A Route to Selective Arsenate Adsorption in Phosphate Solutions via Ternary Metal Biopolymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ternary Metal Composites (TMCs)
2.3. Characterisation
2.4. Isotherm Studies
2.5. Selectivity Studies
3. Results and Discussion
3.1. Characterization
3.1.1. Point of Zero Charge Determination
3.1.2. SEM-EDX Analysis
3.2. Adsorption Isotherms
3.3. Accessible Surface Area Determination
3.4. Arsenate to Phosphate (Asi/Pi) Adsorption-Based Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Zhu, H. A Comparison Study on the Arsenate Adsorption Behavior of Calcium-Bearing Materials. Materials 2019, 12, 1936. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Emenike, E.C.; Ogunfowora, L.A.; Igwegbe, C.A. Adsorption of Methyl Orange: A Review on Adsorbent Performance. Curr. Res. Green Sustain. Chem. 2021, 4, 100179. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Occurrence of Arsenic Contamination in Canada: Sources, Behavior and Distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef] [PubMed]
- Astles, B.C.; Chételat, J.; Palmer, M.J.; Vermaire, J.C. Experimental Investigation of Short-Term Warming on Arsenic Flux from Contaminated Sediments of Two Well-Oxygenated Subarctic Lakes. PLoS ONE 2022, 17, e0279412. [Google Scholar] [CrossRef]
- McGinn, P.J.; Park, K.C.; Robertson, G.; Scoles, L.; Ma, W.; Singh, D. Strategies for Recovery and Recycling of Nutrients from Municipal Sewage Treatment Effluent and Hydrothermal Liquefaction Wastewaters for the Growth of the Microalga Scenedesmus Sp. AMDD. Algal Res. 2019, 38, 101418. [Google Scholar] [CrossRef]
- Waiser, M.J.; Tumber, V.; Holm, J. Effluent-Dominated Streams. Part 1: Presence and Effects of Excess Nitrogen and Phosphorus in Wascana Creek, Saskatchewan, Canada. Environ. Toxicol. Chem. 2011, 30, 496–507. [Google Scholar] [CrossRef]
- Youngran, J.; Fan, M.; Van Leeuwen, J.; Belczyk, J.F. Effect of Competing Solutes on Arsenic(V) Adsorption Using Iron and Aluminum Oxides. J. Environ. Sci. 2007, 19, 910–919. [Google Scholar] [CrossRef]
- Pincus, L.N.; Rudel, H.E.; Petrović, P.V.; Gupta, S.; Westerhoff, P.; Muhich, C.L.; Zimmerman, J.B. Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. Environ. Sci. Technol. 2020, 54, 9769–9790. [Google Scholar] [CrossRef]
- Ahmed, S.; Ikram, S. (Eds.) Chitosan; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119364849. [Google Scholar]
- Rosiak, P.; Latanska, I.; Paul, P.; Sujka, W.; Kolesinska, B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021, 26, 7264. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Zeng, J.; Qi, P.; Wang, Y.; Liu, Y.; Sui, K. Electrostatic Assembly Construction of Polysaccharide Functionalized Hybrid Membrane for Enhanced Antimony Removal. J. Hazard. Mater. 2021, 410, 124633. [Google Scholar] [CrossRef]
- Kumar, A.; Paul, P.; Nataraj, S.K. Bionanomaterial Scaffolds for Effective Removal of Fluoride, Chromium, and Dye. ACS Sustain. Chem. Eng. 2017, 5, 895–903. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Udoetok, I.A.; Faye, O.; Wilson, L.D. Counterion Effects in Metal Hybrid Biopolymer Materials for Sulfate Adsorption: An Experimental and Computational Study. ACS Appl. Polym. Mater. 2021, 3, 9–4595. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Wilson, L.D. Sustainable Hybrid Biocomposite Adsorbents for Anion-Selective or Concerted Removal of Ionic Pollutants: Organic Dyes to Arsenate. J. Clean. Prod. 2023, 422, 138616. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Wilson, L.D. Biopolymer-Metal Composites for Selective Removal and Recovery of Waterborne Orthophosphate. Chemosphere 2023, 349, 140874. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, M.M.; Weerasooriya, R.; Tobschall, H.J. Chapter 17—1-PK Modeling Strategies for the Adsorption of Some Trace Elements onto Gibbsite. Interface Sci. Technol. 2006, 11, 469–490. [Google Scholar]
- Yang, Y.; Chun, Y.; Sheng, G.; Huang, M. PH-Dependence of Pesticide Adsorption by Wheat-Residue-Derived Black Carbon. Langmuir 2004, 20, 6736–6741. [Google Scholar] [CrossRef]
- Chalil Oglou, R.; Gokce, Y.; Yagmur, E.; Aktas, Z. Production of Demineralised High Quality Hierarchical Activated Carbon from Lignite and Determination of Adsorption Performance Using Methylene Blue and P-Nitrophenol: The Role of Surface Functionality, Accessible Pore Size and Surface Area. J. Environ. Manag. 2023, 345, 118812. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Wilson, L.D. Modular Chitosan-Based Adsorbents for Tunable Uptake of Sulfate from Water. Int. J. Mol. Sci. 2020, 21, 7130. [Google Scholar] [CrossRef]
- Ibnul, N.K.; Tripp, C.P. A Simple Solution to the Problem of Selective Detection of Phosphate and Arsenate by the Molybdenum Blue Method. Talanta 2022, 238, 123043. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kuramitz, H.; Hata, N.; Taguchi, S.; Murai, K.; Okauchi, K. Visual Colorimetry for Determination of Trace Arsenic in Groundwater Based on Improved Molybdenum Blue Spectrophotometry. Anal. Methods 2015, 7, 2794–2799. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über Die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Ciarlantini, C.; Francolini, I.; Silvestro, I.; Mariano, A.; Scotto d’Abusco, A.; Piozzi, A. Design of Bioactive and Biomimetic Scaffolds Based on Chitosan-Alginate Polyelectrolyte Complexes for Tissue Engineering. Carbohydr. Polym. 2024, 327, 121684. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Qin, W.; Qing, Z.; Du, C.; Xiao, S.; Yan, B. High Reusability and Adsorption Capacity of Acid Washed Calcium Alginate/Chitosan Composite Hydrogel Spheres in the Removal of Norfloxacin. Chemosphere 2023, 335, 139048. [Google Scholar] [CrossRef]
- Candia, C.; Gallardo-Moya, D.; Guerrero, J.; Leal, D.; Mansilla, A.; Martínez-Gómez, F.; Matsuhiro, B.; Yáñez-S, M. Characterization of Alginate from Antarctic Himantothallus Grandifolius (Phaeophyceae) and Preparation of Polyelectrolyte Complexes with Chitosan. J. Appl. Polym. Sci. 2023, 140, e54688. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Wilson, L.D. Ternary Metal-Alginate-Chitosan Composites for Controlled Uptake of Methyl Orange. Surfaces 2022, 5, 429–444. [Google Scholar] [CrossRef]
- Aguirre, J.M.; Gutiérrez, A.; Giraldo, O. Simple Route for the Synthesis of Copper Hydroxy Salts. J. Braz. Chem. Soc. 2011, 22, 546–551. [Google Scholar] [CrossRef]
- Zotov, N.; Petrov, K.; Dimitrova-Pankova, M. Infrared Spectra of Cu(II)-Co(II) Mixed Hydroxide Nitrates. J. Phys. Chem. Solids 1990, 51, 1199–1205. [Google Scholar] [CrossRef]
- Jackson, B.P.; Miller, W.P. Effectiveness of Phosphate and Hydroxide for Desorption of Arsenic and Selenium Species from Iron Oxides. Soil Sci. Soc. Am. J. 2000, 64, 1616–1622. [Google Scholar] [CrossRef]
- Zeng, H.; Fisher, B.; Giammar, D.E. Individual and Competitive Adsorption of Arsenate and Phosphate To a High-Surface-Area Iron Oxide-Based Sorbent. Environ. Sci. Technol. 2008, 42, 147–152. [Google Scholar] [CrossRef]
- Tchieda, V.K.; D’Amato, E.; Chiavola, A.; Parisi, M.; Chianese, A.; Amamra, M.; Kanaev, A. Removal of Arsenic by Alumina: Effects of Material Size, Additives, and Water Contaminants. CLEAN—Soil Air Water 2016, 44, 496–505. [Google Scholar] [CrossRef]
- Martinson, C.A.; Reddy, K.J. Adsorption of Arsenic(III) and Arsenic(V) by Cupric Oxide Nanoparticles. J. Colloid Interface Sci. 2009, 336, 406–411. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Guibal, E. Arsenic(V) Sorption Using Chitosan/Cu(OH) 2 and Chitosan/CuO Composite Sorbents. Carbohydr. Polym. 2015, 134, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.N.; Madhu, T.L. Thermal Decomposition Studies of Layered Metal Hydroxynitrates (Metal: Cu, Zn, Cu/Co, and Zn/Co). Int. J. Inorg. Chem. 2015, 2015, 536470. [Google Scholar] [CrossRef]
- El Issmaeli, Y.; Lahrichi, A.; Kalanur, S.S.; Natarajan, S.K.; Pollet, B.G. Recent Advances and Prospects of FeOOH-Based Electrode Materials for Supercapacitors. Batteries 2023, 9, 259. [Google Scholar] [CrossRef]
Materials | PZC |
---|---|
Al-TMC | 4.7 |
Cu-TMC | 5.6 |
Fe-TMC | 5.1 |
NaAlg | 6.6 |
a Chi | 8.4 |
Al-TMC (wt.%) | Cu-TMC (wt.%) | Fe-TMC (wt.%) * | |
---|---|---|---|
O | 59 ± 3 | 40 ± 3 | 35 ± 15 |
Al | 25 ± 4 | N/A | N/A |
C | 15 ± 2 | 12 ± 1 | 13 ± 3 |
N | 0 ** | 5 ± 1 ** | 1 ± 2 ** |
Cu | N/A | 42 ± 4 | N/A |
Fe | N/A | N/A | 48 ± 20 |
Na | 0 | 0 | 2 ± 3 |
Adsorbent | Al-TMC | Fe-TMC | Cu-TMC |
---|---|---|---|
Qmax (mg/g) | 93 | 77 | 17 |
K | 0.90 | 0.28 | 0.36 |
n | 0.82 | 0.28 | 1.2 |
Adsorbent | Al-TMC | Fe-TMC | Cu-TMC |
---|---|---|---|
Qmax (mg/g) | 80 | 66 | 31 |
K | 14.7 | 0.57 | 2.58 × 10−5 |
n | 0.18 | 0.38 | 2.72 |
Al-TMC | Fe-TMC | Cu-TMC | |
---|---|---|---|
Orthophosphate (mmol/g) | 0.96 | 0.79 | 0.18 |
Arsenate (mmol/g) | 0.57 | 0.47 | 0.22 |
Adsorbent | Al-TMC | Fe-TMC | Cu-TMC |
---|---|---|---|
Qe (mmol/g) | 1.52 | 2.03 | 2.06 |
K | 0.11 | 0.14 | 0.52 |
n | 8.62 | 4.69 | 2.5 |
SA PNP (m2/g) | 271 | 286 | 311 |
SA BET (m2/g) | 1.59 | 70.2 | 30.5 |
AC | αt/c | βt | |
---|---|---|---|
Al-TMC | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.2 ± 0.1 |
Cu-TMC | 1.1 ± 0.1 | 6.1 ± 0.7 | 4.4 ± 0.6 |
Fe-TMC | 0.8 ± 0.1 | 8.3 ± 0.4 | 5.0 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, N.T.; Steiger, B.G.K.; Wilson, L.D. A Route to Selective Arsenate Adsorption in Phosphate Solutions via Ternary Metal Biopolymer Composites. Appl. Sci. 2024, 14, 7577. https://doi.org/10.3390/app14177577
Bui NT, Steiger BGK, Wilson LD. A Route to Selective Arsenate Adsorption in Phosphate Solutions via Ternary Metal Biopolymer Composites. Applied Sciences. 2024; 14(17):7577. https://doi.org/10.3390/app14177577
Chicago/Turabian StyleBui, Nam T., Bernd G. K. Steiger, and Lee D. Wilson. 2024. "A Route to Selective Arsenate Adsorption in Phosphate Solutions via Ternary Metal Biopolymer Composites" Applied Sciences 14, no. 17: 7577. https://doi.org/10.3390/app14177577