Coalfield, China. Ore Geol. Rev. 2016, 72, 659–668. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.; Tajcmanova, L.; Liu, C.; Wu, J. In-Situ Analysis of the Lithium Occurrence in the No.11 Coal from the Antaibao Mining District, Ningwu Coalfield, Northern China. Ore Geol. Rev. 2022, 144, 104825. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Liu, S. Li Distribution and Mode of Occurrences in Li-Bearing Coal Seam # 6 from the Guanbanwusu Mine, Inner Mongolia, Northern China. Energy Explor. Exploit. 2012, 30, 109–130. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, F.; Liu, D.; Zhao, L.; Zhang, X.; Lin, J.; Dong, H.; Zhao, S.; Liu, X.; Zan, M. Modes of Occurrence of Critical Metal Elements (Li, REEs and Other Critical Elements) in Low-Grade Bauxite from Southern Shanxi Province, China. Minerals 2022, 12, 990. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Mu, N. Mineralogy and Elemental Geochemistry of Permo-Carboniferous Li-Enriched Coal in the Southern Ordos Basin, China: Implications for Modes of Occurrence, Controlling Factors and Sources of Li in Coal. Ore Geol. Rev. 2022, 141, 104686. [Google Scholar] [CrossRef]
Samples | Vitrinite (V) | Inertinite (I) | Liptinite (L) | Mineral (M) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | TC | DC | CC | VD | Sf | Ma | ID | F | Cu | LD | Re | Ba | CM | CaM | SM | |
C1 | 0.00 | 26.31 | 29.40 | 0.00 | 15.86 | 3.68 | 3.29 | 1.93 | 11.99 | 0.00 | 1.16 | 0.00 | 1.55 | 1.55 | 0.58 | 2.71 |
C2 | 0.00 | 24.50 | 29.48 | 0.60 | 15.34 | 3.98 | 3.78 | 1.59 | 8.96 | 0.00 | 1.79 | 0.00 | 1.00 | 3.39 | 1.59 | 3.78 |
C3 | 0.00 | 25.83 | 14.37 | 1.36 | 18.64 | 2.72 | 3.30 | 4.08 | 8.35 | 2.91 | 1.36 | 0.97 | 1.75 | 8.35 | 1.94 | 2.91 |
C4 | 0.39 | 22.18 | 19.65 | 2.33 | 15.76 | 7.39 | 3.50 | 4.86 | 9.92 | 0.78 | 0.00 | 0.39 | 0.78 | 5.64 | 1.95 | 3.89 |
C5 | 0.19 | 18.93 | 23.47 | 2.56 | 16.57 | 9.47 | 4.34 | 2.96 | 11.83 | 0.19 | 0.79 | 0.59 | 1.38 | 3.75 | 1.78 | 0.99 |
C6 | 0.00 | 20.46 | 30.40 | 1.15 | 17.40 | 3.44 | 3.25 | 2.68 | 9.56 | 0.76 | 1.15 | 0.00 | 0.78 | 5.93 | 0.19 | 2.29 |
C7 | 0.39 | 29.73 | 27.99 | 0.19 | 11.39 | 3.86 | 1.93 | 4.25 | 8.49 | 0.39 | 0.97 | 0.19 | 2.12 | 5.21 | 0.58 | 2.12 |
C8 | 0.00 | 18.04 | 34.55 | 0.58 | 9.02 | 4.80 | 4.22 | 1.73 | 9.60 | 0.00 | 0.38 | 0.00 | 3.07 | 5.76 | 0.77 | 7.29 |
C9 | 0.00 | 16.73 | 33.47 | 0.00 | 14.69 | 2.04 | 5.31 | 2.86 | 8.57 | 0.00 | 2.04 | 0.00 | 1.67 | 4.90 | 0.41 | 7.35 |
Average | 65.54 | 20.95 | 3.43 | 9.73 |
Samples | Mad/% | Ad/% | Vdaf/% | St,d/% | Sp,d/% | Ss,d/% | So,d/% | Ro, max/% |
---|---|---|---|---|---|---|---|---|
C1 | 3.13 | 19.48 | 12.86 | 6.13 | 2.48 | 1.03 | 2.62 | 2.26 |
C2 | 2.34 | 17.40 | 15.77 | 4.21 | 1.20 | 0.65 | 2.37 | 2.22 |
C3 | 3.41 | 28.75 | 16.96 | 3.98 | 0.75 | 1.12 | 2.11 | 2.12 |
C4 | 4.16 | 16.78 | 12.01 | 3.37 | 0.28 | 0.59 | 2.49 | 2.40 |
C5 | 3.22 | 17.34 | 11.78 | 2.79 | 0.09 | 0.28 | 2.42 | 2.51 |
C6 | 3.47 | 23.71 | 12.81 | 2.80 | 0.10 | 0.44 | 2.26 | 2.46 |
C7 | 4.11 | 16.78 | 13.15 | 4.21 | 0.65 | 1.19 | 2.38 | 2.28 |
C8 | 3.40 | 17.78 | 14.71 | 6.89 | 2.98 | 1.35 | 2.57 | 2.58 |
C9 | 4.65 | 21.08 | 14.41 | 9.82 | 6.40 | 0.67 | 2.75 | 2.30 |
Max | 4.65 | 28.75 | 16.96 | 9.82 | 6.40 | 1.35 | 2.75 | 2.58 |
Min | 2.34 | 16.78 | 11.78 | 2.79 | 0.09 | 0.28 | 2.11 | 2.12 |
Average | 3.54 | 19.9 | 13.83 | 4.91 | 1.66 | 0.81 | 2.44 | 2.38 |
Samples | Qz | Kf | Pl | Cal | Arg | Sd | Mgn | Py | Hem | Anl | Br | Anh | Trd | Ant | Ank | CM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15R | 19.40 | – | – | – | – | – | – | 31.50 | – | – | 3.40 | 1.50 | – | – | – | 44.20 |
C1 | 31.40 | 1.00 | – | 2.60 | – | – | – | 37.30 | – | – | – | 2.60 | – | – | – | 25.10 |
C2 | 4.10 | – | – | 18.40 | – | – | – | 17.90 | – | 3.70 | – | 4.30 | 1.80 | – | – | 49.80 |
C3 | 1.80 | – | – | 4.00 | – | – | 1.30 | 1.90 | – | 2.80 | – | 2.30 | 25.40 | – | – | 60.50 |
C4 | – | – | – | 3.50 | – | – | – | 5.20 | – | 4.40 | 4.90 | – | – | 2.60 | – | 79.40 |
C5 | – | 0.20 | – | 2.30 | – | – | 1.70 | – | – | 2.20 | – | – | 27.00 | 1.80 | – | 64.80 |
C6 | – | 0.60 | – | 1.00 | 8.30 | – | 1.30 | – | – | 4.10 | 4.50 | – | – | 3.10 | – | 77.10 |
C7 | – | – | – | 3.00 | – | – | – | 9.90 | – | 4.90 | 5.50 | 3.70 | – | – | – | 73.00 |
C8 | 0.50 | – | – | 4.10 | – | 0.50 | – | – | – | 4.80 | – | 3.50 | – | – | 26.00 | 60.60 |
15P | 0.90 | 0.50 | – | – | – | – | – | – | – | – | – | – | – | – | 98.60 | |
C9 | – | 2.00 | 1.90 | 1.30 | – | – | 1.80 | – | 14.20 | 1.90 | 2.20 | – | 7.00 | – | – | 67.70 |
15F | – | – | – | – | – | 0.80 | 12.80 | – | – | – | – | – | – | – | 86.40 |
Samples | SiO2 | Al2O3 | CaO | MgO | K2O | MnO | Na2O | TiO2 | TFe2O3 | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
15R | 43.20 | 16.15 | 0.39 | 0.50 | 0.82 | 0.05 | 0.07 | 0.47 | 19.96 | 0.02 |
C1 | 3.05 | 0.63 | 0.45 | 0.12 | 0.06 | 0.00 | 0.02 | 0.07 | 3.02 | 0.01 |
C2 | 1.69 | 1.00 | 4.58 | 0.14 | 0.07 | 0.00 | 0.04 | 0.14 | 1.06 | 0.01 |
C3 | 14.72 | 10.22 | 1.16 | 0.19 | 0.17 | 0.00 | 0.04 | 0.43 | 1.37 | 0.01 |
C4 | 7.70 | 5.02 | 0.54 | 0.17 | 0.13 | 0.00 | 0.04 | 0.20 | 1.49 | 0.01 |
C5 | 8.21 | 5.63 | 0.51 | 0.16 | 0.11 | 0.00 | 0.03 | 0.46 | 0.24 | 0.01 |
C6 | 13.68 | 9.72 | 0.38 | 0.23 | 0.28 | 0.00 | 0.07 | 0.85 | 0.39 | 0.02 |
C7 | 3.74 | 2.70 | 0.57 | 0.13 | 0.09 | 0.00 | 0.05 | 0.10 | 1.36 | 0.01 |
C8 | 2.24 | 1.65 | 0.50 | 0.12 | 0.07 | 0.00 | 0.03 | 0.04 | 2.63 | 0.01 |
15P | 39.85 | 33.84 | 0.42 | 0.17 | 0.16 | 0.02 | 0.05 | 1.59 | 1.02 | 0.02 |
C9 | 7.14 | 5.20 | 0.34 | 0.13 | 0.07 | 0.00 | 0.03 | 0.15 | 10.09 | 0.01 |
15F | 27.63 | 21.75 | 0.30 | 0.16 | 0.12 | 0.01 | 0.10 | 0.68 | 4.74 | 0.03 |
WA–C | 6.91 | 4.64 | 1.00 | 0.15 | 0.12 | 0.00 | 0.04 | 0.27 | 2.40 | 0.01 |
Late-Paleozoic coals of North China | 8.14 | 6.78 | 1.2 | 0.28 | 0.17 | 0.01 | 0.15 | 0.38 | 1.31 | 0.13 |
Chinese coals [52] | 8.47 | 5.98 | 1.23 | 0.22 | 0.19 | 0.02 | 0.16 | 0.33 | 4.85 | 0.09 |
Element | 15R | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | 15P | C9 | 15F | WA–C | World 1 | Chinese 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | 54.00 | 6.14 | 6.60 | 113.00 | 44.40 | 60.70 | 120.00 | 107.00 | 35.50 | 566.00 | 106.00 | 369.00 | 66.59 | 14.00 | 31.80 |
Be | 1.64 | 0.96 | 0.84 | 1.95 | 0.96 | 0.97 | 2.46 | 1.10 | 4.69 | 6.13 | 5.46 | 7.65 | 2.15 | 2.00 | 2.11 |
Sc | 10.90 | 2.63 | 1.35 | 2.82 | 3.77 | 4.79 | 9.44 | 3.75 | 2.16 | 15.60 | 6.51 | 60.50 | 4.14 | 3.70 | 4.38 |
V | 48.60 | 14.00 | 13.70 | 14.00 | 22.70 | 30.70 | 56.40 | 19.80 | 13.80 | 65.00 | 45.80 | 179.00 | 25.66 | 28.00 | 35.10 |
Cr | 72.10 | 12.60 | 8.96 | 8.17 | 12.20 | 17.70 | 56.60 | 12.40 | 7.57 | 45.80 | 18.50 | 66.20 | 17.19 | 17.00 | 15.40 |
Co | 10.70 | 1.29 | 0.99 | 2.56 | 2.69 | 2.61 | 7.07 | 2.67 | 1.70 | 7.15 | 11.40 | 4.00 | 3.66 | 6.00 | 7.08 |
Ni | 41.80 | 7.13 | 2.31 | 3.51 | 3.87 | 3.88 | 11.80 | 4.76 | 4.40 | 20.80 | 13.30 | 15.20 | 6.11 | 17.00 | 13.70 |
Cu | 49.50 | 8.32 | 7.48 | 19.40 | 16.80 | 13.30 | 25.50 | 11.90 | 13.60 | 22.80 | 49.70 | 22.30 | 18.44 | 16.00 | 17.50 |
Zn | 28.00 | 22.70 | 37.40 | 33.50 | 30.50 | 36.70 | 45.40 | 26.70 | 24.90 | 43.20 | 27.20 | 40.30 | 31.67 | 28.00 | 41.40 |
Ga | 16.70 | 3.02 | 1.87 | 14.90 | 9.40 | 10.80 | 15.80 | 6.04 | 3.13 | 37.70 | 36.40 | 23.50 | 11.26 | 6.00 | 6.55 |
Rb | 37.50 | 0.72 | 0.84 | 4.20 | 2.28 | 1.97 | 10.50 | 0.98 | 0.61 | 6.13 | 1.11 | 4.06 | 2.58 | 18.00 | 9.25 |
Sr | 63.80 | 112.00 | 114.00 | 109.00 | 52.40 | 53.00 | 57.50 | 105.00 | 114.00 | 57.30 | 76.80 | 49.10 | 88.19 | 100.00 | 140.00 |
Mo | 3.19 | 9.84 | 2.77 | 4.34 | 4.53 | 5.66 | 16.00 | 8.41 | 5.40 | 14.50 | 7.86 | 6.69 | 7.20 | 2.10 | 3.08 |
Cd | 0.21 | 0.13 | 0.14 | 0.21 | 0.14 | 0.16 | 0.21 | 0.17 | 0.22 | 0.07 | 0.20 | 0.09 | 0.18 | 0.20 | 0.25 |
In | 0.06 | 0.08 | 0.10 | 0.08 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.09 | 0.11 | 0.18 | 0.09 | 0.04 | 0.05 |
Sb | 0.51 | 0.08 | 0.07 | 0.11 | 0.21 | 0.12 | 0.44 | 0.20 | 0.22 | 0.31 | 0.76 | 0.45 | 0.25 | 1.00 | 0.84 |
Cs | 5.32 | 0.11 | 0.12 | 0.86 | 0.38 | 0.26 | 2.59 | 0.10 | 0.07 | 2.10 | 0.12 | 0.93 | 0.51 | 1.10 | 1.13 |
Ba | 97.00 | 6.36 | 7.02 | 15.90 | 13.20 | 14.40 | 23.40 | 9.34 | 8.41 | 23.70 | 14.40 | 19.20 | 12.49 | 150.00 | 159.00 |
W | 1.25 | 0.63 | 0.60 | 1.02 | 0.65 | 1.15 | 1.86 | 2.34 | 1.87 | 4.88 | 2.42 | 2.61 | 1.39 | 0.99 | 1.08 |
Tl | 1.11 | 0.11 | 0.08 | 0.22 | 0.17 | 0.11 | 0.21 | 0.16 | 0.32 | 0.17 | 1.19 | 0.51 | 0.28 | 0.58 | 0.47 |
Pb | 71.40 | 5.40 | 2.21 | 14.70 | 30.80 | 3.17 | 8.02 | 9.40 | 18.00 | 23.60 | 98.20 | 79.10 | 21.10 | 9.00 | 15.10 |
Bi | 0.55 | 0.15 | 0.22 | 0.45 | 0.36 | 0.34 | 0.63 | 0.26 | 0.10 | 1.82 | 0.22 | 1.57 | 0.30 | 1.10 | 0.79 |
Th | 9.26 | 1.14 | 1.59 | 14.00 | 5.73 | 6.97 | 13.80 | 3.73 | 1.22 | 34.40 | 4.06 | 38.90 | 5.80 | 3.20 | 5.84 |
U | 3.52 | 6.82 | 0.69 | 5.18 | 2.87 | 3.25 | 9.67 | 2.16 | 0.70 | 12.50 | 5.89 | 35.60 | 4.14 | 1.90 | 2.43 |
Nb | 14.60 | 1.53 | 2.01 | 17.30 | 6.82 | 12.90 | 21.10 | 3.60 | 0.81 | 24.20 | 5.56 | 20.00 | 7.96 | 4.00 | 9.44 |
Ta | 1.07 | 0.06 | 0.14 | 2.03 | 0.39 | 0.92 | 1.60 | 0.16 | 0.07 | 0.06 | 0.36 | 1.23 | 0.64 | 0.30 | 0.62 |
Zr | 125.00 | 20.60 | 19.00 | 105.00 | 84.20 | 107.00 | 154.00 | 73.80 | 42.40 | 287.00 | 214.00 | 379.00 | 91.11 | 36.00 | 89.50 |
Hf | 5.03 | 0.45 | 0.62 | 3.80 | 2.60 | 3.25 | 5.21 | 2.27 | 1.33 | 10.90 | 6.73 | 11.40 | 2.92 | 1.20 | 3.71 |
REY | 127.33 | 79.84 | 68.97 | 96.17 | 93.64 | 86.50 | 143.22 | 70.48 | 104.09 | 267.48 | 176.66 | 386.99 | 102.18 | 68.41 | 135.89 |
Samples | EuN/EuN * | CeN/CeN * | (La/Lu)N | (La/Sm)N | (Gd/Lu)N | Type |
---|---|---|---|---|---|---|
15R | 1.16 | 1.05 | 0.67 | 1.03 | 0.68 | H |
C1 | 1.37 | 1.05 | 0.14 | 0.87 | 0.20 | H |
C2 | 1.29 | 1.01 | 0.21 | 0.45 | 0.52 | H |
C3 | 0.95 | 1.06 | 0.76 | 1.27 | 0.77 | H |
C4 | 1.00 | 1.05 | 0.61 | 0.93 | 0.70 | H |
C5 | 1.06 | 1.04 | 0.41 | 0.72 | 0.57 | H |
C6 | 0.88 | 0.85 | 0.66 | 1.40 | 0.62 | H |
C7 | 1.09 | 1.01 | 0.22 | 0.44 | 0.50 | H |
C8 | 1.18 | 0.98 | 0.17 | 0.30 | 0.56 | H |
15P | 1.04 | 0.90 | 0.51 | 0.99 | 0.55 | H |
C9 | 1.25 | 0.91 | 0.19 | 0.52 | 0.37 | H |
15F | 0.99 | 0.98 | 0.38 | 0.68 | 0.58 | H |
Samples | Sr/Ba | Th/U | V/(V+Ni) | Cu/Zn | Sr/Cu | Al2O3/TiO2 | C | GI | TPI | GWI | VI | V/I |
---|---|---|---|---|---|---|---|---|---|---|---|---|
15R | 0.66 | 2.63 | 0.54 | 1.77 | 1.29 | 34.51 | 0.35 | – | – | – | – | – |
C1 | 17.61 | 0.17 | 0.66 | 0.37 | 13.46 | 9.04 | 0.97 | 4.25 | 0.83 | 0.37 | 2.22 | 3.43 |
C2 | 16.24 | 2.30 | 0.86 | 0.20 | 15.24 | 7.37 | 2.15 | 5.07 | 0.75 | 0.46 | 2.00 | 3.78 |
C3 | 6.86 | 2.70 | 0.80 | 0.58 | 5.62 | 23.99 | 0.11 | 4.19 | 0.91 | 0.83 | 1.42 | 3.23 |
C4 | 3.97 | 2.00 | 0.85 | 0.55 | 3.12 | 25.35 | 0.17 | 2.88 | 0.91 | 0.70 | 1.88 | 2.30 |
C5 | 3.68 | 2.15 | 0.89 | 0.36 | 3.99 | 12.27 | 0.07 | 2.72 | 0.85 | 0.60 | 2.00 | 2.14 |
C6 | 2.46 | 1.43 | 0.83 | 0.56 | 2.26 | 11.40 | 0.04 | 4.63 | 0.62 | 0.53 | 1.51 | 3.59 |
C7 | 11.24 | 1.73 | 0.81 | 0.45 | 8.82 | 26.73 | 0.32 | 4.31 | 0.93 | 0.34 | 2.51 | 3.72 |
C8 | 13.56 | 1.74 | 0.76 | 0.55 | 8.38 | 41.25 | 0.84 | 4.12 | 0.66 | 0.45 | 2.91 | 3.06 |
15P | 2.42 | 2.75 | 0.76 | 0.53 | 2.51 | 21.28 | 0.02 | – | – | – | – | – |
C9 | 5.33 | 0.69 | 0.78 | 1.83 | 1.55 | 34.90 | 0.86 | 5.21 | 0.49 | 0.54 | 1.40 | 3.46 |
15F | 2.56 | 1.09 | 0.92 | 0.55 | 2.20 | 31.89 | 0.11 | – | – | – | – | – |
Average | 7.22 | 1.78 | 0.79 | 0.69 | 5.70 | 23.33 | 0.50 | 4.15 | 0.77 | 0.54 | 1.98 | 3.19 |
Vitrinite | Inertinite | Liptinite | Clay Minerals | SiO2/Al2O3 Molar Ratio | |
---|---|---|---|---|---|
Li | −0.17 | −0.26 | 0.50 | 0.66 | −0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Zhao, F.; Liu, D.; Zhang, Q.; Zhang, Q.; Ullah, S. Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry. Appl. Sci. 2024, 14, 7298. https://doi.org/10.3390/app14167298
Han P, Zhao F, Liu D, Zhang Q, Zhang Q, Ullah S. Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry. Applied Sciences. 2024; 14(16):7298. https://doi.org/10.3390/app14167298
Chicago/Turabian StyleHan, Peiliang, Fenghua Zhao, Dongna Liu, Qi Zhang, Qinqin Zhang, and Shaheed Ullah. 2024. "Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry" Applied Sciences 14, no. 16: 7298. https://doi.org/10.3390/app14167298